Topological mixing of the geodesic flow on convex projective manifolds
[Mélange topologique du flot géodésique sur les variétés projectives convexes]
Annales de l'Institut Fourier, Online first, 38 p.

Nous introduisons un sous-ensemble naturel du fibré unitaire tangent des variétés projectives convexes, appelé le fibré unitaire tangent biproximal ; il est fermé et invariant sous l’action du flot géodésique, et nous démontrons que le flot géodésique est topologiquement mélangeant dès que la variété est irréductible. Nous montrons aussi que pour les variétés projectives convexes de rang supérieur, irréductibles et compactes, le flot géodésique est topologiquement mélangeant sur chaque composante de l’ensemble non-errant.

We introduce a natural subset of the unit tangent bundle of a convex projective manifold, the biproximal unit tangent bundle; it is closed and invariant under the geodesic flow, and we prove that the geodesic flow is topologically mixing on it whenever the manifold is irreducible. We also show that, for higher-rank, irreducible, compact convex projective manifolds, the geodesic flow is topologically mixing on each connected component of the non-wandering set.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3669
Classification : 37D40
Keywords: Convex projective manifolds, geodesic flow, topological mixing.
Mot clés : Variétés projectives convexes, flot géodésique, mélange topologique.

Blayac, Pierre-Louis 1

1 2074 East Hall 530 Church Street Ann Arbor, MI 48109-1043 (USA)
@unpublished{AIF_0__0_0_A121_0,
     author = {Blayac, Pierre-Louis},
     title = {Topological mixing of the geodesic flow on convex projective manifolds},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2024},
     doi = {10.5802/aif.3669},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Blayac, Pierre-Louis
TI  - Topological mixing of the geodesic flow on convex projective manifolds
JO  - Annales de l'Institut Fourier
PY  - 2024
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3669
LA  - en
ID  - AIF_0__0_0_A121_0
ER  - 
%0 Unpublished Work
%A Blayac, Pierre-Louis
%T Topological mixing of the geodesic flow on convex projective manifolds
%J Annales de l'Institut Fourier
%D 2024
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3669
%G en
%F AIF_0__0_0_A121_0
Blayac, Pierre-Louis. Topological mixing of the geodesic flow on convex projective manifolds. Annales de l'Institut Fourier, Online first, 38 p.

[1] Ballas, Samuel A.; Danciger, Jeffrey; Lee, Gye-Seon Convex projective structures on nonhyperbolic three-manifolds, Geom. Topol., Volume 22 (2018) no. 3, pp. 1593-1646 | DOI | MR | Zbl

[2] Ballmann, Werner Axial isometries of manifolds of nonpositive curvature, Math. Ann., Volume 259 (1982) no. 1, pp. 131-144 | DOI | MR | Zbl

[3] Ballmann, Werner Nonpositively curved manifolds of higher rank, Ann. Math., Volume 122 (1985) no. 3, pp. 597-609 | DOI | MR | Zbl

[4] Ballmann, Werner; Brin, Misha; Eberlein, Patrick Structure of manifolds of nonpositive curvature. I, Ann. Math., Volume 122 (1985) no. 1, pp. 171-203 | DOI | MR | Zbl

[5] Benoist, Yves Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal., Volume 7 (1997) no. 1, pp. 1-47 | DOI | MR | Zbl

[6] Benoist, Yves Automorphismes des cônes convexes, Invent. Math., Volume 141 (2000) no. 1, pp. 149-193 | DOI | MR | Zbl

[7] Benoist, Yves Propriétés asymptotiques des groupes linéaires. II, Analysis on homogeneous spaces and representation theory of Lie groups, Okayama–Kyoto (1997) (Advanced Studies in Pure Mathematics), Volume 26, Mathematical Society of Japan, 2000, pp. 33-48 | DOI | MR | Zbl

[8] Benoist, Yves Convexes divisibles I, Algebraic groups and arithmetic, Tata Institute of Fundamental Research, 2004, pp. 339-374 | MR | Zbl

[9] Benoist, Yves Convexes divisibles IV, Invent. Math., Volume 164 (2006) no. 2, pp. 249-278 | DOI | MR | Zbl

[10] Benoist, Yves A survey on divisible convex sets, Geometry, analysis and topology of discrete groups (Advanced Lectures in Mathematics), Volume 6, International Press, 2008, pp. 1-18 | MR | Zbl

[11] Benoist, Yves; Quint, Jean-François Random walks on reductive groups, Ergeb. Math. Grenzgeb. (3), 62, Springer, 2016, xi+323 pages | DOI | MR | Zbl

[12] Blayac, Pierre-Louis The boundary of rank-one divisible convex sets (2021) (to appear in Bull. Soc. Math. Fr., https://arxiv.org/abs/2106.07581)

[13] Blayac, Pierre-Louis Dynamical aspects of convex projective structures, Ph. D. Thesis, Laboratoire Alexander Grothendieck, Université Paris-Saclay (2021)

[14] Blayac, Pierre-Louis Patterson–Sullivan densities in convex projective geometry (2021) (to appear in Comment. Math. Helv., https://arxiv.org/abs/2106.08089)

[15] Blayac, Pierre-Louis; Zhu, Feng Ergodicity and equidistribution in Hilbert geometry, J. Mod. Dyn., Volume 19 (2023), pp. 879-945 | DOI | MR | Zbl

[16] Bobb, Martin D. Codimension-1 simplices in divisible convex domains, Geom. Topol., Volume 25 (2021) no. 7, pp. 3725-3753 | DOI | MR | Zbl

[17] Borel, Armand Compact Clifford–Klein forms of symmetric spaces, Topology, Volume 2 (1963), pp. 111-122 | DOI | MR | Zbl

[18] Bray, Harrison Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds, J. Mod. Dyn., Volume 16 (2020), pp. 305-329 | DOI | MR | Zbl

[19] Bray, Harrison Geodesic flow of nonstrictly convex Hilbert geometries, Ann. Inst. Fourier, Volume 70 (2020) no. 4, pp. 1563-1593 | DOI | Numdam | MR | Zbl

[20] Burns, Keith; Spatzier, Ralf Manifolds of nonpositive curvature and their buildings, Publ. Math., Inst. Hautes Étud. Sci. (1987) no. 65, pp. 35-59 | DOI | Numdam | MR | Zbl

[21] Choi, Suhyoung; Lee, Gye-Seon; Marquis, Ludovic Convex projective generalized Dehn filling, Ann. Sci. Éc. Norm. Supér., Volume 53 (2020), pp. 217-266 | DOI | Zbl

[22] Cooper, Daryl; Long, Darren D.; Tillmann, Stephan On convex projective manifolds and cusps, Adv. Math., Volume 277 (2015), pp. 181-251 | DOI | MR | Zbl

[23] Coudène, Yves; Schapira, Barbara Generic measures for hyperbolic flows on non-compact spaces, Isr. J. Math., Volume 179 (2010), pp. 157-172 | DOI | MR | Zbl

[24] Crampon, Mickaël Entropies of strictly convex projective manifolds, J. Mod. Dyn., Volume 3 (2009) no. 4, pp. 511-547 | DOI | MR | Zbl

[25] Crampon, Mickaël; Marquis, Ludovic Le flot géodésique des quotients géométriquement finis des géométries de Hilbert, Pac. J. Math., Volume 268 (2014) no. 2, pp. 313-369 | DOI | MR | Zbl

[26] Dal’bo, Françoise Topologie du feuilletage fortement stable, Ann. Inst. Fourier, Volume 50 (2000) no. 3, pp. 981-993 | DOI | Numdam | MR | Zbl

[27] Danciger, Jeffrey; Guéritaud, François; Kassel, Fanny Convex cocompact actions in real projective geometry (2017) (to appear in Ann. Sci. Éc. Norm. Supér., https://arxiv.org/abs/1704.08711)

[28] Eberlein, Patrick Geodesic flows on negatively curved manifolds. I, Ann. Math., Volume 95 (1972), pp. 492-510 | DOI | MR | Zbl

[29] Eberlein, Patrick; Hamenstädt, Ursula; Schroeder, Viktor Manifolds of nonpositive curvature, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990) (Proceedings of Symposia in Pure Mathematics), Volume 54, American Mathematical Society, 1993, pp. 179-227 | DOI | MR | Zbl

[30] Faraut, Jacques; Korányi, Adam Analysis on symmetric cones, Oxford Mathematical Monographs, Oxford University Press, 1994, xii+382 pages | DOI | MR | Zbl

[31] Hedlund, Gustav A. The dynamics of geodesic flows, Bull. Am. Math. Soc., Volume 45 (1939) no. 4, pp. 241-260 | DOI | MR | Zbl

[32] Howe, Roger E.; Moore, Calvin C. Asymptotic properties of unitary representations, J. Funct. Anal., Volume 32 (1979) no. 1, pp. 72-96 | DOI | MR | Zbl

[33] Islam, Mitul Rank-one Hilbert geometries (2019) (to appear in Geom. Topol., https://arxiv.org/abs/1912.13013)

[34] Islam, Mitul; Zimmer, Andrew Relative hyperbolic groups in convex real projective geometry (2022) (https://arxiv.org/abs/2203.16596)

[35] Islam, Mitul; Zimmer, Andrew Convex cocompact actions of relatively hyperbolic groups, Geom. Topol., Volume 27 (2023) no. 2, pp. 417-511 | DOI | MR | Zbl

[36] Marquis, Ludovic Espace des modules de certains polyèdres projectifs miroirs, Geom. Dedicata, Volume 147 (2010), pp. 47-86 | DOI | MR | Zbl

[37] Selberg, Atle On discontinuous groups in higher-dimensional symmetric spaces, Contributions to function theory, Tata Institute of Fundamental Research, 1960, pp. 147-164 | MR | Zbl

[38] Socié-Méthou, Edith Behaviour of distance functions in Hilbert–Finsler geometry, Differ. Geom. Appl., Volume 20 (2004) no. 1, pp. 1-10 | DOI | MR | Zbl

[39] Vey, Jacques Sur les automorphismes affines des ouverts convexes saillants, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 24 (1970), pp. 641-665 | Numdam | MR | Zbl

[40] Weisman, Theodore Dynamical properties of convex cocompact actions in projective space, J. Topol., Volume 16 (2023) no. 3, pp. 990-1047 | DOI | MR | Zbl

[41] Zimmer, Andrew A higher-rank rigidity theorem for convex real projective manifolds, Geom. Topol., Volume 27 (2023) no. 7, pp. 2899-2936 | DOI | MR | Zbl

[42] Zimmer, Robert J. Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhäuser, 1984, x+209 pages | DOI | MR | Zbl

Cité par Sources :