In this paper, we generalize the tools that were introduced in [13] in order to study the Andreadakis problem for subgroups of . In particular, we study the behaviour of the Andreadakis problem when we add inner automorphisms to a subgroup of . We notably use this to show that the Andreadakis equality holds for the pure braid group on strands modulo its center acting on the free group , that is, for the (pure, based) mapping class group of the -punctured sphere acting on its fundamental group.
Nous généralisons les outils introduits dans [13] pour étudier le problème d’Andreadakis pour les sous-groupes de . En particulier, nous étudions comment la réponse au problème d’Andreadakis varie lorsque les automorphismes intérieurs sont ajoutés à un sous-groupe donné. Nous utilisons les résultats obtenus pour montrer notamment que l’égalité d’Andreadakis est vraie pour le groupe de tresses pures à brins modulo son centre agissant sur le groupe libre . Cette action est celle du groupe de difféotopie (pur, pointé) de la sphère avec points marqués sur le groupe fondamental de la sphère privée de points.
Revised:
Accepted:
Online First:
Keywords: Lower central series, Central filtrations, Lie algebras, Automorphisms of free groups, Braid groups
Mot clés : Suite centrale descendante, filtrations centrales, algèbres de Lie, Automorphismes des groupes libres, groupes de tresses
Darné, Jacques 1
@unpublished{AIF_0__0_0_A101_0, author = {Darn\'e, Jacques}, title = {Braids, inner automorphisms and the {Andreadakis} problem}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3662}, language = {en}, note = {Online first}, }
Darné, Jacques. Braids, inner automorphisms and the Andreadakis problem. Annales de l'Institut Fourier, Online first, 43 p.
[1] The Kashiwara-Vergne conjecture and Drinfeld’s associators, Ann. Math., Volume 175 (2008), pp. 415-463 | DOI | Zbl
[2] On the automorphisms of free groups and free nilpotent groups, Proc. Lond. Math. Soc., Volume 15 (1965), pp. 239-268 | DOI | MR | Zbl
[3] Theorie der Zöpfe, Abh. Math. Semin. Univ. Hamb., Volume 4 (1925) no. 1, pp. 47-72 | DOI | MR | Zbl
[4] Theory of braids, Ann. Math., Volume 48 (1947), pp. 101-126 | DOI | MR
[5] Subgroups, automorphisms, and Lie algebras related to the basis-conjugating automorphism group, Algebra Logika, Volume 55 (2016) no. 6, pp. 670-703 | DOI | MR
[6] Automorphisms of free groups. I—erratum [ MR3084710], New York J. Math., Volume 22 (2016), pp. 1135-1137 http://nyjm.albany.edu:8000/j/2016/22_1135.html | MR | Zbl
[7] The braid group of a necklace, Math. Z., Volume 283 (2016) no. 3-4, pp. 995-1010 | DOI | MR | Zbl
[8] Braids, links, and mapping class groups, Annals of Mathematics Studies, 82, Princeton University Press; University of Tokyo Press, 1974, ix+228 pages | MR
[9] On the algebraical braid group, Ann. Math., Volume 49 (1948), pp. 654-658 | DOI | MR | Zbl
[10] Basis-conjugating automorphisms of a free group and associated Lie algebras, Groups, homotopy and configuration spaces (Geometry and Topology Monographs), Volume 13, Geometry and Topology Publications, 2008, pp. 147-168 | DOI | MR | Zbl
[11] Milnor invariants of braids and welded braids up to homotopy (2019) (https://arxiv.org/abs/1904.10677)
[12] On the stable Andreadakis problem, J. Pure Appl. Algebra, Volume 223 (2019) no. 12, pp. 5484-5525 | DOI | MR | Zbl
[13] On the Andreadakis problem for subgroups of , Int. Math. Res. Not. (2021) no. 19, pp. 14720-14742 | DOI | MR | Zbl
[14] The lower central series of generalized pure braid groups, Geometry and topology (Athens, Ga., 1985) (Lecture Notes in Pure and Applied Mathematics), Volume 105, Marcel Dekker, 1987, pp. 103-108 | MR | Zbl
[15] The Kontsevich integral and Milnor’s invariants, Topology, Volume 39 (2000) no. 6, pp. 1253-1289 | DOI | MR | Zbl
[16] On a subgroup of McCool group (2019) (https://arxiv.org/abs/1902.10033)
[17] The Galois representation arising from and Tate twists of even degree, Galois groups over (1989) | DOI
[18] Sur quelques propriétés des groupes d’automorphismes d’un groupe abstrait. (Généralisation d’un theorème de M. Ph. Hall), C. R. Acad. Sci. Paris, Volume 231 (1950), pp. 400-402 | MR | Zbl
[19] Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math., Volume 82 (1985) no. 1, pp. 57-75 | DOI | MR | Zbl
[20] Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. Éc. Norm. Supér., Volume 71 (1954), pp. 101-190 | DOI | Numdam | MR | Zbl
[21] Über Automorphismen von Fundamentalgruppen berandeter Flächen, Math. Ann., Volume 109 (1934) no. 1, pp. 617-646 | DOI | MR | Zbl
[22] Free groups and finite-type invariants of pure braids, Math. Proc. Camb. Philos. Soc., Volume 132 (2002) no. 1, pp. 117-130 | DOI | MR | Zbl
[23] Homotopy invariants of links, Invent. Math., Volume 95 (1989) no. 2, pp. 379-394 | DOI | MR | Zbl
[24] On the Andreadakis conjecture restricted to the “lower-triangular” automorphism groups of free groups, J. Algebra Appl., Volume 16 (2017) no. 5, 1750099, 31 pages | DOI | MR | Zbl
[25] Lie algebras and Lie groups, Lecture Notes in Mathematics, 1500, Springer, 2006, viii+168 pages 1964 lectures given at Harvard University, Corrected fifth printing of the second (1992) edition | MR
Cited by Sources: