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TOPOLOGICAL MIXING OF THE GEODESIC FLOW
ON CONVEX PROJECTIVE MANIFOLDS

by Pierre-Louis BLAYAC (*)

Abstract. — We introduce a natural subset of the unit tangent bundle of a
convex projective manifold, the biproximal unit tangent bundle; it is closed and
invariant under the geodesic flow, and we prove that the geodesic flow is topolog-
ically mixing on it whenever the manifold is irreducible. We also show that, for
higher-rank, irreducible, compact convex projective manifolds, the geodesic flow is
topologically mixing on each connected component of the non-wandering set.

Résumé. — Nous introduisons un sous-ensemble naturel du fibré unitaire tan-
gent des variétés projectives convexes, appelé le fibré unitaire tangent biproximal;
il est fermé et invariant sous l’action du flot géodésique, et nous démontrons que le
flot géodésique est topologiquement mélangeant dès que la variété est irréductible.
Nous montrons aussi que pour les variétés projectives convexes de rang supérieur,
irréductibles et compactes, le flot géodésique est topologiquement mélangeant sur
chaque composante de l’ensemble non-errant.

1. Introduction

This article is concerned with convex projective manifolds, namely quo-
tients M = Ω/Γ of a properly convex open subset Ω of a finite-dimensional
real projective space P(V ) by a torsion-free discrete subgroup Γ of PGL(V )
preserving Ω. Recall that properly convex means that Ω is convex and
bounded in some affine chart of P(V ). These manifolds are generalisations
of real hyperbolic manifolds, to whom they bring a new diversity of geo-
metric features. When M is compact, we say that Γ divides Ω and that Ω
is a divisible convex set (see [10]).

Keywords: Convex projective manifolds, geodesic flow, topological mixing.
2020 Mathematics Subject Classification: 37D40.
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Convex projective manifolds are endowed with a natural Finsler metric,
which is not necessarily Riemannian. This metric defines a geodesic flow
(ϕt)t∈R on the unit tangent bundle T 1M = T 1Ω/Γ, obtained by following
geodesics contained in projective lines (see Section 2.1).

There is a dichotomy depending on whether Ω is strictly convex (meaning
there is no non-trivial segment in the boundary ∂Ω of Ω in P(V ), see
Section 2.2), or not.

On the one hand, when Ω is strictly convex and Ω/Γ is compact,
Benoist [8, Theorem 1.1] proved that many dynamical properties of the
classical geodesic flow on compact hyperbolic manifolds still hold. Then
Crampon and Marquis [25] generalised this to the case when Ω is strictly
convex but Ω/Γ is not necessarily compact.

On the other hand, Benoist proved that when Ω is not strictly convex, one
of the key properties of the classical geodesic flow, namely uniform hyper-
bolicity, is never satisfied. Still, Bray [19, Theorem 5.7] managed to recover
some classical dynamical properties of the geodesic flow in this context:
namely, he established that the geodesic flow is topologically transitive,
and even topologically mixing when Ω/Γ is compact and 3-dimensional,
not necessarily strictly convex, and Γ is strongly irreducible (i.e. Γ does
not preserve any finite union of proper projective subspaces). Recall that
a continuous flow (ft)t∈R on a topological space X is called topologically
transitive if for any non-empty open subsets U, V ⊂ X, there exists t > 0
such that ft(U) meets V , and (ft)t is called topologically mixing if for
any non-empty open U, V ⊂ X and any large enough t > 0, the set ft(U)
meets V ; note that the latter property implies the former. In order to prove
his theorem, Bray used — and this is where the assumption that Ω/Γ is
compact and 3-dimensional is crucial — another paper of Benoist [9, The-
orem 1.1], which gives a precise and beautiful description of these compact
3-manifolds.

In this paper, we generalise Bray’s result on topological mixing to the
setting where Ω/Γ is not necessarily compact, and to arbitrary dimension,
as we explain below.

More refined dynamical properties of the geodesic flow on convex pro-
jective manifolds will be established in the forthcoming papers [14, 15]. In
particular, we shall generalise [18], prove the existence of a unique flow-
invariant measure of maximal entropy (Bowen–Margulis measure) on the
unit tangent bundle of rank-one (Definition 1.3) compact convex projective
manifolds, prove that this measure is mixing in a measurable sense (in [14]),
and establish counting and equidistribution results, for instance for closed
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geodesics (in [15]). In fact we show that many of these results hold in a
more general noncompact setting.

1.1. Main result

Recall that an element of PGL(V ) is said to be proximal if it has an
attracting fixed point in P(V ). The proximal limit set ΛΓ ⊂ P(V ) of a
subgroup Γ ⊂ PGL(V ) is the closure of the set of attracting fixed points
of proximal elements of Γ; it is Γ-invariant. Given a properly convex open
set Ω ⊂ P(V ), we denote by Aut(Ω) the group of elements of PGL(V )
preserving Ω. We introduce the following subset of T 1M .

Definition 1.1. — Let Ω ⊂ P(V ) be a properly convex open set and
Γ ⊂ Aut(Ω) a discrete subgroup; denote by M the quotient Ω/Γ. The
biproximal unit tangent bundle of M is

T 1Mbip := {v ∈ T 1Ω : ϕ±∞v ∈ ΛΓ}/Γ ⊂ T 1M,

where ϕ±∞v = limt→±∞ πϕtv are the intersection points of the projective
line generated by v with the boundary ∂Ω.

Note that the biproximal unit tangent bundle is closed and invariant
under the action of the geodesic flow. It is contained in the non-wandering
set NW(T 1M, (ϕt)t∈R) (Corollary 2.9), which consists of those vectors v

whose neighbourhoods contain a geodesic which comes back close to v

infinitely often (see Definition 2.10); we write NW(T 1M) for short when
the context is clear. The main result of this paper is the following.

Theorem 1.2. — Let Ω ⊂ P(V ) be a properly convex open set and Γ ⊂
Aut(Ω) a discrete subgroup which is strongly irreducible. Set M = Ω/Γ,
and suppose that T 1Mbip is non-empty. Then

(1) the geodesic flow (ϕt)t on T 1Mbip is topologically mixing;
(2) if (ϕt)t is topologically transitive on an invariant closed subset A ⊂

T 1M which contains T 1Mbip, then A = T 1Mbip.

The assumption that Γ is strongly irreducible is mild, and one can always
restrict to it in the divisible case (see [39, Theorem 3] and [10, Section 5.1]).
One can make the present proof of Theorem 1.2 work in some non-strongly
irreducible settings: see [15, Corollary 2.10] and [13, Section 5.1-3].

When M is compact and 3-dimensional, we recover Bray’s result [19,
Theorem 5.7] because [9, Theorem 1.1] implies T 1Mbip = T 1M in that
case. When Ω is strictly convex, one can see that T 1Mbip = NW(T 1M)
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(see [25, Section 3.3] or Observation 2.12), and Crampon–Marquis [25,
Proposition 6.1] showed that in this case the geodesic flow is topologi-
cally mixing on NW(T 1M), if ∂Ω is smooth (for us smooth means C1, see
Section 2.2). Thus, the point of Theorem 1.2 (1) is to treat the non-strictly
convex case, where in general we can only prove that T 1Mbip is contained
in NW(T 1M), see Remark 2.11.

Another way to formulate Theorem 1.2 (2) is to say that T 1Mbip is
maximal for inclusion among the invariant closed subsets of T 1M on which
the geodesic flow is topologically transitive.

Our strategy of proof for Theorem 1.2 (1) is similar to that of Bray
in [19], but we manage to work without Benoist’s geometric description [9,
Theorem 1.1] of 3-dimensional compact convex projective manifolds. Fur-
thermore, we slightly shorten the proofs by using more algebraic arguments
inspired by [6, 7] (see Section 4): they allow us to prove topological mixing
directly, without establishing first topological transitivity and then using
a closing lemma and a weak-orbit gluing lemma as in [19, Theorem 4.4 &
Lemma 5.3].

Another strategy of proof for Theorem 1.2 (1), in the compact case,
could be to find a good geometric description that generalises Benoist’s [9]
to arbitrary dimension. This is an interesting question, and recent work sug-
gests that such a description could exist: Benoist [9], Marquis [36], Ballas–
Danciger–Lee [1], and Choi–Lee–Marquis [21] constructed non-strictly con-
vex, compact convex projective manifolds in dimensions 4 to 7 that share a
number of nice geometric features with those in dimension 3; recent work
of Bobb [16] and Islam–Zimmer [35, 34] and Weisman [40] extends some
results of [9] to all dimensions.

1.2. The biproximal unit tangent bundle

Topological mixing and topological transitivity belong to a family of
transitivity properties which have been investigated for geodesic flows on
non-positively curved Riemannian manifolds X for many decades, see for
instance the classical surveys [31, 29]. We now briefly relate Theorem 1.2
to older results for non-positively curved manifolds.

The topological transitivity of (ϕt)t∈R on NW(T 1M) for M = Ω/Γ,
when Ω is strictly convex, ∂Ω is smooth and π1(M) is non-elementary [25,
Proposition 6.1] is analogous to that of (ϕt)t∈R on NW(T 1X) when X

is negatively curved and π1(X) is non-elementary, which was proved by
Eberlein [28, Theorem 3.11].
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When Ω is not necessarily strictly convex and T 1Mbip is non-empty,
the situation is analogous to X being non-positively curved and rank-
one, i.e. having a rank-one periodic vector. This notion was introduced
by Ballmann–Brin–Eberlein [4, Definition p. 1]. By work of Ballmann [2,
Theorem 3.5], if X is rank-one and NW(T 1X) = T 1X (e.g. if X is rank-
one and compact), then (ϕt)t∈R is topologically mixing on T 1X. Coudène–
Schapira studied the action of (ϕt)t∈R on NW(T 1X) without assuming
that NW(T 1X) = T 1X; they established [23, Theorem 5.2] the topological
transitivity of (ϕt)t∈R on some invariant subset NW1(T 1X) of NW(T 1X),
defined in [23, Section 5.1], consisting of rank-one vectors with an extra
condition.

We wish to interpret T 1Mbip as an analogue of NW1(T 1X). The defini-
tions of rank-one convex projective manifolds and their rank-one periodic
geodesics are now available thanks to the very recent work of M. Islam [33,
Definition 1.3 & 6.2] and A. Zimmer [41, Definition 1.1]. Here we adopt
Islam’s definition, which we reformulate as follows.

Definition 1.3 ([33]). — Let Ω ⊂ P(V ) be a properly convex open
set, Γ ⊂ Aut(Ω) a discrete subgroup, and M := Ω/Γ. A periodic vector
v ∈ T 1M is said to be rank-one if for any lift ṽ ∈ T 1Ω, the points ϕ∞ṽ

and ϕ−∞ṽ are smooth (i.e. admit a unique supporting hyperplane) and
strongly extremal (i.e. are not contained in any non-trivial segment of the
boundary ∂Ω); in this case, any infinite-order element of Γ which preserves
the orbit of a lift ṽ is said to be rank-one. The convex projective manifold
(or orbifold) M is rank-one if T 1M contains a rank-one periodic vector.

The classical Fact 2.6 below ensures that rank-one periodic vectors are
contained in T 1Mbip, which is then non-empty whenever M is rank-one.
Furthermore, Proposition 3.4 tells us that, when they exist, periodic rank-
one vectors are dense in T 1Mbip.

Further evidence for thinking that T 1Mbip is analogous to NW1(T 1X),
is the fact that if M is compact and higher-rank (i.e. not rank-one), then
T 1Mbip is empty (see Section 2.7 and Remark 7.2). In this case the proximal
limit set is non-empty (Fact 2.8), but any segment between two distinct
points of ΛΓ is contained in ∂Ω.

To conclude this section, we ask the following question: if T 1Mbip is
non-empty, is it the whole non-wandering set NW(T 1M)? In the Rie-
mannian setting, if X is compact and rank-one, then NW1(T 1X) is dense
in NW(T 1X) = T 1X [23, Section 5]. In [12], we prove that this is also
true in the convex projective setting: if M is compact and rank-one, then
T 1Mbip = NW(T 1M) = T 1M .

TOME 75 (2025), FASCICULE 3
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When the manifold is non-compact, the situation is more subtle. In the
Riemannian setting, Coudène–Schapira [23, Section 5.2] constructed an ex-
ample where X is non-compact and NW1(T 1X) is non-empty and not dense
in NW(T 1X). In the convex projective setting, T 1Mbip may be non-empty
and smaller than NW(T 1M) for non-compact M , even when M is convex
cocompact in the sense of [27]; such an example can be constructed via
ping-pong, using work in preparation of Danciger–Guéritaud–Kassel which
was advertised in [27, Proposition 12.5].

Observe that when M is higher-rank and compact, NW(T 1M) is different
from T 1Mbip, since, contrary to the latter, the former is non-empty.

1.3. The higher-rank, irreducible and compact case

When M is compact, higher-rank and irreducible (in the sense that Γ is
strongly irreducible), Theorem 1.2 does not tell us anything since T 1Mbip
is empty. However, in this case, the investigation of dynamical properties
of the geodesic flow happens to be easier, thanks to the recent work of
Zimmer [41, Theorem 1.4], which classifies these manifolds (this is simi-
lar to a classification of compact higher-rank non-positively curved Rie-
mannian manifolds by Ballmann [3, Corollary 1] and Burns–Spatzier [20,
Theorem 5.1]). More precisely, he proves that universal covers in P(V ) of
higher-rank irreducible compact convex projective manifolds belong to a
narrow and explicit list of properly convex open sets, called symmetric (see
Section 7). We use this to establish the following.

Proposition 1.4. — Let M be a higher-rank irreducible compact con-
vex projective manifold. Then the non-wandering set of the geodesic flow on
T 1M has several (more than one) connected components, and the geodesic
flow is topologically mixing on each of them.

Proposition 1.4 is a direct consequence of Proposition 7.4, where the con-
nected components of the non-wandering set are described more precisely.

Organisation of the paper

In Section 2 we recall some basic definitions and properties in convex
projective geometry. In Section 3 we investigate the regularity of end-
points of biproximal periodic geodesics. In Section 4 we prove that, when
T 1Mbip ̸= ∅, the local length spectrum is non-arithmetic; in other words,
for every non-empty open subset U of T 1Mbip, the additive subgroup of R
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generated by lengths of biproximal periodic geodesics through U is dense
in R. In Section 5 we prove that a geodesic, which has the same endpoint in
∂Ω as a biproximal periodic geodesic γ, must in the quotient wrap around
closer and closer to γ (see Figure 6.1). In Section 6 we prove Theorem 1.2
using Sections 3, 4 and 5, and classical dynamical arguments. In Section 7
we study the non-wandering set of the geodesic flow on higher-rank irre-
ducible compact convex projective manifolds, and prove Proposition 7.4.
In Appendix A we fill in a missing detail in Crampon’s original proof of a
useful technical lemma in convex projective geometry.

Acknowledgements
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2. Reminders and basic facts

2.1. Properly convex open subsets of P(Rd+1) and their geodesic
flow

In the whole paper we fix a real vector space V = Rd+1. Let Ω ⊂ P(V )
be a properly convex open set. Recall that Ω admits an Aut(Ω)-invariant
proper metric called the Hilbert metric and defined by the following for-
mula: for (a, x, y, b) ∈ ∂Ω×Ω×Ω×∂Ω aligned in this order (see Figure 2.1),

dΩ(x, y) = 1
2 log([a, x, y, b]),

where [a, x, y, b] is the cross-ratio, normalised so that, if t := [a, x, y, b] then
there is a linear map from R2 to V that maps [1 : 0], [1 : 1], [1 : t], [0 : 1] ∈
P(R2) to respectively a, x, y, b.

Recall that if Ω is an ellipsoid, then (Ω, dΩ) is the Klein model of the
real hyperbolic space of dimension d, and if Ω is a d-simplex, then (Ω, dΩ)
is isometric to Rd endowed with a hexagonal norm.

Any discrete subgroup Γ ⊂ PGL(V ) of automorphisms of Ω preserves dΩ,
hence must act properly discontinuously on Ω and therefore the quotient
M = Ω/Γ is an orbifold. Furthermore, M is a manifold if the action is free
(i.e. if Γ is torsion-free, by Brouwer’s fixed point theorem, applied to the
convex hull of a finite orbit of a torsion element). Note that by Selberg’s

TOME 75 (2025), FASCICULE 3
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v φtv

Figure 2.1. The Hilbert metric and the geodesic flow (t = dΩ(x, y)).

lemma [37], if Γ is finitely generated, then it admits a torsion-free finite-
index subgroup. We will work in general with Γ not necessarily torsion-free,
so we set the notation T 1M = T 1Ω/Γ.

The intersections of Ω with projective lines can be parametrised to be
geodesics, which are said to be straight. However, an interesting feature in
the non-strictly convex case is that when there are two coplanar non-trivial
segments in the boundary ∂Ω, one can construct geodesics which are not
straight, see for instance the broken green segment between x′ and y′ in
Figure 2.1. In order to define the geodesic flow we only take into account
straight geodesics: for v in T 1Ω, let t 7→ c(t) be the parametrisation of the
projective line generated by v such that c is an isometric embedding from
R to Ω and c′(0) = v. For t ∈ R we set ϕt(v) = c′(t) ∈ T 1Ω. See Figure 2.1.

The geodesic flow on T 1M = T 1Ω/Γ is well defined because the two
actions of Aut(Ω) and (ϕt)t∈R on T 1Ω commute. We denote by π : T 1M →
M and π : T 1Ω → Ω the natural projections, and we consider the following
metrics on T 1Ω and T 1M :

∀v, w ∈ T 1Ω, dT 1Ω(v, w) = max
0⩽t⩽1

dΩ(πϕtv, πϕtw),(2.1)

∀v, w ∈ T 1M, dT 1M (v, w) = min
{

dT 1Ω(ṽ, w̃) : ṽ, w̃ ∈ T 1Ω
lifts of v, w

}
.(2.2)

The following remark is a direct consequence of the definition of the
Hilbert metric.

ANNALES DE L’INSTITUT FOURIER
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Remark 2.1. — Let Ω ⊂ P(V ) be a properly convex open set, and fix an
affine chart containing Ω. Then

BΩ(x, r) ⊂ (1 − e−2r)(Ω − x) + x

for all x ∈ Ω and r > 0, where BΩ(x, r) is the closed ball of radius r,
centred at x, for the metric dΩ, and (1 − e−2r)(Ω − x) + x is the image of
Ω under the homothety (of the affine chart) centred at x and with ratio
1 − e−2r.

2.2. Smooth and extremal points of the boundary

We recall here some terminology on convex sets. Let Ω ⊂ P(V ) be a
properly convex open set. Let ξ ∈ ∂Ω be a point of the boundary.

• A supporting hyperplane of Ω at ξ is a hyperplane which contains
ξ and does not intersect Ω. Note that there always exists such a
hyperplane.

• As in Definition 1.3, we shall say that ξ is a smooth point of ∂Ω (this
is commonly also called a C1 point) if there is only one supporting
hyperplane of Ω at ξ, which we then denote by Tξ∂Ω.

• The point ξ is said to be extremal if it is not contained in the
relative interior of a non-trivial segment contained in the boundary
∂Ω.

• Observe that Ω is strictly convex if and only if all points of ∂Ω are
extremal.

• As in Definition 1.3, we shall say that ξ is strongly extremal if it is
not contained in any non-trivial segment contained in the boundary
∂Ω. Such points ξ are sometimes called “visible”: for any η ∈ ∂Ω
other than ξ, the interval (η, ξ) is contained in Ω. Observe that the
endpoint of a segment contained in ∂Ω may be extremal, but is
never strongly extremal.

2.3. Proximal linear transformations

In this section we recall the notion of a proximal linear transformation,
which was used in the definition of the proximal limit set ΛΓ and the
biproximal unit tangent bundle T 1Mbip in Section 1.1.

TOME 75 (2025), FASCICULE 3
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Notation 2.2. — If W1 and W2 are two subspaces of V such that W1 ∩
W2 = {0}, we write W1⊕W2 ⊂ V for their direct sum and P(W1)⊕P(W2) =
P(W1 ⊕ W2) for its projectivisation. In particular, if x, y ∈ P(V ) are two
distinct points, we write x ⊕ y for the projective line through x and y.

Definition 2.3. — A linear transformation g ∈ End(V ) is proximal
if it has exactly one complex eigenvalue with maximal modulus among
all eigenvalues, and if this eigenvalue has multiplicity 1. The associated
eigenline in P(V ) is the attracting fixed point of g and is denoted by x+

g .
An invertible linear transformation g ∈ GL(V ) is said to be biproximal

if g and g−1 are both proximal. The attracting fixed point of g−1 is the
repelling fixed point of g and is denoted by x−

g . The projective line x+
g ⊕x−

g

(see Notation 2.2) is the axis of g and is denoted by Axis(g). The g-invariant
complementary subspace to the axis of g is denoted by x0

g. Note that the
notions of biproximality, attracting/repelling fixed point, and axis, are well
defined for the image of g in PGL(V ).

Remark 2.4. — The set of proximal linear transformations is open in
End(V ), and the map sending a proximal linear transformation to the pair
(attracting fixed point, associated eigenvalue) is continuous.

Remark 2.5. — As observed by Benoist [5, Lemma 3.6.ii], for any sub-
group Γ ⊂ PGL(V ) which is irreducible (i.e. preserves no proper subspace
of P(V )) and contains a proximal element, the proximal limit set is the
smallest closed Γ-invariant non-empty subset of P(V ); in particular, the
action of Γ on ΛΓ is minimal (i.e. any orbit is dense). Indeed, consider
any proximal element γ ∈ Γ, and let P(W ) ⊂ P(V ) be the γ-invariant
complementary subspace to x+

γ . By irreducibility, any closed Γ-invariant
non-empty subset X ⊂ P(V ) contains a point x outside P(W ), and then
x+

γ , which is the limit of the sequence (γnx)n∈N, belongs to X.

2.4. Periodic geodesics and automorphisms of Γ

In this section we recall the link between periodic geodesics in T 1Ω/Γ
and conjugacy classes of Γ. Let Ω ⊂ P(V ) be a properly convex open set.
For g ∈ GL(V ), we denote by λ1(g) ⩾ · · · ⩾ λd+1(g) the non-increasing
sequence of logarithms of moduli of eigenvalues of g; we set

(2.3) ℓ(g) := 1
2(λ1(g) − λd+1(g)).

ANNALES DE L’INSTITUT FOURIER
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Observe that ℓ(g) only depends on the class of g in PGL(V ). If g preserves
Ω, then

(2.4) ℓ(g) = inf{dΩ(x, g · x) : x ∈ Ω} ⩾ 0.

The right-hand side of (2.4) is called the translation length of g. See [22,
Proposition 2.1] for a proof. For this reason ℓ(g) is often called the Hilbert
length.

Combined with an elementary computation, (2.4) yields:

Fact 2.6. — Let Ω ⊂ P(V ) be a properly convex open set, let Γ ⊂
Aut(Ω) be a discrete subgroup, and let M = Ω/Γ. Then for any infinite
geodesic c̃ in Ω that lifts a periodic straight geodesic c of M , there is an
automorphism γ ∈ Γ which preserves it and acts by translation on it.
Let γ̃ ∈ GL(V ) be a lift of γ. The endpoints in ∂Ω of c̃ are fixed by γ,
the associated eigenvalues of γ̃ are exp(λ1(γ̃)) and exp(λd+1(γ̃)), and the
length of c is the translation length of γ. If furthermore these endpoints
are extremal, then γ is biproximal.

By Fact 2.6, rank-one elements of Γ (Definition 1.3) are biproximal.
Hence rank-one periodic vectors of T 1M belong to the biproximal unit
tangent bundle T 1Mbip (Definition 1.1).

Definition 2.7. — Let Ω ⊂ P(V ) be a properly convex open set and
Γ ⊂ Aut(Ω) a discrete subgroup. Let γ ∈ Γ be a biproximal element whose
axis meets Ω. Then the periodic geodesic associated to γ is said to be
biproximal, and the unit tangent vectors along this geodesic are said to be
biproximal periodic.

There are cases where γ ∈ Γ is biproximal but its axis does not intersect
Ω (e.g. when Ω is a triangle, or is symmetric as in Section 7). Then we
cannot make sense of a straight periodic geodesic associated to γ.

2.5. Density of biproximal geodesics

We gather here two results of Benoist which imply that biproximal peri-
odic vectors are dense in T 1Mbip.

Fact 2.8 ([6, Proposition 1.1] & [5, Lemma 3.6.iv]). — Let Γ ⊂ PGL(V )
be a strongly irreducible subgroup.

(1) If Γ preserves a properly convex open set Ω ⊂ P(V ), then it contains
a proximal element.

TOME 75 (2025), FASCICULE 3
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(2) If Γ contains a proximal element, then the following subset is dense
in ΛΓ × ΛΓ:

{(x+
γ , x−

γ ) ∈ ΛΓ × ΛΓ : γ ∈ Γ biproximal}.

Corollary 2.9. — Let Ω ⊂ P(V ) be a properly convex open set and
Γ ⊂ Aut(Ω) a strongly irreducible discrete subgroup. Denote by M the
quotient Ω/Γ, and suppose that T 1Mbip is non-empty. Then biproximal
periodic geodesics exist and their images in T 1M are dense in T 1Mbip.

2.6. The non-wandering set

In this section we recall the definition of the non-wandering set and the
link between the non-wandering set of the geodesic flow on T 1M and the
non-wandering set of the actions of Γ and Aut(Ω) on the space of geodesics
of Ω. This will be used in Section 7.

Definition 2.10. — Let X be a locally compact topological space with
a continuous action by a locally compact group G. The non-wandering set
NW(X, G) is the set of points x in X such that for any compact neigh-
bourhood U of x, the set {g ∈ G : gU ∩ U ̸= ∅} is non-compact.

In other words, it is the set of points all of whose neighbourhoods come
back infinitely often under the action; we call such points non-wandering.
The non-wandering set is closed and G-invariant. Note that if X is compact
but G is not, then the non-wandering set is non-empty. When G is R,
i.e. when we have a flow (ϕt)t∈R on X, observe that given a non-wandering
point x ∈ X and a neighbourhood U of x, one can find arbitrarily large
positive times t such that ϕt(U) ∩ U ̸= ∅; indeed, for any t ∈ R, if ϕt(U) ∩
U ̸= ∅, then ϕ−t(U) ∩ U ̸= ∅.

In our setting, there are three non-wandering sets of interest for us. Let
Ω ⊂ P(V ) be a properly convex open set, let Γ ⊂ Aut(Ω) be a closed
subgroup of automorphisms, and let M be the quotient Ω/Γ. One can first
consider the non-wandering set NW(T 1M, (ϕt)t∈R) of the geodesic flow.

Remark 2.11. — Any vector of T 1M which is tangent to a periodic
straight geodesic belongs to the non-wandering set NW(T 1M, (ϕt)t∈R). As
a consequence, if Γ is strongly irreducible, then T 1Mbip is contained in
NW(T 1M, (ϕt)t∈R) by Corollary 2.9.

Let us denote by Geod(Ω) = T 1Ω/(ϕt)t∈R the set of straight geodesics
of Ω: it identifies with an open subset of ∂Ω2, consisting of the pairs (x, y)
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such that x ̸= y and the projective line through x and y meets Ω. The
group Γ naturally acts on Geod(Ω) and one can consider its non-wandering
set NW(Geod(Ω), Γ). Finally, one can consider the two commutative and
proper actions of Γ and R (by the geodesic flow) on T 1Ω, it yields the non-
wandering set NW(T 1Ω, Γ × R). All three of these non-wandering sets are
actually identified in the following sense. Denote the canonical projections
by πR : T 1Ω → Geod(Ω) and πΓ : T 1Ω → T 1M . Then

π−1
R (NW(Geod(Ω), Γ)) = NW(T 1Ω, Γ × R) = π−1

Γ (NW(T 1M, (ϕt)t∈R)).

We will use this while studying symmetric properly convex open sets in
Section 7.

To end this section, we observe that NW(T 1M, (ϕt)t∈R) is contained in
another (ϕt)t∈R-invariant subset T 1M , defined similarly to T 1Mbip, but
using another limit set in the boundary. Recall that Danciger, Guéritaud,
and Kassel [27, Definition 1.10] defined the full orbital limit set Λorb

Γ ⊂ ∂Ω
as the union, over all x ∈ Ω, of the set of accumulation points of the
orbit Γ · x; the full orbital limit set always contains the proximal limit set.
Similarly to T 1Mbip, we can consider

T 1Mcore := {v ∈ T 1Ω : ϕ±∞v ∈ Λorb
Γ }/Γ ⊂ T 1M.

Observation 2.12. — Let Ω ⊂ P(V ) be a properly convex open set,
let Γ be a discrete group of automorphisms of Ω, and denote by M the
quotient Ω/Γ. Then

NW(T 1M, (ϕt)t∈R) ⊂ T 1Mcore.

Proof. — Consider a vector v ∈ T 1Ω whose projection in T 1M is non-
wandering. Let x = πv be the footpoint of v. We want to show that ϕ∞v

is an accumulation point of Γ · x. Since the projection of v in T 1M is non-
wandering, we can find sequences of vectors (vn)n in T 1Ω converging to
v, of positive times (tn)n going to infinity, and of automorphisms (γn)n in
Γ such that (dT 1Ω(ϕtn

vn, γnv))n tends to zero. Since (vn)n tends to v and
(tn)n goes to infinity, (πϕtnvn)n must converge to ϕ∞v. By Remark 2.1,
the fact that (dΩ(πϕtn

vn, γnx))n tends to zero implies that (γnx)n also
converges to ϕ∞v in P(V ). □

The full orbital limit set Λorb
Γ and Observation 2.12 will not be used in

the remainder of the paper.
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2.7. The biproximal unit tangent bundle of reducible compact
convex projective manifolds

In this section we explain, for completeness, why the biproximal unit
tangent bundle of a reducible compact convex projective manifold is empty.
This is not needed anywhere in the paper.

Vey [39, Theorem 3] (see [10, Section 5.1]) proved that, given any prop-
erly convex open set Ω ⊂ P(V ) divided by a discrete group Γ ⊂ Aut(Ω),
the group Γ is not strongly irreducible if and only if Ω is decomposable,
i.e. there exists a decomposition V = V1⊕V2 and convex open cones Ci ⊂ Vi

with P(Ci) ⊂ P(Vi) properly convex for i = 1, 2, such that Ω = P(C1 + C2);
in this case we say that M = Ω/Γ is a reducible compact convex projective
manifold.

Lemma 2.13. — Suppose that dim(V ) = d + 1 > 2. Let Ω ⊂ P(V )
be a decomposable properly convex open set, and Γ ⊂ Aut(Ω) a discrete
subgroup. Then the quotient M = Ω/Γ is higher-rank and T 1Mbip is empty.
In particular, reducible compact convex projective manifolds are higher-
rank and have an empty biproximal unit tangent bundle.

Proof. — Let us show that [x, y] ⊂ ∂Ω for all extremal points of ∂Ω. This
implies that T 1Mbip is empty since one can check that ΛΓ is contained in
the closure of the set of extremal points. This also implies that ∂Ω contains
no strongly extremal point, and hence that M is higher-rank. Consider a
decomposition Ω = P(C1 + C2), where Ci ⊂ Vi is a convex cone for i = 1, 2,
with V = V1 ⊕ V2.

Observe that the boundary of Ω is equal to P(∂C1 + C2) ∪ P(C1 + ∂C2),
and that the set of extremal points of Ω is equal to P(Ẽ1 + 0) ∪ P(0 + Ẽ2),
where Ẽi is the preimage in V of the set of extremal points of P(Ci) for
i = 1, 2. Consider x ∈ P(Ẽi) and y ∈ P(Ẽj) for some i, j ∈ {1, 2}. If
i = j then [x, y] ⊂ P(Ci) ⊂ ∂Ω. If i ̸= j then, as dim(V ) > 2, either
dim(C1) ⩾ 2 or dim(C2) ⩾ 2, hence either x ∈ P(∂Ci) or y ∈ P(∂Cj), and
[x, y] ⊂ P(∂C1 + C2) ∪ P(C1 + ∂C2) ⊂ ∂Ω. □

3. Endpoints of biproximal periodic geodesics are smooth

This section contains an elementary result (Lemma 3.1) which will be
used in the proof of topological mixing in Section 6. Furthermore, various
characterisations of the rank-one property, for instance in terms of duality,
are given in Lemma 3.2. Finally, we use Lemma 3.1 to justify a claim of
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the introduction: namely, that rank-one periodic geodesics are dense in the
biproximal unit tangent bundle of rank-one manifolds (Proposition 3.4).

3.1. On the regularity of endpoints of biproximal periodic
geodesics

The main consequence of the following lemma is that we will be able
to apply Proposition 5.1 (2) to biproximal periodic vectors. Recall that
x+

g ∈ P(V ) denotes the attracting fixed point of any proximal projective
transformation g.

Lemma 3.1. — Let Ω ⊂ P(V ) be a properly convex open set and g ∈
Aut(Ω) a biproximal element. Then Axis(g) = x−

g ⊕ x+
g intersects Ω if and

only if x+
g is smooth; in this case Tx+

g
∂Ω = x+

g ⊕ x0
g.

Proof. — Assume that x+
g is not smooth. Then there is a supporting

hyperplane H of Ω at x+
g which is different from x+

g ⊕ x0
g. Let x ∈ H

be outside of (x+
g ⊕ x0

g), so that the sequence (g−nx)n tends to x−
g . The

sequence of projective lines through g−nx and x+
g must converge to Axis(g),

and they are all contained in P(V )∖Ω which is closed. Therefore P(V )∖Ω
must contain Axis(g) as well.

Conversely if P(V ) ∖ Ω contains Axis(g), then x+
g has a supporting hy-

perplane which contains Axis(g), and which is therefore different from the
supporting hyperplane x0

g ⊕ x+
g . □

3.2. Rank-one periodic geodesics and their dual

In this section we give several equivalent conditions for an automorphism
of a properly convex open set to be rank-one (Definition 1.3), which follow
from Lemma 3.1. This will be used in Section 3.3, and may be interesting
in its own right.

Let us recall the notion of duality for properly convex open sets. We
identify the dual projective space P(V ∗) with the set of projective hyper-
planes of P(V ). Let Ω be a properly convex open subset of P(V ). The dual
of Ω, denoted by Ω∗, is the properly convex open subset of P(V ∗) defined
as the set of projective hyperplanes which do not intersect Ω. We naturally
identify PGL(V ) and PGL(V ∗), then Aut(Ω) identifies with Aut(Ω∗), and
the attracting (resp. repelling) fixed point of the action on P(V ∗) of any
biproximal element g ∈ PGL(V ) is x+

g ⊕ x0
g (resp. x−

g ⊕ x0
g).
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Lemma 3.2. — Let Ω ⊂ P(V ) be a properly convex open set and g ∈
Aut(Ω) a biproximal element. Then the following are equivalent:

(1) g is rank-one;
(2) x+

g , x−
g ∈ ∂Ω are smooth and strongly extremal points;

(3) x+
g is strongly extremal;

(4) g seen as an automorphism of Ω∗ is rank-one;
(5) the axis of g in P(V ) intersects Ω, and the axis of g in P(V ∗)

intersects Ω∗.

The fact that (1), (2) and (3) are equivalent is a particular case of [33,
Proposition 6.3]; for clarity we give a complete proof of Lemma 3.2.

We will need in the proof an elementary fact concerning duality of prop-
erly convex open sets, whose proof is left to the reader. Recall that the
canonical isomorphism between V and V ∗∗ identifies Ω with Ω∗∗. By defi-
nition of Ω∗, the boundary ∂Ω∗ is the set of supporting hyperplanes of Ω;
by duality ∂Ω = ∂Ω∗∗ is the set of supporting hyperplanes of Ω∗.

Fact 3.3. — Let Ω ⊂ P(V ) be a properly convex open set.

(1) A smooth point x ∈ ∂Ω is strongly extremal if and only if the
tangent space Tx∂Ω is a smooth point of ∂Ω∗; in this case Tx∂Ω is
strongly extremal.

(2) For any H, H ′ ∈ ∂Ω∗, the segment [H, H ′] ⊂ Ω∗ is contained in
∂Ω∗ if and only if H ∩ H ′ ∩ ∂Ω is non-empty.

Proof of Lemma 3.2.

• (2) implies (1) by definition, and the converse holds by Fact 2.6.
• (2) and (4) are equivalent by Fact 3.3 (1) and the fact that (1)

and (2) are equivalent.
• That (2) implies (3) is immediate.
• Let us prove that (3) implies (5). Assume that x+

g is strongly ex-
tremal. Then [x+

g , x−
g ] is not contained in ∂Ω, so the axis of g in

P(V ) intersects Ω. Furthermore, x0
g ∩∂Ω is contained in (x0

g ⊕x+
g )∩

∂Ω∖ {x+
g } which is empty. By Fact 3.3 (2) this exactly means that

the axis of g in P(V ∗) intersects Ω∗.
• Let us prove that (5) implies (2). Assume that the axis of g in

P(V ) intersects Ω, and that the axis of g in P(V ∗) intersects Ω∗. By
Lemma 3.1, the points x+

g , x−
g ∈ ∂Ω and (x+

g ⊕x0
g), (x−

g ⊕x0
g) ∈ ∂Ω∗

are smooth. By Fact 3.3 (1), the points x+
g and x−

g are strongly
extremal. □
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3.3. Density of rank-one periodic geodesics

The following proposition justifies a claim in the introduction. It will not
be used in the remainder of this paper.

Proposition 3.4. — Let Ω ⊂ P(V ) be a properly convex open set.
Then

(1) for any pair (ξ, η) ∈ Geod(Ω) such that ξ is strongly extremal,
there exist a neighbourhood U of (ξ, η) in P(V )2 such that for any
biproximal automorphism g ∈ Aut(Ω), if (x+

g , x−
g ) ∈ U , then g is

rank-one;
(2) if Γ ⊂ Aut(Ω) is a strongly irreducible discrete subgroup such that

M = Ω/Γ is rank-one, then rank-one periodic geodesics are dense
in T 1Mbip. In particular T 1Mbip is not empty.

Proof.
(1). — Let us assume by contradiction that there is a sequence of

biproximal automorphisms (gn)n∈N which are not rank-one, and such that
(x+

gn
)n∈N and (x−

gn
)n∈N respectively converge to ξ and η. For n large enough,

(x−
gn

, x+
gn

) ∈ Geod(Ω), hence by Lemma 3.2 (5), the axis of gn in P(V ∗)
does not intersect Ω∗, which exactly means that there exists ξn ∈ x0

gn
∩∂Ω,

by Fact 3.3 (2). Up to extraction we can assume that (ξn)n∈N converges to
some ξ′ ∈ ∂Ω. Since

[ξn, x+
gn

] ⊂ (x0
gn

⊕ x+
gn

) ∩ Ω ⊂ ∂Ω

for all n, passing to the limit we obtain that [ξ′, ξ] ⊂ Ω, which implies that
ξ′ = ξ, because ξ is strongly extremal.

Similarly, [ξn, x−
gn

] ⊂ ∂Ω for all n, so [ξ, η] ⊂ ∂Ω, which is a contradiction.
(2). — We denote by ∂sseΩ the set of smooth and extremal points of

∂Ω. By assumption, the Γ-invariant subset ΛΓ ∩ ∂sseΩ is non-empty, hence
dense in ΛΓ since the action of Γ on ΛΓ is minimal (Remark 2.5). Therefore,
it is enough to show that attracting/repelling pairs of rank-one biproximal
elements of Γ are dense in (ΛΓ ∩ ∂sseΩ)2. Consider a pair of points ξ ̸= η

in ΛΓ ∩ ∂sseΩ, and a neighbourhood U of (ξ, η) in ∂Ω2; let us check that U

contains the attracting/repelling pair of a rank-one element of Γ. By Propo-
sition 3.4 (1), there exist a sub-neighbourhood of U which does not contain
the attracting/repelling pair of a non-rank-one biproximal element, and by
Fact 2.8 (2), this sub-neighbourhood must contain the attracting/repelling
pair of a biproximal (hence rank-one) element. □
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4. Non-arithmeticity of the length spectrum

In this section we prove the following.

Proposition 4.1. — Let Ω ⊂ P(V ) be a properly convex open set
and Γ ⊂ Aut(Ω) a strongly irreducible discrete subgroup. Denote by M

the quotient Ω/Γ. Let U ⊂ T 1Mbip be a non-empty open set. Then the
additive group generated by the lengths of biproximal periodic geodesics
through U is dense in R.

In other words, not only are biproximal periodic geodesics dense in
T 1Mbip, but moreover the local length spectrum (through any open set U)
is non-arithmetic. The idea that the topological mixing of the geodesic
flow should be equivalent to the non-arithmeticity of the length spectrum
is not new; this question was elucidated in the context of negatively curved
Riemannian manifolds by Dal’bo [26, Theorem A].

Our proofs are heavily influenced by the work of Benoist [6, 7]; see
also [11, Chapter 7].

4.1. Density of the group generated by Jordan projections

We gather here two results which imply that any strongly irreducible
semi-group of automorphisms of a properly convex open set has a non-
arithmetic length spectrum.

A proof of the following result can be found in [25, Proposition 6.5].

Fact 4.2 ([6, Remark p. 17]). — Let Ω ⊂ P(V ) be a properly convex
open set and Γ ⊂ SL(V ) a strongly irreducible discrete subgroup preserving
Ω. Then the Zariski closure of Γ in SL(V ) is semi-simple and non-compact.

The following fact uses the language of semi-simple Lie groups, see e.g. [11,
Chapter 6] for definitions.

Fact 4.3 ([7, Proposition p.2]). — Let G be a connected real semi-
simple linear Lie group. Let aG be a Cartan subspace of its Lie algebra, let
a+

G ⊂ aG be a closed Weyl chamber, and let λG : G → a+
G be the associated

Jordan projection. Let Γ ⊂ G be a Zariski-dense sub-semi-group. Then the
additive group generated by λG(Γ) is dense in aG.

Corollary 4.4. — Let Γ ⊂ SL(V ) be a sub-semi-group whose Zariski
closure in SL(V ) is irreducible, semi-simple and non-compact. Then

⟨ℓ(γ), γ ∈ Γ⟩ = R,

where ℓ(γ) is given by (2.3).
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Proof. — Recall that V = Rd+1 so that SL(V ) identifies with SLd+1(R).
Let aSL(V ) (resp. a+

SL(V )) be the set of diagonal matrices (resp. diagonal
matrices with non-increasing entries) in the Lie algebra of SL(V ), and
denote by o : aSL(V ) → a+

SL(V ) the reordering of the diagonal entries
(o = λSL(V ) ◦ exp). Denote by ϵi : aSL(V ) → R the linear form which gives
the i-th entry of the diagonal for i = 1, . . . , d + 1. Denote by G the Zariski
closure of Γ in SL(V ), and ρ : G → SL(V ) the inclusion. The point is that
we can choose a Cartan subspace aG of G such that dρ(aG) ⊂ aSL(V ), but we
cannot always choose a Weyl chamber a+

G ⊂ aG such that dρ(a+
G) ⊂ a+

SL(V ).
In other words, o◦dρ : a+

G → a+
SL(V ) is not always the restriction of a linear

map, and the additive subgroup of aSL(V ) generated by λSL(V )(Γ) is not al-
ways the image under dρ of the additive subgroup of aG generated by λG(Γ).

It happens, however, that, for i = 1 (resp. i = d + 1), the map ϵi ◦o◦ dρ :
a+

G → R is the restriction of a linear form, namely the highest weight χ+
of the representation ρ of G (resp. the highest weight χ− of the dual rep-
resentation in SL(V ∗)). As a consequence, the group generated by ℓ(Γ) is
the image under the linear form 1

2 (χ+ − χ−) ◦ dρ of the subgroup of aG

generated by λG(Γ), which is dense by Fact 4.3. □

Note that Corollary 4.4 can (and will) be applied, not only to subgroups,
but to sub-semi-groups. This is the key observation that allows us to slightly
shorten Bray’s proof of topological mixing.

4.2. Schottky subgroups of strongly irreducible groups

In this section, we prove three lemmas that enable us, in the next section,
to prove Proposition 4.1 by constructing, in any strongly irreducible group
of projective transformations containing at least one biproximal element, a
strongly irreducible Schottky subgroup made of biproximal elements whose
axis are well controlled. The idea is the following: using strong irreducibility
and Lemma 4.6, we find a family γ1, . . . , γk of biproximal elements that
satisfy a finite number of algebraic conditions (see (1), (2) and (3) below);
then we consider large powers of γ1, . . . , γk and we show, using the algebraic
conditions, that they generate a group which is strongly irreducible (this is
elementary, see Lemma 4.5), and made of biproximal elements whose axis
are well controlled (Lemma 4.7).

Lemma 4.5. — Let k ⩾ 2 and let γ1, . . . , γk ∈ GL(V ) be biproximal
elements such that:

(1) Span(x±
γi

, 1 ⩽ i ⩽ k) = V ,
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(2)
⋂

1⩽i⩽k x0
γi

= 0,
(3) xα

γi
̸⊂ xβ

γj
⊕ x0

γj
for any 1 ⩽ i ̸= j ⩽ k and α, β ∈ {±}.

Then the group Γ := ⟨γi, 1 ⩽ i ⩽ k⟩ generated by γ1, . . . γk acts strongly
irreducibly on V .

Proof. — Let us first check that the action of Γ on V is irreducible.
Consider a non-zero linear subspace W ⊂ V which is stable under Γ, and
a non-zero vector w ∈ W . Using assumption (2), we can find i such that
w ̸∈ x0

γi
, and then α = ± such that w ̸∈ x−α

γi
⊕ x0

γi
, so that the sequence

(γαn
i [w])n converges to xα

γi
. This means that xα

γi
⊂ W . Similarly, for any

j ̸= i and β = ±, because xα
γi

̸∈ x−β
γj

⊕ x0
γj

(assumption (3)), we have
xβ

γj
⊂ W . Since k ⩾ 2 we deduce that x−α

γi
⊂ W . By assumption (1) this

means that W = V .
Now let Γ1 ⊂ Γ be a finite-index subgroup. There exists an integer N > 0

such that Γ1 contains Γ2 := ⟨γN
i , 1 ⩽ i ⩽ k⟩. The family γN

1 , . . . , γN
k satisfies

conditions (1), (2) and (3), therefore the action of Γ2 on V is irreducible,
and so is that of Γ1: we have proved that Γ is strongly irreducible. □

The following can be seen as a converse to Lemma 4.5, for groups con-
taining a biproximal element.

Lemma 4.6. — Let Γ ⊂ GL(V ) be a strongly irreducible subgroup that
contains a biproximal element γ1 ∈ Γ. Then there exist biproximal ele-
ments γ2, . . . , γk ∈ Γ, with k ⩾ 2, such that the family γ1, . . . , γk satisfies
conditions (1), (2) and (3) of Lemma 4.5.

Proof. — We are going to construct elements γi inductively, taking con-
jugates of γ := γ1.

Let k ⩾ 1 and γ2, . . . , γk be such that γ1, . . . , γk satisfy condition (3). If
Span(x±

γi
, 1 ⩽ i ⩽ k) = V and

⋂
i x0

γi
= 0 then we are done. Otherwise, we

are looking for g ∈ Γ such that:
• xα

gγg−1 = g(xα
γ ) ̸∈ xβ

γi
⊕ x0

γi
for all i ⩽ k and α, β in {±},

• xβ
γj

̸∈ g(xα
γ ⊕ x0

γ) for all i ⩽ k and α, β in {±},
• gx±

γ ̸∈ Span(xα
γi

, i ⩽ k, α = ±) if Span(xα
γi

, i ⩽ k, α = ±) ̸= V ,
• and

⋂
i⩽k x0

γi
̸⊂ g(x0

γ) if
⋂

i⩽k x0
γi

̸= 0.
Denote by Γ0 the Zariski-irreducible component of the identity in Γ for
the Zariski topology (i.e. the topology induced by the Zariski topology
on GL(V )), which is a normal finite-index subgroup of Γ (see e.g. [11,
Lemma 6.21]). The action of Γ0 on V is also strongly irreducible. Note that
each condition above is Zariski-open with respect to g ∈ Γ0, and non-empty
since Γ0 acts irreducibly on V . That Γ0 is Zariski-irreducible implies that
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the (finite) intersection of all conditions is still non-empty; take an element
g inside and set γk+1 := gγg−1. Note that conditions (1) and (2) ensure
that the process will eventually stop. □

Lemma 4.7. — Let k ⩾ 2 and consider biproximal elements γ1, . . . , γk ∈
PGL(V ) which satisfy condition (3) of Lemma 4.5. Consider also a fam-
ily {Uα

i : 1 ⩽ i ⩽ k and α = ±} of disjoint compact neighbourhoods in
P(V ) of the points {xα

γi
: 1 ⩽ i ⩽ k and α = ±}. Then for N ∈ N large

enough, γN
1 , . . . , γN

k form the basis of a discrete non-abelian free subgroup
of PGL(V ), whose elements are biproximal (apart from the identity). More-
over x+

γ ∈ Uα1
i1

and x−
γ ∈ U−αn

in
for any non-trivial cyclically reduced word

γ = γα1N
i1

. . . γαnN
in

, where 1 ⩽ ij ⩽ k and αj ∈ {±} for 1 ⩽ j ⩽ n, with
n ⩾ 1.

To prove this we need a technical fact:

Fact 4.8. — Consider a sequence (gn)n in PGL(V ), a point x in P(V )
and a compact neighbourhood U of x such that the sequence (gn(U))n

converges to x. Then the accumulation points of (gn)n in P(End(V )) are
rank-1 projectors onto x whose kernel does not intersect the interior of U .

Proof. — Recall that V = Rd+1, so that we can use the usual Cartan
decomposition in GL(V ): for any n we can write gn = [knanln], where
the elements kn and ℓn are in the (maximal compact) classical orthogonal
subgroup K = O(d+1) of GLd+1(R), and an is diagonal with positive non-
increasing entries. Up to passing to a subsequence we may assume that
(kn)n and (ℓn)n converge in K with respective limits k and ℓ. That (gn)n

contracts an open set to a point implies that [an]n must converge to [p],
where p is the projector onto the line spanned by the first vector e1 of the
canonical basis. Assume without loss of generality that (an)n converges to
p, so that (knanℓn)n converges to kpℓ, a rank-1 matrix with image k(e1) and
kernel ℓ−1 Ker(p). The assumption that (knanln(U))n tends to x implies
that (anl(U))n goes to k−1(x), which in turn implies that ℓ(U)∩Ker(p) = ∅
and k−1x = e1. □

Proof of Lemma 4.7. — Let U be a compact subset of P(V ) with non-
empty interior, disjoint from the Uα

i ’s and the xα
γi

⊕ x0
γi

’s. If N is large
enough then for any i = 1, . . . , k and α = ±,

γαN
i

U ∪ Uα
i ∪

⋃
j ̸=i

β=±

Uβ
j

 ⊂ Uα
i .
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Then Γ′ = ⟨γN
i , 1 ⩽ i ⩽ k⟩ is free and discrete thanks to a ping-pong

argument. Indeed one can prove by induction on word length that for any
non-trivial reduced word γα1N

i1
. . . γ

αpN
ip

∈ Γ′:

γα1N
i1

. . . γ
αpN
ip

U ∪ U
αp

ip
∪

⋃
j ̸=ip

β=±

Uβ
j

 ⊂ Uα1
i1

.

We conclude with a proof by contradiction. Assume that there exists a
sequence of cyclically reduced words

γn = γ
α

(n)
1 Nn

i
(n)
1

γ
α

(n)
2 Nn

i
(n)
2

. . . γ
α(n)

pn
Nn

i
(n)
pn

with (Nn)n going to infinity, which are not biproximal with attracting-
repelling pair in U

α
(n)
1

i
(n)
1

× U
−α(n)

n

i
(n)
pn

. Up to extracting assume that i
(n)
1 = i,

i
(n)
pn = j, α

(n)
1 = α and α

(n)
pn = β do not depend on n.

The sequences (γn)n and (γ−1
n )n respectively contract Uα

i towards xα
γi

and U−β
j towards x−β

γj
, so we can apply Fact 4.8 to them. Up to passing

to a subsequence we can assume that (γn)n and (γ−1
n )n converge to rank-1

projectors on respectively xα
γi

and on x−β
γj

. By Remark 2.4, the elements γn

and γ−1
n are proximal with attracting fixed points respectively in Uα

i and
U−β

j : this is a contradiction. □

4.3. Proof of Proposition 4.1

Up to taking a finite-index subgroup we can assume that Γ ⊂ PSL(V ).
Consider its preimage Γ̃ ⊂ SL(V ). Let Ũ ⊂ T 1Ω be the preimage of U .

By Fact 2.8, there exists a biproximal element γ1 ∈ Γ̃ whose axis meets
Ũ . By Lemma 4.6 we can find biproximal elements γ2, . . . , γk ∈ Γ̃ such that
the family γ1, . . . , γk satisfies conditions (1), (2) and (3) of Lemma 4.5.

By Lemma 4.7, we can find N ⩾ 1 such that γN
1 , . . . , γN

k generate a non-
abelian free subgroup Γ′ of Γ̃ whose elements are biproximal, and such that
the axis of every element of the form γN

1 γN
i1

· · · γN
in

γN
1 meets Ũ , where n ⩾ 0

and 1 ⩽ i1, . . . , in ⩽ k. Moreover, Γ′ is strongly irreducible by Lemma 4.5.
Let Γ+ ⊂ Γ′ be the sub-semi-group generated by γN

1 , γN
1 γN

2 γN
1 , . . . ,

γN
1 γN

k γN
1 ; it generates Γ′ as a group. By Fact 4.2, the Zariski-closure of Γ+

(which is also that of Γ′) is semi-simple and non-compact. By Corollary 4.4,
the additive group generated by {ℓ(γ) : γ ∈ Γ+} is dense in R. By construc-
tion, each non-trivial element γ of Γ+ is biproximal with axis through Ũ ; by
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definition this axis projects on a biproximal periodic geodesic through U ,
whose length is ℓ(γ).

Remark 4.9. — See [13, Proposition 5.3.3] for a slightly different and
shorter proof that uses a ping-pong argument with only two elements γ1
and γ2.

5. Strong stable manifolds

The strong stable manifold of a vector v ∈ T 1Ω is a classical notion in the
theory of dynamical systems; it is defined as the set of vectors w ∈ T 1Ω
such that dT 1Ω(ϕtv, ϕtw) goes to zero as t goes to infinity. The goal of
this section is to establish the following geometric description of the strong
stable manifolds centred at smooth points. See also [19, Proposition 4.1].

Proposition 5.1. — Let Ω ⊂ P(V ) be a properly convex open set, let
v ∈ T 1Ω and let ξ := ϕ∞v ∈ ∂Ω. Then

(1) for any w ∈ T 1Ω with ϕ∞w = ξ, the function t 7→ dT 1Ω(ϕtv, ϕtw)
is non-increasing;

(2) suppose ξ is smooth. Then for any w ∈ T 1Ω with ϕ∞w = ξ, there is
a unique t0 ∈ R for which the lines ϕ−∞v ⊕ ϕ−∞w and πv ⊕ πϕt0w

intersect at a point of Tξ∂Ω (see Figure 5.1); moreover t0 is the
only number for which v and ϕt0w are on the same strong stable
manifold, i.e.

dT 1Ω(ϕtv, ϕt+t0w) −→
t→∞

0.

TξBΩ ‚‚ξ

‚v ‚φt0w

‚
φ´8v

‚
φ´8w

Figure 5.1. Vectors v, ϕt0w ∈ T 1Ω in the same strong stable manifold.
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5.1. Crampon’s Lemma

For a general properly convex open set Ω ⊂ P(V ), it is not true that the
distance function is convex, in the sense that t 7→ dΩ(c1(t), c2(t)) is con-
vex for all geodesics c1, c2 (see [38]). However, one can establish a weaker
property, and this is the subject of the next lemma. Observe that it im-
plies in particular the first part of Proposition 5.1. We will give a proof
of Lemma 5.2 in the appendix, to clarify a missing detail in Crampon’s
original proof.

Lemma 5.2 ([24, Lemma 8.3]). — Let Ω be a properly convex open
subset of P(V ). Let c1 and c2 be two straight geodesics parametrised with
constant speed, but not necessarily with the same speed. Then for all 0 ⩽
t ⩽ T ,

dΩ(c1(t), c2(t)) ⩽ dΩ(c1(0), c2(0)) + dΩ(c1(T ), c2(T )).

5.2. An explicit computation of limt→∞ dT 1Ω(ϕtv, ϕtw)

We now prove a lemma from which the geometric description of strong
stable manifolds will be a corollary. See an illustration for the notation in
Figure 5.2.

Lemma 5.3. — Let Ω ⊂ P(V ) be a properly convex open set. Take
v, w ∈ T 1Ω with ϕ∞v = ϕ∞w =: ξ and ϕ−∞v ̸= ϕ−∞w, and let x := πv

and y := πw. Let P be the projective plane spanned by x, y and ξ, and let
D, D′ be the tangent lines of P ∩∂Ω at ξ (they may coincide) such that the
lines D, (ξ ⊕ x), (ξ ⊕ y), D′ lie in this order around ξ. Let δ ⩾ 0 be half the
logarithm of the cross-ratio of these four lines (with the convention that
δ = 0 if D = D′). Let a be the intersection point of x⊕y and ϕ−∞v⊕ϕ−∞w.
If a ⊕ ξ does not intersect Ω, then

dΩ(πϕtv, πϕtw) −→
t→∞

δ and dT 1Ω(ϕtv, ϕtw) −→
t→∞

δ.

Observe that, in Lemma 5.3, we have D = D′ whenever P ∩∂Ω is smooth
at ξ, in which case δ = 0.

Proof. — We consider xt = πϕtv and yt = πϕtw. Since dΩ(x, xt) = t =
dΩ(y, yt) and by definition of the cross-ratio, we see that yt ∈ (y ⊕ ξ) ∩
(a⊕xt). Let bt, ct ∈ ∂Ω be such that the four points bt, xt, yt, ct are aligned
in this order. We consider Dt = (ξ ⊕ bt) and D′

t = (ξ ⊕ ct). By definition
of the tangent lines, the two sequences (Dt)t→∞ and (D′

t)t→∞ converge
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‚
ξ

‚
φ´8v

‚φ´8w

‚
b

‚
bt

‚c

‚ct
‚
a

‚
y

‚x

‚
yt ‚

xt

D

D1

v

w

Figure 5.2. Illustration for the notation in Lemma 5.3.

respectively to D and D′. By definition dΩ(xt, yt) is half the logarithm of
the cross-ratio of the four lines Dt, (ξ ⊕ x), (ξ ⊕ y), D′

t, which converges to
the cross-ratio of the four lines D, (ξ ⊕ x), (ξ ⊕ y), D′. □

5.3. Proof of Proposition 5.1

Let us establish first ((1)). By definition of dT 1Ω (see (2.1)), in order
to prove that t 7→ dT 1Ω(ϕtv, ϕtw) is non-increasing, it is enough to prove
that t 7→ dΩ(πϕtv, πϕtw) is non-increasing. Observe that it will also have
as a consequence that dT 1Ω(v, w) ⩽ dΩ(πv, πw). We fix t ⩾ 0. Consider a
sequence (xn)n∈N ∈ ΩN converging to ξ, and for each n ∈ N, take vn ∈ T 1

πvΩ
and wn ∈ T 1

πwΩ which define geodesic rays containing xn. Then ϕt(v) =
limn→∞ ϕt(vn) and ϕt(w) = limn→∞ ϕt(wn). By Lemma 5.2,

dΩ(πϕtvn, πϕ
t

dΩ(πw,xn)
dΩ(πv,xn)

wn) ⩽ dΩ(πv, πw)

for any n, and we get the desired inequality by taking the limit, since
( dΩ(πw,xn)

dΩ(πv,xn) )n tends to 1.
Let us now prove the second point (2). If ξ is a smooth point of ∂Ω and

the lines ϕ−∞v ⊕ϕ−∞w and πv ⊕πw intersect at a point of Tξ∂Ω, then the
fact that dT 1Ω(ϕtv, ϕtw) goes to zero as t goes to infinity, is an immediate
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corollary of Lemma 5.3 (note that in this case D = D′ with the notation
of Lemma 5.3).

5.4. A consequence

The following lemma is a consequence of Proposition 5.1 (1). It will be the
key ingredient to prove that the biproximal unit tangent bundle is maximal
among invariant closed subsets on which the geodesic flow is topologically
transitive (Theorem 1.2 (2)).

Lemma 5.4. — Let Ω ⊂ P(V ) be a properly convex open set and Γ ⊂
Aut(Ω) a discrete subgroup; set M = Ω/Γ. Consider two vectors v, w ∈
T 1M with w in the closure of the forward orbit {ϕtv : t ⩾ 0}. Then ϕ∞ṽ

belongs to the closure of the orbit Γ · ϕ∞w̃ for all lifts ṽ, w̃ ∈ T 1Ω.

Proof. — By assumption there exist sequences (tn)n in [0, ∞) and (γn)n

in Γ such that
γnϕtn

ṽ −→
n→∞

w̃.

This implies that, for n large enough, [γnϕ−∞ṽ, ϕ∞w̃]∩Ω is non-empty; let
us consider ũn ∈ T 1Ω such that ϕ−∞ũn = γnϕ−∞ṽ, and ϕ∞ũn = ϕ∞w̃, and
πũn is a closest point of [γnϕ−∞ṽ, ϕ∞w̃] to πw̃ for the Hilbert distance.
We easily observe that (ũn)n converges to w̃ as n tends to infinity. By
Proposition 5.1 (1), we obtain

dT 1Ω(ṽ, γ−1
n ϕ−tn

ũn) ⩽ dT 1Ω(ϕtn
ṽ, γ−1

n ũn) = dT 1Ω(γnϕtn
ṽ, ũn)

⩽ dT 1Ω(γnϕtn ṽ, w̃) + dT 1Ω(w̃, ũn)
−→

n→∞
0.

Therefore, γ−1
n ϕ∞w̃ = γ−1

n ϕ∞ũn tends to ϕ∞ṽ as n goes to infinity. □

6. Proof of Theorem 1.2

6.1. Topological mixing on the biproximal unit tangent bundle

The first claim of Theorem 1.2 is an immediate consequence of Proposi-
tion 4.1 and the following.
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Proposition 6.1. — Let Ω ⊂ P(V ) be a properly convex open set
and Γ ⊂ Aut(Ω) a discrete subgroup. Set M = Ω/Γ and assume that
T 1Mbip is non-empty and that the set of lengths of the biproximal periodic
orbits through any non-empty open subset U ⊂ T 1Mbip generate a dense
subgroup of R. Suppose moreover that ΛΓ ∖ ((x+

γ ⊕ x0
γ) ∪ (x−

γ ⊕ x0
γ)) is

non-empty for any biproximal element γ ∈ Γ. Then the geodesic flow on
T 1Mbip is topologically mixing.

Proof. — Let U1 and U2 be two open subsets of T 1Mbip. Let us prove
that there exists T > 0 such that ϕt(U1) ∩ U2 ̸= ∅ for all t ⩾ T .

Since the map (t, v) 7→ ϕt(v) is continuous, we can find an open subset
∅ ≠ U ′

2 ⊂ U2, and ϵ > 0 such that ϕ[−ϵ,ϵ](U ′
2) ⊂ U2. As a consequence, for

any t ∈ R, if ϕt(U1) and U ′
2 intersect, then for all s ∈ R which are ϵ-close

to t, the sets ϕs(U1) and U2 intersect.
Let πΓ : T 1Ω → T 1M be the natural projection. Let us find small non-

empty open subsets W̃ 1 ⊂ π−1
Γ U1 and W̃ 2 ⊂ π−1

Γ U ′
2 such that for any

(ṽ1, ṽ2) ∈ W̃ 1 × W̃ 2, the line (ϕ−∞ṽ1 ⊕ ϕ∞ṽ2) intersects Ω. By assump-
tion, we can find ũ1 ∈ π−1

Γ (U1) and ũ2 ∈ π−1
Γ (U ′

2) biproximal periodic. If
(ϕ−∞ũ1 ⊕ ϕ∞ũ2) intersects Ω, then we can take W̃ 1 (resp. W̃ 2) to be a
small neighbourhood of ũ1 (resp. ũ2). Otherwise, Tϕ−∞ũ1∂Ω = Tϕ∞ũ2∂Ω
since ϕ−∞ũ1 and ϕ∞ũ2 are smooth by Lemma 3.1. By assumption, there
exists x ∈ ΛΓ ∖ (Tϕ−∞ũ2∂Ω ∪ Tϕ∞ũ2∂Ω). We can then take W̃ 1 to be a
small neighbourhood of ũ1, and W̃ 2 to be a small neighbourhood of any
vector ũ′

2 which is close enough to ũ2 and such that ϕ−∞ũ′
2 = ϕ−∞ũ2 and

ϕ∞ũ′
2 = γn

2 x for n large enough, where γ2 ∈ Γ is the biproximal element
associated to the orbit of ũ2.

For i = 1, 2, pick ṽi ∈ W̃ i biproximal with period τi such that τ1Z+τ2Z is
ϵ
2 -dense in R; this is possible by assumption and by Observation 6.2 below.

We know that (ϕ−∞ṽ1, ϕ∞ṽ2) ⊂ Ω. Fix a vetor w̃ ∈ T 1Ω tangent to
this line which is pointing forward at ϕ∞ṽ2 and backward at ϕ−∞ṽ1.
By Lemma 3.1, the points ϕ±∞ṽi are smooth. Using Proposition 5.1, we
can find t1 and t2 ∈ R such that limt→∞ dT 1Ω(ϕ−tṽ1, ϕt1−tw̃) = 0 and
limt→∞ dT 1Ω(ϕtṽ2, ϕt2+tw̃) = 0. Set vi := πΓṽi for i = 1, 2 and w := πΓw̃.
By definition of dT 1M (see (2.2)), we get limt→∞ dT 1M (ϕ−tv1, ϕt1−tw) = 0
and limt→∞ dT 1M (ϕtv2, ϕt2+tw) = 0. This implies that there is an inte-
ger N ⩾ 0 such that for any n ⩾ N , ϕt1−nτ1w ∈ W1 := πΓW̃ 1 and
ϕt2+nτ2w ∈ W2 := πΓW̃ 2. We deduce that ϕt(W1) ∩ W2 ̸= ∅ for any t

in {−t1 + t2 + n1τ1 + n2τ2 : n1, n2 ⩾ N}.
We conclude by observing that the ϵ-neighbourhood of {−t1 +t2 +n1τ1 +

n2τ2 : n1, n2 ⩾ N} contains a real interval of the form [T, ∞) for T large
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enough. Indeed, there exists N ′ > 0 such that [0, τ1] is contained in the
ϵ-neighbourhood of {n1τ1 + n2τ2 : |ni| ⩽ N ′}. Then the ϵ-neighbourhood
of {−t1 + t2 + n1τ1 + n2τ2 : n1, n2 ⩾ N} contains [−t1 + t2 + (N + N ′)τ1 +
(N + N ′)τ2, ∞). □

U1
U2

‚φ´8v1

‚
φ8v1

‚φ´8v2

‚
φ8v2

‚v1 ‚v2‚v ą

φtv1

ą

φtv2

ąφtv

Figure 6.1. Proof of mixing. On the left: In Ω. On the right: In the
quotient M = Ω/Γ.

Observation 6.2. — Let A be a subset of R which generates a dense
additive subgroup G of R. Let x, ϵ > 0. Then there exists g ∈ A such that
xZ + gZ is ϵ-dense in R (i.e. any point in R is at distance at most ϵ from
xZ + gZ).

Proof. — Up to replacing A by A/x and ϵ by ϵ/x, we can assume that
x = 1. Then there are two possibilities.

• The set A contains an irrational number g. Then Z + gZ is dense
in R.

• The set A is contained in Q. Let q0 ∈ N∗ be such that 1
q0

< ϵ.
The subgroup 1

q0!Z is not dense in R, so A must contain an element
outside of it, of the form p

q with p and q coprime and q > q0. The
group Z + p

qZ = 1
qZ is ϵ-dense in R. □

6.2. Maximality of the biproximal unit tangent bundle

The second claim of Theorem 1.2 is a consequence of the following more
general proposition.
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Proposition 6.3. — Let Ω ⊂ P(V ) be a properly convex open set and
Γ ⊂ Aut(Ω) a discrete subgroup; set M = Ω/Γ. If T 1Mbip is non-empty,
then it is maximal for inclusion among all closed invariant subsets of T 1M

on which the geodesic flow is topologically transitive.

Proof. — Consider a closed invariant subset A ⊂ T 1M that contains
T 1Mbip and on which (ϕt)t is topologically transitive. Since A has the
Baire property and is second countable, there exists v ∈ A such that both
{ϕtv : t ⩾ 0} and {ϕtv : t ⩽ 0} are dense in A.

Fix w ∈ T 1Mbip (which is non-empty by assumption), and consider re-
spective lifts ṽ, w̃ ∈ T 1Ω of v, w. By definition of v, the vector w is in the
closure of the forward orbit {ϕtv : t ⩾ 0}, so we can apply Lemma 5.4 and
we obtain ϕ∞ṽ ∈ ΛΓ. Using again Lemma 5.4, and the fact that w is in the
closure of {ϕt(−v) : t ⩾ 0} = {−ϕtv : t ⩽ 0}, we see that ϕ−∞ṽ ∈ ΛΓ. We
have proved that v ∈ T 1Mbip, therefore

A = {ϕtv : t ∈ R} ⊂ T 1Mbip ⊂ A,

and this concludes the proof. □

7. The geodesic flow in the higher-rank compact case

The goal of this section is to prove Proposition 1.4. We are actually going
to prove a finer statement: that the connected components of the non-
wandering set of the geodesic flow are quotients of homogeneous spaces
where the geodesic flow acts like a one-parameter group and the Haar
measure is mixing under this action.

We denote by H the classical division algebra of quaternions, and by O
the classical non-associative division algebra of octonions. Fix an integer
N ⩾ 3 and the algebra K = R, C, H, or, if N = 3, O. We shall use the
following notation. In the case K = R, conjugation is the identity and we
abusively say Hermitian instead of symmetric.

• For x ∈ K, the element x ∈ K is the conjugate of x.
• We consider the Hermitian bilinear form on KN given by ⟨x, y⟩ =∑N

i=1 xiyi.
• The real vector space V = VN,K consists of the Hermitian matrices

of size N with entries in K.
• The cone C = CN,K ⊂ V consists of the positive-definite Hermitian

matrices.
• The properly convex open set Ω = ΩN,K ⊂ P(V ) is the projectivi-

sation of C.
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• The group Aut(C) ⊂ GL(V ) consists of the transformations pre-
serving C.

• The group G = GN,K := Aut(Ω) = Aut(C)/R∗ is the automorphism
group of Ω, where R∗ is seen as the group of homotheties of GL(V ).

• The group K ⊂ Aut(C) is the stabiliser of the identity matrix; note
that the map K → G is an embedding, and that K is a maximal
compact subgroup of G.

• Finally the group A consists of the diagonal matrices of size N with
diagonal entries in R>0; we see it embedded in Aut(C), acting on
V by the following formula: a · X = aXa for a ∈ A and X ∈ V .

Let us be more explicit about the case K = R. The group Aut(CN,R)
identifies with GLN (R)/{±1}, acting on VN,R by the formula g ·X = gXgt;
the group GN,R identifies with PGLN (R); the group K identifies with
O(N)/{±1}.

We come back to the general case. The Spectral Theorem (see for in-
stance [30, Theorem V.2.5]) ensures that for every X ∈ V there exists
k ∈ K such that k · X is diagonal with real entries. This, using the action
of A, has two consequences: Aut(C) acts transitively on C, and can be
written as the product KAK = {k1ak2 : k1, k2 ∈ K, a ∈ A}. Then, the
quotient group G acts transitively on Ω, and can be written K(A/R>0)K
— actually, the element of A/R>0 in the decomposition can be taken with
non-increasing entries on the diagonal, and this yields the Cartan decom-
position of G. The Lie algebra of G is sl(N,K) when K ̸= O, and e6(−26) if
K = O (see [30, p. 97]), therefore G is a non-compact real simple Lie group,
with finitely many connected components, and with trivial center. Observe
that Ω identifies as a G-space with the Riemannian symmetric space of G.

Since Ω = G/K, a discrete subgroup Γ ⊂ G acts cocompactly on Ω if and
only if G/Γ is compact, i.e. Γ is a uniform lattice of G; uniform lattices exist
by a theorem of Borel [17, Theorem C]. The properly convex open sets ΩN,K
are called the symmetric divisible convex sets. Zimmer [41, Theorem 1.4]
recently proved that the higher-rank irreducible closed convex projective
manifolds are exactly the quotients of the form ΩN,K/Γ, where N ⩾ 3, the
field K = R, C, H, or O (if N = 3), and Γ is a uniform lattice of GN,K.

7.1. The non-wandering set of G × R on T 1Ω

In this section we describe NW(T 1Ω, G ×R) and prove that G acts tran-
sitively on each of its connected components.
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The boundary of Ω is the projectivisation of the cone of positive semi-
definite Hermitian matrices. For 1 ⩽ i, j ⩽ N − 1, we denote by T 1Ωi,j the
set of unit tangent vectors v ∈ T 1Ω such that the respective ranks of ϕ−∞v

and ϕ∞v (meaning the rank of any representative in V ) are i and j. Note
that T 1Ωi,j is non-empty if and only if i + j ⩾ N (see Proposition 7.1 (1)).
The subsets T 1Ωi,j , for 1 ⩽ i, j ⩽ N and i+j ⩾ N , are invariant under the
automorphism group Aut(Ω) and the geodesic flow (ϕt)t∈R. They stratify
T 1Ω in the following way:

• T 1Ω is the disjoint union of the T 1Ωi,j ,
• the closure of T 1Ωi,j is the union of the T 1Ωk,ℓ for 1 ⩽ k ⩽ i and

1 ⩽ ℓ ⩽ j,
• in particular, T 1Ωi,N−i is closed for 1 ⩽ i ⩽ N − 1,
• T 1ΩN−1,N−1 is open and dense in T 1Ω.

When K = R we compute

dim(T 1Ωi,j) = i(N − i) + i(i + 1)
2 + j(N − j) + j(j + 1)

2 − 1.

We denote by Geod(Ω)i,j the quotient T 1Ωi,j/(ϕt)t∈R. Observe that the
set Geod(Ω) := T 1Ω/(ϕt)t∈R identifies with the set of pairs (x, y) in ∂Ω2

such that Ker(x)∩Ker(y) = ∅. We are going to prove that NW(Geod(Ω), G)
is the union

⋃
1⩽i⩽N−1 Geod(Ω)i,N−i. This exactly means, according to

Section 2.6, that NW(T 1Ω, G × R) is
⋃

1⩽i⩽N−1 T 1Ωi,N−i. We choose a
basepoint vi,N−i ∈ T 1Ωi,N−i, such that πvi,N−i, ϕ−∞vi,N−i and ϕ∞vi,N−i

are the projectivisations of, respectively, the identity matrix, the orthogonal
projection onto Ki × {0} and the orthogonal projection onto {0} × KN−i.
We set

Ai,N−i :=
{

at :=
[
et/2 Ii 0

0 e−t/2 Ij

]
: t ∈ R

}
⊂ A,

where Ik is the identity matrix of size k, and we observe that for any t ∈ R,
the image at · vi,N−i is exactly ϕtvi,N−i. We denote by G0 the identity
component of G and by Ki,N−i the stabilizer in G0 of vi,N−i; they are
normalised by Ai,N−i ⊂ G0.

Proposition 7.1. — Consider N ⩾ 3, the algebra K = R, C, H, or
O (if N = 3), the vector space V = VN,K, the properly convex open set
Ω = ΩN,K ⊂ P(V ), and the group G = GN,K, with identity component G0.

(1) For 1 ⩽ i, j ⩽ N − 1, the set T 1Ωi,j is non-empty if and only if
i + j ⩾ N .
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(2) For 1 ⩽ i ⩽ N −1, the group G0 acts transitively on T 1Ωi,N−i. If we
identify T 1Ωi,N−i with G0/Ki,N−i, then the geodesic flow identifies
with the action by right multiplication of Ai,N−i on G0/Ki,N−i.

(3) The non-wandering set of G on Geod(Ω) is

NW(Geod(Ω), G) =
⋃

1⩽i⩽N−1
Geod(Ω)i,N−i.

Proof.

(1). — Suppose there exists v ∈ T 1Ωi,j . Because G0 acts transitively on
Ω we can find g1 ∈ G0 such that g1πv is the projectivisation of the identity
matrix. Then by the spectral theorem there exists an automorphism g2 ∈ K

(i.e. fixing g1πv) such that Ker(g2g1ϕ−∞v) = {0} × KN−i; since the space
of (N − i)-dimensional right K-sub-modules of V is connected, we can take
g2 in G0. We note that the subspaces Ker(g2g1ϕ−∞v) and Ker(g2g1ϕ∞v)
are orthogonal. (Indeed, if T and T ′ are representatives in V of g2g1ϕ−∞v

and g2g1ϕ∞v such that T + T ′ is the identity matrix, and if x ∈ Ker(T )
while y ∈ Ker(T ′), then ⟨x, y⟩ = ⟨x, Ty + T ′y⟩ = ⟨x, Ty⟩ = ⟨Tx, y⟩ = 0.)
This implies that i + j ⩾ N .

(2). — Let 1 ⩽ i ⩽ N −1. Let us show that there exists g ∈ G0 such that
g·v is the basepoint vi,N−i of T 1Ωi,N−i. We have already seen that there are
g1, g2 ∈ G such that πg2g1v is the projectivisation of the identity matrix,
and Ker(g2g1ϕ−∞v) = {0} ×KN−i. Then Ker(g2g1ϕ∞v) = Ki × {0}, since
Ker(g2g1ϕ−∞v) and Ker(g2g1ϕ∞v) are orthogonal. Moreover g2g1ϕ−∞v

and g2g1ϕ∞v are the projectivisations of the orthogonal projections onto
Ki × {0} and {0} × KN−i. (Indeed, consider representatives T and T ′ of
ϕ−∞g2g1v and ϕ∞g2g1v in V such that T + T ′ is the identity matrix; then
T ′ and T are the orthogonal projections onto Ki × {0} and {0} × KN−i.)

(3). — The stabiliser of (ϕ−∞vi,N−i, ϕ∞vi,N−i) ∈ Geod(Ω)i,N−i con-
tains Ai,N−i, therefore the stabilisers of points in Geod(Ω)i,N−i are non-
compact, hence

⋃
1⩽i⩽N−1 Geod(Ω)i,N−i is contained in the set

NW(Geod(Ω), G). Let us prove the converse inclusion.
Suppose by contradiction that NW(Geod(Ω), G) is not contained in⋃
1⩽i⩽N−1 Geod(Ω)i,N−i. We may assume the existence of sequences of

positive semi-definite Hermitian matrices (Sn)n∈N and (Tn)n∈N in V , of au-
tomorphisms (gn)n∈N in Aut(C) and of positive scalars (µn)n∈N, (νn)n∈N,
such that

• (Sn)n, (µngnSn)n, (Tn)n, and (νngnTn)n respectively converge to
S, S′, T , and T ′,
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• the rank of S and S′ is i, the rank of T and T ′ is j, with 1 ⩽ i, j ⩽
N − 1 and i + j > N ,

• Ker(S) ∩ Ker(T ) = Ker(S′) ∩ Ker(T ′) = {0},
• ([gn])n ∈ GN leaves every compact subset of G.

Using Aut(C) = KAK and extracting, we may assume (up to renormal-
ising) that gn = an ∈ A converge in End(V ) to a non-invertible non-zero
diagonal matrix a with non-negative coefficients. We extend to a the action
of A on V , with the same notation: a · X = aXa for any X ∈ V .

Since Ker(S) ∩ Ker(T ) = {0}, up to exchanging S and T , we can assume
that the image of a is not contained in Ker(S), and this implies that a ·
S ̸= 0. Both (an · Sn)n and (µnan · Sn)n converge to a non-zero element
of V , so (µn)n must be bounded, and we may assume that it converges
to 1, without loss of generality. Therefore, a · S = S′, which means the
rank of a is bounded below by i. Since i + j > N , the kernel of a is not
contained in Ker(T ), and a · T ̸= 0. As before, without loss of generality,
we can assume that a · T = T ′. But now the kernel of a is contained in
Ker(S′) ∩ Ker(T ′) = {0}, this is a contradiction. □

7.2. The non-wandering set of (ϕt)t∈R on T 1M

Let Γ be a lattice of G, not necessarily uniform. We set M = Ω/Γ.

Remark 7.2. — The biproximal unit tangent bundle T 1Mbip is empty. To
see this, recall that the attracting fixed point of a proximal automorphism
of Ω is always an extremal point of Ω, so by definition the proximal limit
set of Γ is contained in the closure of the set of extremal points of Ω. Here,
since Ω is symmetric, the set of extremal points is closed and consists of
projectivisations of rank-1 positive semi-definite Hermitian matrices, so the
set of straight geodesics between two extremal points is Geod(Ω)1,1, which
is empty since N ⩾ 3.

For 1 ⩽ i, j ⩽ N −1, we denote by T 1Mi,j the quotient T 1Ωi,j/Γ. In this
section we use the following celebrated theorem of Howe–Moore to study
the action of the geodesic flow on each T 1Mi,N−i, with 1 ⩽ i ⩽ N .

Fact 7.3 ([32], see e.g. [42, Theorem 2.2.20]). — Let G be a connected
non-compact simple Lie group with finite center, let π be a unitary represen-
tation of G in a separable Hilbert space, without any non-zero G-invariant
vector. Let x, y be two vectors in the Hilbert space. Then ⟨x, gy⟩ converges
to zero when g goes to infinity, i.e. g leaves every compact subset of G.
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Proposition 7.1 and Section 2.6 imply that the sets NW(Geod(Ω), Γ),
NW(T 1Ω, Γ × R), and NW(T 1M, (ϕt)t∈R) are respectively contained in⋃

1⩽i⩽N−1 Geod(Ω)i,N−i,
⋃

1⩽i⩽N−1 T 1Ωi,N−i and
⋃

1⩽i⩽N−1 T 1Mi,N−i.
We are now going to see that we actually have equalities. Recall that a

finite measure µ preserved by a measurable flow (ϕt)t∈R is called mixing if,
for any two functions f, g ∈ L2(µ) with zero integral, we have∫

f · (g ◦ ϕt) dµ −→
t→∞

0.

Recall also that a continuous flow is topologically mixing on the support of
a mixing invariant measure. Therefore Proposition 1.4 is an immediate con-
sequence of the following proposition, and of Zimmer’s rigidity theorem [41,
Theorem 1.4].

Proposition 7.4. — Consider N ⩾ 3, the algebra K = R, C, H, or
O (if N = 3), the vector space V = VN,K, the properly convex open set
Ω = ΩN,K, and the group G = GN,K. Take a lattice Γ of G, not necessarily
uniform, and denote by M the quotient Ω/Γ. Then for any 1 ⩽ i ⩽ N − 1,
the (finite and fully supported) Haar measure on T 1Mi,N−i is mixing under
the geodesic flow; as a consequence the geodesic flow is topologically mixing
on T 1Mi,N−i. Furthermore, NW(T 1M, (ϕt)t∈R) has exactly N−1 connected
components, which are {T 1Mi,N−i : i = 1, . . . , N − 1}.

Proof. — Up to replacing Γ by a finite-index subgroup, we can assume
that Γ is contained in G0. Since Γ is a lattice, the Haar measure m on Γ\G0
is finite. Fix 1 ⩽ i ⩽ N−1. By applying the Howe–Moore theorem (Fact 7.3)
to the unitary representation of G0 in L2(Γ\G0, m), we obtain that m is
mixing under the action of the (one-parameter) non-compact subgroup
Ai,N−i of G0. According to Proposition 7.1 (2), it immediately follows that
the induced measure on T 1Mi,N−i = Γ\G/Ki,N−i is mixing under the
action of the geodesic flow. Since the Haar measure is fully supported, the
geodesic flow on T 1Mi,N−i is topologically mixing, and its non-wandering
set is T 1Mi,N−i. □

Appendix A. Proof of Crampon’s Lemma 5.2

It is enough to establish Lemma 5.2 when c1(0) = c2(0). Indeed, suppose
the lemma true in this case. Consider two straight geodesics c1 and c2,
each parametrised with constant speed. Let c3 be the straight geodesic,
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parametrised with constant speed, such that c3(0) = c1(0) and c3(T ) =
c2(T ). For 0 ⩽ t ⩽ T we have

dΩ(c1(t), c2(t)) ⩽ dΩ(c1(t), c3(t)) + dΩ(c3(t), c2(t))
⩽ dΩ(c1(T ), c3(T )) + dΩ(c3(0), c2(0))
⩽ dΩ(c1(T ), c2(T )) + dΩ(c1(0), c2(0)).

We now assume c1(0) = c2(0) (and that c1 and c2 are not constant,
otherwise the proof is trivial). We can then assume that Ω has dimension 2,
and we can consider an affine chart in which both projective lines (c1(−∞)⊕
c2(−∞)) and (c1(∞) ⊕ c2(∞)) are vertical. Fix 0 < t < T . We draw
Figure A.1 (left-hand side) which contains the following points:

• A and B are the intersection points of the line (c2(T ) ⊕ c1(T )) with
∂Ω;

• C and D are the intersection points of the line (c2(t) ⊕ c1(t)) with
∂Ω;

• C ′ and D′ are the intersection points of the line (c2(t) ⊕ c1(t)) with
the lines (c1(0) ⊕ A) and (c1(0) ⊕ B).

‚c1p´8q

‚c2p´8q

‚c1p8q

‚c2p8q

c1pT q‚

c2pT q‚

‚c1p0q
c1ptq‚

c2ptq‚

A
‚

B‚

C
‚

D‚

C 1 ‚

D1 ‚

‚c1p´8q

‚c2p´8q

‚c1p8q

‚c2p8q

c1pT q‚

c2pT q‚

‚c1p0q
c1ptq‚

‚A1

‚B1

‚
x

‚
y

‚
a

Figure A.1. Proof of Crampon’s Lemma 5.2.

If we are in the case, as in Figure A.1, where the lines (c1(t) ⊕ c2(t)) and
(c1(T ) ⊕ c2(T )) do not intersect inside Ω, then by convexity of Ω the point
C ′ lies between C and c2(t) and D′ lies between D and c1(t). Therefore by
definition of the cross-ratio, denoting by d(C′,D′) the Hilbert metric on the
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one-dimensional properly convex set (C ′, D′), we deduce that

dΩ(c1(T ), c2(T )) = d(C′,D′)(c1(t), c2(t))
⩾ dΩ(c1(t), c2(t)).

It remains to prove that the lines (c1(t) ⊕ c2(t)) and (c1(T ) ⊕ c2(T )) do
not cross inside Ω (this is the missing explanation in Crampon’s original
proof). We draw Figure A.1 (right-hand side) which contains the points:

• A′ and B′ are the intersection points of the line (c2(T ) ⊕ c1(T ))
with the lines (c1(∞) ⊕ c2(∞)) and (c1(−∞) ⊕ c2(−∞)).

• x and y are the intersection points of the line (c2(−∞) ⊕ c2(∞))
with the lines (c1(t) ⊕ A′) and (c1(t) ⊕ B′).

• a is the intersection point of the line (c1(−∞) ⊕ c1(∞)) with the
line (c2(−∞) ⊕ A′).

Form the picture we observe that it is enough to prove that c2(t) lies on
the segment [x, y], i.e. that dΩ(c2(0), y) ⩽ dΩ(c2(0), c2(t)) ⩽ dΩ(c2(0), x).
Since dΩ(c2(0),c2(t))

dΩ(c2(0),c2(T )) = t
T = dΩ(c1(0),c1(t))

dΩ(c1(0),c1(T )) , this boils down to

dΩ(c2(0), y)
dΩ(c2(0), c2(T )) ⩽

dΩ(c1(0), c1(t))
dΩ(c1(0), c1(T )) ⩽

dΩ(c2(0), x)
dΩ(c2(0), c2(T )) .

For example, if we want to establish the inequality on the right, we see by
definition of the cross-ratio that it is enough to prove:

dΩ(c1(0), c1(t))
dΩ(c1(0), c1(T )) ⩽

d(a,c1(∞))(c1(0), c1(t))
d(a,c1(∞))(c1(0), c1(T )) .

It is a consequence of the following lemma. This, and a similar argument
for the inequality on the left, conclude the proof of Lemma 5.2.

Lemma A.1. — For all a < a′ < x < y < z < b ∈ R,
d(a,b)(x, y)
d(a,b)(x, z) ⩽

d(a′,b)(x, y)
d(a′,b)(x, z) .

Proof. — Up to acting by a projective transformation we can assume
that x = 0, y = 1 and b = ∞. For z > 1 we consider the function:

a 7→ fz(a) =
d(a,∞)(0, 1)
d(a,∞)(0, z) .

on (−∞, 0). We have to check that this function fz is non-decreasing. This
follows immediatly from the fact that, for every a < 0,

fz(a) =
log(1 + −1

a )
log(1 + −z

a )
.

and from the computation of the derivative. □
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