[Mélange topologique du flot géodésique sur les variétés projectives convexes]
Nous introduisons un sous-ensemble naturel du fibré unitaire tangent des variétés projectives convexes, appelé le fibré unitaire tangent biproximal ; il est fermé et invariant sous l’action du flot géodésique, et nous démontrons que le flot géodésique est topologiquement mélangeant dès que la variété est irréductible. Nous montrons aussi que pour les variétés projectives convexes de rang supérieur, irréductibles et compactes, le flot géodésique est topologiquement mélangeant sur chaque composante de l’ensemble non-errant.
We introduce a natural subset of the unit tangent bundle of a convex projective manifold, the biproximal unit tangent bundle; it is closed and invariant under the geodesic flow, and we prove that the geodesic flow is topologically mixing on it whenever the manifold is irreducible. We also show that, for higher-rank, irreducible, compact convex projective manifolds, the geodesic flow is topologically mixing on each connected component of the non-wandering set.
Révisé le :
Accepté le :
Première publication :
Keywords: Convex projective manifolds, geodesic flow, topological mixing.
Mot clés : Variétés projectives convexes, flot géodésique, mélange topologique.
Blayac, Pierre-Louis 1
@unpublished{AIF_0__0_0_A121_0, author = {Blayac, Pierre-Louis}, title = {Topological mixing of the geodesic flow on convex projective manifolds}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3669}, language = {en}, note = {Online first}, }
Blayac, Pierre-Louis. Topological mixing of the geodesic flow on convex projective manifolds. Annales de l'Institut Fourier, Online first, 38 p.
[1] Convex projective structures on nonhyperbolic three-manifolds, Geom. Topol., Volume 22 (2018) no. 3, pp. 1593-1646 | DOI | MR | Zbl
[2] Axial isometries of manifolds of nonpositive curvature, Math. Ann., Volume 259 (1982) no. 1, pp. 131-144 | DOI | MR | Zbl
[3] Nonpositively curved manifolds of higher rank, Ann. Math., Volume 122 (1985) no. 3, pp. 597-609 | DOI | MR | Zbl
[4] Structure of manifolds of nonpositive curvature. I, Ann. Math., Volume 122 (1985) no. 1, pp. 171-203 | DOI | MR | Zbl
[5] Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal., Volume 7 (1997) no. 1, pp. 1-47 | DOI | MR | Zbl
[6] Automorphismes des cônes convexes, Invent. Math., Volume 141 (2000) no. 1, pp. 149-193 | DOI | MR | Zbl
[7] Propriétés asymptotiques des groupes linéaires. II, Analysis on homogeneous spaces and representation theory of Lie groups, Okayama–Kyoto (1997) (Advanced Studies in Pure Mathematics), Volume 26, Mathematical Society of Japan, 2000, pp. 33-48 | DOI | MR | Zbl
[8] Convexes divisibles I, Algebraic groups and arithmetic, Tata Institute of Fundamental Research, 2004, pp. 339-374 | MR | Zbl
[9] Convexes divisibles IV, Invent. Math., Volume 164 (2006) no. 2, pp. 249-278 | DOI | MR | Zbl
[10] A survey on divisible convex sets, Geometry, analysis and topology of discrete groups (Advanced Lectures in Mathematics), Volume 6, International Press, 2008, pp. 1-18 | MR | Zbl
[11] Random walks on reductive groups, Ergeb. Math. Grenzgeb. (3), 62, Springer, 2016, xi+323 pages | DOI | MR | Zbl
[12] The boundary of rank-one divisible convex sets (2021) (to appear in Bull. Soc. Math. Fr., https://arxiv.org/abs/2106.07581)
[13] Dynamical aspects of convex projective structures, Ph. D. Thesis, Laboratoire Alexander Grothendieck, Université Paris-Saclay (2021)
[14] Patterson–Sullivan densities in convex projective geometry (2021) (to appear in Comment. Math. Helv., https://arxiv.org/abs/2106.08089)
[15] Ergodicity and equidistribution in Hilbert geometry, J. Mod. Dyn., Volume 19 (2023), pp. 879-945 | DOI | MR | Zbl
[16] Codimension-1 simplices in divisible convex domains, Geom. Topol., Volume 25 (2021) no. 7, pp. 3725-3753 | DOI | MR | Zbl
[17] Compact Clifford–Klein forms of symmetric spaces, Topology, Volume 2 (1963), pp. 111-122 | DOI | MR | Zbl
[18] Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds, J. Mod. Dyn., Volume 16 (2020), pp. 305-329 | DOI | MR | Zbl
[19] Geodesic flow of nonstrictly convex Hilbert geometries, Ann. Inst. Fourier, Volume 70 (2020) no. 4, pp. 1563-1593 | DOI | Numdam | MR | Zbl
[20] Manifolds of nonpositive curvature and their buildings, Publ. Math., Inst. Hautes Étud. Sci. (1987) no. 65, pp. 35-59 | DOI | Numdam | MR | Zbl
[21] Convex projective generalized Dehn filling, Ann. Sci. Éc. Norm. Supér., Volume 53 (2020), pp. 217-266 | DOI | Zbl
[22] On convex projective manifolds and cusps, Adv. Math., Volume 277 (2015), pp. 181-251 | DOI | MR | Zbl
[23] Generic measures for hyperbolic flows on non-compact spaces, Isr. J. Math., Volume 179 (2010), pp. 157-172 | DOI | MR | Zbl
[24] Entropies of strictly convex projective manifolds, J. Mod. Dyn., Volume 3 (2009) no. 4, pp. 511-547 | DOI | MR | Zbl
[25] Le flot géodésique des quotients géométriquement finis des géométries de Hilbert, Pac. J. Math., Volume 268 (2014) no. 2, pp. 313-369 | DOI | MR | Zbl
[26] Topologie du feuilletage fortement stable, Ann. Inst. Fourier, Volume 50 (2000) no. 3, pp. 981-993 | DOI | Numdam | MR | Zbl
[27] Convex cocompact actions in real projective geometry (2017) (to appear in Ann. Sci. Éc. Norm. Supér., https://arxiv.org/abs/1704.08711)
[28] Geodesic flows on negatively curved manifolds. I, Ann. Math., Volume 95 (1972), pp. 492-510 | DOI | MR | Zbl
[29] Manifolds of nonpositive curvature, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990) (Proceedings of Symposia in Pure Mathematics), Volume 54, American Mathematical Society, 1993, pp. 179-227 | DOI | MR | Zbl
[30] Analysis on symmetric cones, Oxford Mathematical Monographs, Oxford University Press, 1994, xii+382 pages | DOI | MR | Zbl
[31] The dynamics of geodesic flows, Bull. Am. Math. Soc., Volume 45 (1939) no. 4, pp. 241-260 | DOI | MR | Zbl
[32] Asymptotic properties of unitary representations, J. Funct. Anal., Volume 32 (1979) no. 1, pp. 72-96 | DOI | MR | Zbl
[33] Rank-one Hilbert geometries (2019) (to appear in Geom. Topol., https://arxiv.org/abs/1912.13013)
[34] Relative hyperbolic groups in convex real projective geometry (2022) (https://arxiv.org/abs/2203.16596)
[35] Convex cocompact actions of relatively hyperbolic groups, Geom. Topol., Volume 27 (2023) no. 2, pp. 417-511 | DOI | MR | Zbl
[36] Espace des modules de certains polyèdres projectifs miroirs, Geom. Dedicata, Volume 147 (2010), pp. 47-86 | DOI | MR | Zbl
[37] On discontinuous groups in higher-dimensional symmetric spaces, Contributions to function theory, Tata Institute of Fundamental Research, 1960, pp. 147-164 | MR | Zbl
[38] Behaviour of distance functions in Hilbert–Finsler geometry, Differ. Geom. Appl., Volume 20 (2004) no. 1, pp. 1-10 | DOI | MR | Zbl
[39] Sur les automorphismes affines des ouverts convexes saillants, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 24 (1970), pp. 641-665 | Numdam | MR | Zbl
[40] Dynamical properties of convex cocompact actions in projective space, J. Topol., Volume 16 (2023) no. 3, pp. 990-1047 | DOI | MR | Zbl
[41] A higher-rank rigidity theorem for convex real projective manifolds, Geom. Topol., Volume 27 (2023) no. 7, pp. 2899-2936 | DOI | MR | Zbl
[42] Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhäuser, 1984, x+209 pages | DOI | MR | Zbl
Cité par Sources :