Quasi-Classical Ground States. II. Standard Model of Non-Relativistic QED
Annales de l'Institut Fourier, Online first, 44 p.

We consider a non-relativistic electron bound by an external potential and coupled to the quantized electromagnetic field in the standard model of non-relativistic QED. We compute the energy functional of product states of the form uΨ f , where u is a normalized state for the electron and Ψ f is a coherent state in Fock space for the photon field. The minimization of this functional yields a Maxwell–Pauli system up to a trivial renormalization. We prove the existence of a ground state under general conditions on the external potential and the coupling. In particular, neither an ultraviolet cutoff nor an infrared cutoff needs to be imposed. Our results provide the convergence in the ultraviolet limit and the second-order asymptotic expansion in the coupling constant of the ground state energy of Maxwell–Pauli systems.

On considère un électron non relativiste placé dans un potentiel extérieur et couplé au champ électromagnétique quantifié dans le modèle standard de l’électrodynamique quantique non relativiste. On s’intéresse à la fonctionnelle obtenue en calculant l’énergie du système total en des états produits de la forme uΨ f , où u est un état normalisé pour l’électron et Ψ f est un état cohérent dans l’espace de Fock pour le champ de photons. La minimisation de cette fonctionnelle fait apparaître, après une renormalisation triviale, l’énergie d’un système de Maxwell–Pauli. On prouve l’existence d’un état fondamental sous des conditions générales portant sur le potentiel extérieur et sur la fonction de couplage. En particulier, il n’est pas nécessaire d’imposer une troncature ultraviolette ni une troncature infrarouge. Nos résultats établissent la convergence dans la limite ultraviolette de l’énergie fondamentale des systèmes de Maxwell–Pauli, ainsi que le développement asymptotique au second ordre de cette énergie par rapport à la constante de couplage.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/aif.3667
Classification: 00X99
Keywords: Ground states, quasi-classical limit, non-relativistic quantum electrodynamics, calculus of variations, Pauli-Fierz model, Maxwell-Pauli energy functional, Ultraviolet limit.
Mot clés : États fondamentaux, limite quasi-classique, électrodynamique quantique non relativiste, calcul variationnel, modèle de Pauli–Fierz, fonctionnelle d’énergie de Maxwell–Pauli, Limite ultraviolette.

Breteaux, Sébastien 1; Faupin, Jérémy 1; Payet, Jimmy 1

1 Université de Lorraine CNRS IECL F-57000 Metz (France)
@unpublished{AIF_0__0_0_A122_0,
     author = {Breteaux, S\'ebastien and Faupin, J\'er\'emy and Payet, Jimmy},
     title = {Quasi-Classical {Ground} {States.} {II.} {Standard} {Model} of {Non-Relativistic} {QED}},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2024},
     doi = {10.5802/aif.3667},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Breteaux, Sébastien
AU  - Faupin, Jérémy
AU  - Payet, Jimmy
TI  - Quasi-Classical Ground States. II. Standard Model of Non-Relativistic QED
JO  - Annales de l'Institut Fourier
PY  - 2024
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3667
LA  - en
ID  - AIF_0__0_0_A122_0
ER  - 
%0 Unpublished Work
%A Breteaux, Sébastien
%A Faupin, Jérémy
%A Payet, Jimmy
%T Quasi-Classical Ground States. II. Standard Model of Non-Relativistic QED
%J Annales de l'Institut Fourier
%D 2024
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3667
%G en
%F AIF_0__0_0_A122_0
Breteaux, Sébastien; Faupin, Jérémy; Payet, Jimmy. Quasi-Classical Ground States. II. Standard Model of Non-Relativistic QED. Annales de l'Institut Fourier, Online first, 44 p.

[1] Ammari, Zied; Nier, Francis Mean field limit for bosons and infinite dimensional phase-space analysis, Ann. Henri Poincaré, Volume 9 (2008) no. 8, pp. 1503-1574 | DOI | MR | Zbl

[2] Arai, Asao; Hirokawa, Masao On the existence and uniqueness of ground states of a generalized spin-boson model, J. Funct. Anal., Volume 151 (1997) no. 2, pp. 455-503 | DOI | MR | Zbl

[3] Bach, Volker; Breteaux, Sébastien; Tzaneteas, Tim Minimization of the energy of the nonrelativistic one-electron Pauli–Fierz model over quasifree states, Doc. Math., Volume 18 (2013), pp. 1481-1519 | DOI | MR | Zbl

[4] Bach, Volker; Fröhlich, Jürg; Pizzo, Alessandro Infrared-finite algorithms in QED. II. The expansion of the groundstate of an atom interacting with the quantized radiation field, Adv. Math., Volume 220 (2009) no. 4, pp. 1023-1074 | DOI | MR | Zbl

[5] Bach, Volker; Fröhlich, Jürg; Sigal, Israel Michael Quantum electrodynamics of confined nonrelativistic particles, Adv. Math., Volume 137 (1998) no. 2, pp. 299-395 | DOI | MR | Zbl

[6] Bach, Volker; Fröhlich, Jürg; Sigal, Israel Michael Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field, Commun. Math. Phys., Volume 207 (1999) no. 2, pp. 249-290 | DOI | MR | Zbl

[7] Bach, Volker; Hach, Alexander On the ultraviolet limit of the Pauli–Fierz Hamiltonian in the Lieb–Loss model, Ann. Henri Poincaré, Volume 23 (2022) no. 6, pp. 2207-2245 | DOI | MR | Zbl

[8] Bejenaru, Ioan; Tataru, Daniel Global wellposedness in the energy space for the Maxwell–Schrödinger system, Commun. Math. Phys., Volume 288 (2009) no. 1, pp. 145-198 | DOI | MR | Zbl

[9] Benci, Vieri; Fortunato, Donato Solitons in Schrödinger–Maxwell equations, J. Fixed Point Theory Appl., Volume 15 (2014) no. 1, pp. 101-132 | DOI | MR | Zbl

[10] Bennett, Jonathan; Carbery, Anthony; Christ, Michael; Tao, Terence The Brascamp–Lieb inequalities: finiteness, structure and extremals, Geom. Funct. Anal., Volume 17 (2008) no. 5, pp. 1343-1415 | DOI | MR | Zbl

[11] Bez, Neal; Lee, Sanghyuk; Nakamura, Shohei; Sawano, Yoshihiro Sharpness of the Brascamp–Lieb inequality in Lorentz spaces, Electron. Res. Announc. Math. Sci., Volume 24 (2017), pp. 53-63 | DOI | MR | Zbl

[12] Breteaux, Sébastien; Faupin, Jérémy; Payet, Jimmy Quasi-classical ground states. I. Linearly coupled Pauli–Fierz Hamiltonians, Doc. Math., Volume 28 (2023) no. 5, pp. 1191-1233 | DOI | MR | Zbl

[13] Colin, Mathieu; Watanabe, Tatsuya Cauchy problem for the nonlinear Schrödinger equation coupled with the Maxwell equation, Ann. Henri Lebesgue, Volume 3 (2020), pp. 67-85 | DOI | Numdam | MR | Zbl

[14] Correggi, Michele; Falconi, Marco Effective potentials generated by field interaction in the quasi-classical limit, Ann. Henri Poincaré, Volume 19 (2018) no. 1, pp. 189-235 | DOI | MR | Zbl

[15] Correggi, Michele; Falconi, Marco; Olivieri, Marco Magnetic Schrödinger operators as the quasi-classical limit of Pauli–Fierz-type models, J. Spectr. Theory, Volume 9 (2019) no. 4, pp. 1287-1325 | DOI | MR | Zbl

[16] Correggi, Michele; Falconi, Marco; Olivieri, Marco Ground state properties in the quasiclassical regime, Anal. PDE, Volume 16 (2023) no. 8, pp. 1745-1798 | DOI | MR | Zbl

[17] Correggi, Michele; Falconi, Marco; Olivieri, Marco Quasi-classical dynamics, J. Eur. Math. Soc., Volume 25 (2023) no. 2, pp. 731-783 | DOI | MR | Zbl

[18] Cycon, Hans L.; Froese, Richard G.; Kirsch, Werner; Simon, Barry Schrödinger operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics, Springer, 1987, x+319 pages | MR | Zbl

[19] Dereziński, Jan; Gérard, Christian Asymptotic completeness in quantum field theory. Massive Pauli–Fierz Hamiltonians, Rev. Math. Phys., Volume 11 (1999) no. 4, pp. 383-450 | DOI | MR | Zbl

[20] Fröhlich, Jürg; Lieb, Elliott H.; Loss, Michael Stability of Coulomb systems with magnetic fields. I. The one-electron atom, Commun. Math. Phys., Volume 104 (1986) no. 2, pp. 251-270 | DOI | MR | Zbl

[21] Fröhlich, Jürg; Studer, Urban M. U(1)×SU(2)-gauge invariance of nonrelativistic quantum mechanics, and generalized Hall effects, Commun. Math. Phys., Volume 148 (1992) no. 3, pp. 553-600 | DOI | MR | Zbl

[22] Gérard, Christian On the existence of ground states for massless Pauli–Fierz Hamiltonians, Ann. Henri Poincaré, Volume 1 (2000) no. 3, pp. 443-459 | DOI | MR | Zbl

[23] Ginibre, Jean; Velo, Giorgio Long range scattering for the Maxwell–Schrödinger system with large magnetic field data and small Schrödinger data, Publ. Res. Inst. Math. Sci., Volume 42 (2006) no. 2, pp. 421-459 | DOI | MR | Zbl

[24] Grafakos, Loukas Classical Fourier analysis, Graduate Texts in Mathematics, 249, Springer, 2014, xviii+638 pages | DOI | MR | Zbl

[25] Griesemer, Marcel Exponential decay and ionization thresholds in non-relativistic quantum electrodynamics, J. Funct. Anal., Volume 210 (2004) no. 2, pp. 321-340 | DOI | MR | Zbl

[26] Griesemer, Marcel; Hasler, David Analytic perturbation theory and renormalization analysis of matter coupled to quantized radiation, Ann. Henri Poincaré, Volume 10 (2009) no. 3, pp. 577-621 | DOI | MR | Zbl

[27] Griesemer, Marcel; Lieb, Elliott H.; Loss, Michael Ground states in non-relativistic quantum electrodynamics, Invent. Math., Volume 145 (2001) no. 3, pp. 557-595 | DOI | MR | Zbl

[28] Guo, Yan; Nakamitsu, Kuniaki; Strauss, Walter Global finite-energy solutions of the Maxwell-Schrödinger system, Commun. Math. Phys., Volume 170 (1995) no. 1, pp. 181-196 | MR | Zbl

[29] Hasler, David; Herbst, Ira On the self-adjointness and domain of Pauli–Fierz type Hamiltonians, Rev. Math. Phys., Volume 20 (2008) no. 7, pp. 787-800 | DOI | MR | Zbl

[30] Hasler, David; Herbst, Ira Ground state properties in non-relativistic QED, Mathematical results in quantum physics, World Scientific, 2011, pp. 203-207 | DOI | MR | Zbl

[31] Hiroshima, Fumio Self-adjointness of the Pauli–Fierz Hamiltonian for arbitrary values of coupling constants, Ann. Henri Poincaré, Volume 3 (2002) no. 1, pp. 171-201 | DOI | MR | Zbl

[32] Kato, Tosio Perturbation theory for linear operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer, 1980 | Zbl

[33] Kieffer, Thomas F. Time global finite-energy weak solutions to the many-body Maxwell–Pauli equations, Commun. Math. Phys., Volume 377 (2020) no. 2, pp. 1131-1162 | DOI | MR | Zbl

[34] Lemarié-Rieusset, Pierre G. Recent developments in the Navier–Stokes problem, CRC Research Notes in Mathematics, 431, Chapman & Hall/CRC, 2002, xiv+395 pages | DOI | MR | Zbl

[35] Leopold, Nikolai; Pickl, Peter Derivation of the Maxwell-Schrödinger equations from the Pauli–Fierz Hamiltonian, SIAM J. Math. Anal., Volume 52 (2020) no. 5, pp. 4900-4936 | DOI | MR | Zbl

[36] Lieb, Elliott H.; Loss, Michael Self-energy of electrons in non-perturbative QED, Differential equations and mathematical physics (Birmingham, AL, 1999) (AMS/IP Studies in Advanced Mathematics), Volume 16, American Mathematical Society, 2000, pp. 279-293 | DOI | MR | Zbl

[37] Lions, Pierre-Louis The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 2, pp. 109-145 | DOI | MR | Zbl

[38] Lions, Pierre-Louis The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 4, pp. 223-283 | DOI | MR | Zbl

[39] Liu, Yang; Wada, Takeshi Long range scattering for the Maxwell–Schrödinger system in the Lorenz gauge without any restriction on the size of data, J. Differ. Equations, Volume 269 (2020) no. 4, pp. 2798-2852 | DOI | MR | Zbl

[40] Loss, Michael; Miyao, Tadahiro; Spohn, Herbert Kramers degeneracy theorem in nonrelativistic QED, Lett. Math. Phys., Volume 89 (2009) no. 1, pp. 21-31 | DOI | MR | Zbl

[41] Ma, Chupeng; Cao, Liqun A Crank–Nicolson finite element method and the optimal error estimates for the modified time-dependent Maxwell–Schrödinger equations, SIAM J. Numer. Anal., Volume 56 (2018) no. 1, pp. 369-396 | DOI | MR | Zbl

[42] Nakamitsu, Kuniaki; Tsutsumi, Masayoshi The Cauchy problem for the coupled Maxwell–Schrödinger equations, J. Math. Phys., Volume 27 (1986) no. 1, pp. 211-216 | DOI | MR | Zbl

[43] Nakamura, Makoto; Wada, Takeshi Global existence and uniqueness of solutions to the Maxwell–Schrödinger equations, Commun. Math. Phys., Volume 276 (2007) no. 2, pp. 315-339 | DOI | MR | Zbl

[44] O’Neil, Richard Convolution operators and L(p,q) spaces, Duke Math. J., Volume 30 (1963), pp. 129-142 | DOI | MR | Zbl

[45] Pauli, Wolfgang; Fierz, Markus Zur Theorie der Emission langwelliger Lichtquanten, Nuovo Cimento, N.S., Volume 15 (1938), pp. 167-188 | DOI | Zbl

[46] Reed, Michael; Simon, Barry Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press Inc., 1975, xv+361 pages | MR | Zbl

[47] Shimomura, Akihiro Modified wave operators for Maxwell–Schrödinger equations in three space dimensions, Ann. Henri Poincaré, Volume 4 (2003) no. 4, pp. 661-683 | DOI | MR | Zbl

[48] Sigal, Israel Michael Ground state and resonances in the standard model of the non-relativistic QED, J. Stat. Phys., Volume 134 (2009) no. 5-6, pp. 899-939 | DOI | MR | Zbl

[49] Spohn, Herbert Dynamics of charged particles and their radiation field, Cambridge University Press, 2004, xvi+360 pages | DOI | MR | Zbl

[50] Tsutsumi, Yoshio Global existence and asymptotic behavior of solutions for the Maxwell-Schrödinger equations in three space dimensions, Commun. Math. Phys., Volume 151 (1993) no. 3, pp. 543-576 | DOI | MR | Zbl

[51] Wada, Takeshi Smoothing effects for Schrödinger equations with electro-magnetic potentials and applications to the Maxwell–Schrödinger equations, J. Funct. Anal., Volume 263 (2012) no. 1, pp. 1-24 | DOI | MR | Zbl

[52] Yap, Leonard Y. H. Some remarks on convolution operators and L(p,q) spaces, Duke Math. J., Volume 36 (1969), pp. 647-658 | DOI | MR | Zbl

Cited by Sources: