[Courbe jacobienne de feuilletages singuliers]
Nous décrivons des propriétés topologiques de la courbe jacobienne de deux feuilletages et en termes des invariants associés aux feuilletages. Le resultat principal donne une décomposition de la courbe jacobienne qui dépend de la similitude des feuilletages et . Cette similitude entre les feuilletages est codifiée en termes des indices de Camacho–Sad des feuilletages avec la notion de point ou diviseur colinéaire. Notre approche permet de récupérer les résultats concernant la factorisation de la courbe jacobienne de deux courbes planes et de la courbe polaire d’une courbe ou d’un feuilletage.
Topological properties of the jacobian curve of two foliations and are described in terms of invariants associated to the foliations. The main result gives a decomposition of the jacobian curve which depends on how similar are the foliations and . The similarity between foliations is codified in terms of the Camacho–Sad indices of the foliations with the notion of collinear point or divisor. Our approach allows to recover the results concerning the factorization of the jacobian curve of two plane curves and of the polar curve of a curve or a foliation.
Révisé le :
Accepté le :
Première publication :
Keywords: Jacobian curve, singular foliation, polar curve, Camacho–Sad index, equisingularity data.
Mot clés : Courbe jacobienne, feuilletage singulier, courbe polaire, indice de Camacho–Sad, type d’équisingularité.
Corral, Nuria 1
@unpublished{AIF_0__0_0_A102_0, author = {Corral, Nuria}, title = {Jacobian curve of singular foliations}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3665}, language = {en}, note = {Online first}, }
Corral, Nuria. Jacobian curve of singular foliations. Annales de l'Institut Fourier, Online first, 61 p.
[1] Newton–Puiseux expansion and generalized Tschirnhausen transformation. I, II, J. Reine Angew. Math., Volume 260 (1973), pp. 47-83 ibid. 261 (1973), p. 29–54 | DOI | MR | Zbl
[2] Determining plane curve singularities from its polars, Adv. Math., Volume 287 (2016), pp. 788-822 | DOI | MR | Zbl
[3] Topological invariants and equidesingularization for holomorphic vector fields, J. Differ. Geom., Volume 20 (1984) no. 1, pp. 143-174 | DOI | MR | Zbl
[4] Invariant varieties through singularities of holomorphic vector fields, Ann. Math., Volume 115 (1982) no. 3, pp. 579-595 | DOI | MR | Zbl
[5] Théorie élémentaire des feuilletages holomorphes singuliers, Collection Échelles, Belin, 2013
[6] Local polar invariants for plane singular foliations, Expo. Math., Volume 37 (2019) no. 2, pp. 145-164 | DOI | MR | Zbl
[7] Singularities of plane curves, London Mathematical Society Lecture Note Series, 276, Cambridge University Press, 2000, xvi+345 pages | DOI | MR | Zbl
[8] Local geometry of planar analytic morphisms, Asian J. Math., Volume 11 (2007) no. 3, pp. 373-426 | DOI | MR | Zbl
[9] Sur la topologie des courbes polaires de certains feuilletages singuliers, Ann. Inst. Fourier, Volume 53 (2003) no. 3, pp. 787-814 | DOI | Numdam | MR | Zbl
[10] Infinitesimal adjunction and polar curves, Bull. Braz. Math. Soc. (N.S.), Volume 40 (2009) no. 2, pp. 181-224 | DOI | MR | Zbl
[11] Infinitesimal initial part of a singular foliation, An. Acad. Brasil. Ciênc., Volume 81 (2009) no. 4, pp. 633-640 | DOI | MR | Zbl
[12] Polar pencil of curves and foliations, Équations différentielles et singularités. En l’honneur de J. M. Aroca (Cano, F.; Loray, F.; Moralez-Ruiz, J. J.; Sad, P.; Spivakovsky, M., eds.) (Astérisque), Société Mathématique de France, 2009 no. 323 | Numdam | Zbl
[13] Sur les courbes polaires d’une courbe plane réduite, Proc. Lond. Math. Soc., Volume 81 (2000) no. 1, pp. 1-28 | DOI | MR | Zbl
[14] On the approximate Jacobian Newton diagrams of an irreducible plane curve, J. Math. Soc. Japan, Volume 65 (2013) no. 1, pp. 169-182 | DOI | MR | Zbl
[15] Local polar invariants and the Poincaré problem in the dicritical case, J. Math. Soc. Japan, Volume 70 (2018) no. 4, pp. 1419-1451 | DOI | MR | Zbl
[16] Foliaciones dicríticas en la realización de invariantes analíticos de curvas singulares, Ph. D. Thesis, Universidad Nacional Autónoma de México (2021)
[17] On the approximate roots of polynomials, Ann. Pol. Math., Volume 60 (1995) no. 3, pp. 199-210 | DOI | MR | Zbl
[18] On the factorization of the polar of a plane branch, Singularities and foliations. geometry, topology and applications (Springer Proceedings in Mathematics & Statistics), Volume 222, Springer, 2018, pp. 347-362 | DOI | MR | Zbl
[19] On Puiseux roots of Jacobians, Proc. Japan Acad., Ser. A, Volume 78 (2002) no. 5, pp. 55-59 | MR | Zbl
[20] Newton–Puiseux roots of Jacobian determinants, J. Algebr. Geom., Volume 13 (2004) no. 3, pp. 579-601 | DOI | MR | Zbl
[21] Sur le comportement des polaires associées aux germes de courbes planes, Compos. Math., Volume 72 (1989) no. 1, pp. 87-113 | Numdam | MR | Zbl
[22] Modules formels locaux de feuilletages holomorphes (2004) (https://arxiv.org/abs/math/0402256)
[23] Discriminant d’un germe et quotients de contact dans la résolution de , Ann. Fac. Sci. Toulouse, Math., Volume 7 (1998) no. 3, pp. 497-525 | DOI | MR | Zbl
[24] Discriminant of a germ and Seifert fibred manifolds, J. Lond. Math. Soc., Volume 59 (1999) no. 1, pp. 207-226 | DOI | MR | Zbl
[25] Invariants polaires des courbes planes, Invent. Math., Volume 41 (1977) no. 2, pp. 103-111 | DOI | MR | Zbl
[26] Rigidity theorems for generic holomorphic germs of dicritic foliations and vector fields in , Mosc. Math. J., Volume 5 (2005) no. 1, pp. 171-206 | DOI | MR | Zbl
[27] Classification topologique des germes de formes logarithmiques génériques, Ann. Inst. Fourier, Volume 39 (1989) no. 4, pp. 909-927 | DOI | Numdam | MR | Zbl
[28] Cycles évanescents d’une fonction de Liouville de type , Ann. Inst. Fourier, Volume 45 (1995) no. 1, pp. 31-63 | DOI | MR | Zbl
[29] Approximate roots, Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999) (Fields Institute Communications), Volume 33, American Mathematical Society, 2003, pp. 285-321 | MR | Zbl
[30] Théorème de Merle: cas des 1-formes de type courbes généralisées, Bol. Soc. Bras. Mat., Nova Sér., Volume 30 (1999) no. 3, pp. 293-314 | DOI | MR | Zbl
[31] Curva polar de una foliación asociada a sus raíces aproximadas, Ph. D. Thesis, Pontificia Universidad Católica del Perú (2018)
[32] Reduction of singularities of the differential equation , Am. J. Math., Volume 90 (1968), pp. 248-269 | DOI | MR | Zbl
Cité par Sources :