[Quasi-applications tordues et dualité symplectique pour espaces hypertoriques]
We study moduli spaces of twisted quasimaps to a hypertoric variety $X$, arising as the Higgs branch of an abelian supersymmetric 3D gauge theory. These parametrize systems of maps between rank one sheaves on $¶^1$, subject to a stability condition. We identify the singular cohomology of these moduli spaces with the Ext group of a pair of holonomic modules over the “quantized loop space” of $X$, which we view as a Higgs branch for a related theory with infinitely many matter fields. We construct the coulomb branch of this theory, as a periodic analogue of the coulomb branch associated to $X$. Using the formalism of symplectic duality, we derive an expression for the generating function of twisted quasimap invariants in terms of the character of a certain tilting module on the periodic coulomb branch. We give a closed formula when $X$ arises as the abelianisation of the $N$-step flag quiver.
Nous étudions l’espace de modules des quasi-applications tordues vers une variété hypertorique $X$, branche de Higgs d’une théorie de jauge supersymétrique abélienne en dimension 3. Ces variétés paramétrisent des systèmes stables d’applications entre faisceaux de rang 1 sur $¶^1$. Nous identifions la cohomologie de ces espaces avec le groupe Ext d’une paire de modules holonomes d’un “espace de lacets quantique” de $X$, qui apparaît comme branche de Higgs d’une théorie avec un nombre infini de champs de matière. Sa branche de Coulomb est un analogue périodique de la branche de Coulomb associée à $X$. La dualité symplectique nous permet d’obtenir une formule pour la fonction génératrice des invariants des quasi-applications tordues, utilisant le caractère d’un module basculant sur la branche de Coulomb périodique. Nous donnons une formule close lorsque $X$ est l’abélianisation du carquois associé au cotangent d’une variété de drapeaux.
Révisé le :
Accepté le :
Publié le :
Keywords: Hypertoric variety, Quasimaps, Symplectic Duality, 3D mirror symmetry
Mots-clés : Variétés hypertoriques, quasi-applications, dualité symplectique, symétrie miroir 3D
McBreen, Michael 1 ; Sheshmani, Artan 2, 3 ; Yau, Shing-Tung 4

@article{AIF_2025__75_3_1225_0, author = {McBreen, Michael and Sheshmani, Artan and Yau, Shing-Tung}, title = {Twisted {Quasimaps} and {Symplectic} {Duality} for {Hypertoric} {Spaces}}, journal = {Annales de l'Institut Fourier}, pages = {1225--1269}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {75}, number = {3}, year = {2025}, doi = {10.5802/aif.3681}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3681/} }
TY - JOUR AU - McBreen, Michael AU - Sheshmani, Artan AU - Yau, Shing-Tung TI - Twisted Quasimaps and Symplectic Duality for Hypertoric Spaces JO - Annales de l'Institut Fourier PY - 2025 SP - 1225 EP - 1269 VL - 75 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3681/ DO - 10.5802/aif.3681 LA - en ID - AIF_2025__75_3_1225_0 ER -
%0 Journal Article %A McBreen, Michael %A Sheshmani, Artan %A Yau, Shing-Tung %T Twisted Quasimaps and Symplectic Duality for Hypertoric Spaces %J Annales de l'Institut Fourier %D 2025 %P 1225-1269 %V 75 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3681/ %R 10.5802/aif.3681 %G en %F AIF_2025__75_3_1225_0
McBreen, Michael; Sheshmani, Artan; Yau, Shing-Tung. Twisted Quasimaps and Symplectic Duality for Hypertoric Spaces. Annales de l'Institut Fourier, Tome 75 (2025) no. 3, pp. 1225-1269. doi : 10.5802/aif.3681. https://aif.centre-mersenne.org/articles/10.5802/aif.3681/
[1] Quantum -Langlands correspondence, Trans. Mosc. Math. Soc., Volume 79 (2018), pp. 1-83 | DOI | MR | Zbl
[2] Complete Ricci-flat Kähler manifolds of infinite topological type, Comm. Math. Phys., Volume 125 (1989) no. 4, pp. 637-642 http://projecteuclid.org/euclid.cmp/1104179632 | DOI | MR | Zbl
[3] Stability conditions for Slodowy slices and real variations of stability, Mosc. Math. J., Volume 15 (2015) no. 2, pp. 187-203 | DOI | MR | Zbl
[4] Mixed categories, Ext-duality and representations (results and conjectures), 1986
[5] Koszul duality patterns in representation theory, J. Amer. Math. Soc., Volume 9 (1996) no. 2, pp. 473-527 | DOI | MR | Zbl
[6] Fedosov quantization in algebraic context, Mosc. Math. J., Volume 4 (2004) no. 3, pp. 559-592 | DOI | MR | Zbl
[7] Monodromy and derived equivalences preparation (cit. on pp. 859, 860)
[8] The geometry and topology of toric hyperkähler manifolds, Comm. Anal. Geom., Volume 8 (2000) no. 4, pp. 727-760 | DOI | MR | Zbl
[9] Gale duality and Koszul duality, Adv. Math., Volume 225 (2010) no. 4, pp. 2002-2049 | DOI | MR | Zbl
[10] Hypertoric category , Adv. Math., Volume 231 (2012) no. 3-4, pp. 1487-1545 | DOI | MR | Zbl
[11] Quantizations of conical symplectic resolutions II: category and symplectic duality. With an appendix by I. Losev, Astérisque, 384, Société Mathématique de France, 2016, pp. 75-179 | MR | Zbl
[12] Towards a mathematical definition of Coulomb branches of 3-dimensional gauge theories, II, Adv. Theor. Math. Phys., Volume 22 (2018) no. 5, pp. 1071-1147 | DOI | MR | Zbl
[13] Axioms for infinite matroids, Adv. Math., Volume 239 (2013), pp. 18-46 | DOI | MR | Zbl
[14] Vortices and Vermas, Adv. Theor. Math. Phys., Volume 22 (2018) no. 4, pp. 803-917 | DOI | MR | Zbl
[15] Stable quasimaps to GIT quotients, J. Geom. Phys., Volume 75 (2014), pp. 17-47 | DOI | MR | Zbl
[16] Hypertoric manifolds and hyperkähler moment maps, Special metrics and group actions in geometry (Springer INdAM Ser.), Volume 23, Springer, Cham, 2017, pp. 107-127 | DOI | MR | Zbl
[17] Deletion-contraction triangles for Hausel–Proudfoot varieties, J. Eur. Math. Soc., 2023 | DOI | MR | Zbl
[18] Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys., Volume 7 (1983) no. 6, pp. 487-496 | DOI | MR | Zbl
[19] Symplectic reflection algebras, Calogero–Moser space, and deformed Harish–Chandra homomorphism, Invent. Math., Volume 147 (2002) no. 2, pp. 243-348 | DOI | MR | Zbl
[20] A simple geometrical construction of deformation quantization, J. Differ. Geom., Volume 40 (1994) no. 2, pp. 213-238 http://projecteuclid.org/euclid.jdg/1214455536 | DOI | MR | Zbl
[21] On toric hyper-Kähler manifolds given by the hyper-Kähler quotient method, Infinite analysis, Part A, B (Kyoto, 1991) (Adv. Ser. Math. Phys.), Volume 16, World Sci. Publ., River Edge, NJ, 1992, pp. 317-338 | DOI | MR | Zbl
[22] The volume growth of hyper-Kähler manifolds of type , J. Geom. Anal., Volume 21 (2011) no. 4, pp. 920-949 | DOI | MR | Zbl
[23] Abelianization for hyperkähler quotients, Topology, Volume 44 (2005) no. 1, pp. 231-248 | DOI | MR | Zbl
[24] An algebro-geometric realization of the cohomology ring of Hilbert scheme of points in the affine plane, Int. Math. Res. Not. IMRN (2017) no. 8, pp. 2538-2561 | DOI | MR | Zbl
[25] BFN Springer theory, Comm. Math. Phys., Volume 402 (2023) no. 1, pp. 765-832 | DOI | MR | Zbl
[26] Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B, Volume 387 (1996) no. 3, pp. 513-519 | DOI | MR | Zbl
[27] The quantum Hikita conjecture, Adv. Math., Volume 390 (2021), 107947, 53 pages | DOI | MR | Zbl
[28] Highest weights for truncated shifted Yangians and product monomial crystals (2015) (https://arxiv.org/abs/1511.09131)
[29] Stable quasimaps to holomorphic symplectic quotients, Schubert calculus—Osaka 2012 (Adv. Stud. Pure Math.), Volume 71, Math. Soc. Japan, Tokyo (2016), pp. 139-160 | DOI | MR | Zbl
[30] Isomorphisms of quantizations via quantization of resolutions, Adv. Math., Volume 231 (2012) no. 3-4, pp. 1216-1270 | DOI | MR | Zbl
[31] Quantum groups and quantum cohomology, Astérisque, Société Mathématique de France, 2019 no. 408, ix+209 pages | DOI | MR | Zbl
[32] Quadratic duals, Koszul dual functors, and applications, Trans. Amer. Math. Soc., Volume 361 (2009) no. 3, pp. 1129-1172 | DOI | MR | Zbl
[33] Homological Mirror Symmetry for Hypertoric Varieties I (2018) (https://arxiv.org/abs/1804.10646)
[34] Invariants under tori of rings of differential operators and related topics, Mem. Amer. Math. Soc., 136, American Mathematical Society, Providence, RI, 1998 no. 650, viii+85 pages | DOI | MR | Zbl
[35] Towards a mathematical definition of Coulomb branches of 3-dimensional gauge theories, I, Adv. Theor. Math. Phys., Volume 20 (2016) no. 3, pp. 595-669 | DOI | MR | Zbl
[36] Special transverse slices and their enveloping algebras, Adv. Math., Volume 170 (2002) no. 1, pp. 1-55 (With an appendix by Serge Skryabin) | DOI | MR | Zbl
[37] A survey of hypertoric geometry and topology, Toric topology. International conference, Osaka, Japan, May 28–June 3, 2006 (Contemp. Math.), Volume 460, American Mathematical Society, Providence, RI (2008), pp. 323-338 | DOI | MR | Zbl
[38] Baxter -operator from quantum -theory, Adv. Math., Volume 360 (2020), p. 106919, 63 | DOI | MR | Zbl
[39] Kategorie , perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc., Volume 3 (1990) no. 2, pp. 421-445 | DOI | MR | Zbl
Cité par Sources :