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JACOBIAN CURVE OF SINGULAR FOLIATIONS

by Nuria CORRAL (*)

Dedicated to Felipe Cano, with admiration and gratitude

Abstract. — Topological properties of the jacobian curve JF,G of two folia-
tions F and G are described in terms of invariants associated to the foliations. The
main result gives a decomposition of the jacobian curve JF,G which depends on
how similar are the foliations F and G. The similarity between foliations is codified
in terms of the Camacho–Sad indices of the foliations with the notion of collinear
point or divisor. Our approach allows to recover the results concerning the factor-
ization of the jacobian curve of two plane curves and of the polar curve of a curve
or a foliation.

Résumé. — Nous décrivons des propriétés topologiques de la courbe jacobienne
JF,G de deux feuilletages F et G en termes des invariants associés aux feuilletages.
Le resultat principal donne une décomposition de la courbe jacobienne JF,G qui
dépend de la similitude des feuilletages F et G. Cette similitude entre les feuilletages
est codifiée en termes des indices de Camacho–Sad des feuilletages avec la notion
de point ou diviseur colinéaire. Notre approche permet de récupérer les résultats
concernant la factorisation de la courbe jacobienne de deux courbes planes et de
la courbe polaire d’une courbe ou d’un feuilletage.

1. Introduction

Given two germs of holomorphic functions f, g ∈ C{x, y}, the Jacobian
determinant

J(f, g) = fxgy − fygx

defines a curve called the jacobian curve of f and g (see [8, 23] for instance).
The analytic type of the jacobian curve is an invariant of the analytic type
of the pair of curves f = 0 and g = 0 but its topological type is not
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a topological invariant of the pair of curves (see [24]). Properties of the
jacobian curve have been studied by several authors in terms of properties
of the curves f = 0 and g = 0 (see for instance [8, 20], and [14] when g is
a characteristic approximated root of f).

This notion can be studied in the more general context given by the
theory of singular foliations: given two germs of foliations F and G in
(C2, 0), defined by the 1-forms ω = 0 and η = 0, the jacobian curve JF,G
of F and G is the curve given by

ω ∧ η = 0.

Note that this is the curve of tangency between both foliations. It is easy
to show that the branches of JF,G are not separatrices of F or G provided
that the foliations F and G do not have common separatrices.

If the foliation G is non-singular, the jacobian curve JF,G coincides with
the polar curve of the foliation F . Properties of the equisingularity type of
polar curves of foliations have been studied in [9, 10, 12, 30]. Moreover, if
the foliation F is given by df = 0 with f ∈ C{x, y}, we recover the notion
of polar curve of a plane curve. The local study of these curves has also
been widely treated by many authors (see for instance [7, 13, 21, 25] or the
recent works [2, 18]).

Moreover, the use of polar curves of foliations allowed to describe proper-
ties of foliations. In [6], the study of intersection properties of polar curves
of foliations permitted to characterize generalized curve foliations as well
as second type foliations; an expression of the GSV-index can also be given
in terms of these invariants (see also [15] for the dicritical case). There are
also some recent works that show the interest of jacobian curves or polar
curves of foliations in the study of analytic invariants of curves (see for
instance [16]) or singular foliations (see [26]).

The aim of this paper is to describe properties of the equisingularity type
of JF,G in terms of invariants associated to the foliations F and G. Note
that, in general, the locus JF,G cannot be described from the data of F and
G. It is enough to consider the non-singular foliations F given by dx = 0
and G defined by dx + h(x, y) dy = 0, hence the jacobian curve JF,G is
defined by h(x, y) = 0.

To illustrate the kind of conditions we are going to ask to the foliations
and the type of results that we can obtain, let us explain the relationship
between the multiplicity at the origin of the jacobian curve ν0(JF,G) and
the multiplicities of the foliations F and G. If the 1-forms ω and η defining
F and G are given by ω = A(x, y) dx + B(x, y) dy and η = P (x, y) dx +
Q(x, y) dy respectively, the jacobian curve JF,G is defined by J(x, y) = 0

ANNALES DE L’INSTITUT FOURIER



JACOBIAN CURVE OF SINGULAR FOLIATIONS 3

where

(1.1) J(x, y) =
∣∣∣∣A(x, y) B(x, y)
P (x, y) Q(x, y)

∣∣∣∣ .
Thus the multiplicity at the origin ν0(JF,G) of the jacobian curve satisfies

(1.2) ν0(JF,G) ⩾ ν0(F) + ν0(G)

where ν0(F), ν0(G) denote the multiplicity at the origin of the foliations
F and G respectively. One of the first results describing the properties of
the jacobian curve shows that equality in (1.2) holds, that is,

ν0(JF,G) = ν0(F) + ν0(G)

provided that the foliations F and G have different Camacho–Sad index at
any singular point in the exceptional divisor E1 obtained after one blow-up
(see Lemma 2.3).

The main result in this paper, Theorem 6.4, gives a factorization of the
jacobian curve JF,G of two generalized curve foliations F and G in terms
of invariants given by the dual graph of the common minimal reduction of
singularities of F and G. This result gives a decomposition of the jacobian
curve JF,G in two classes of components: one for which we can control some
properties of the topology from the data of F and G and another one for
which such a control is impossible. The properties of the components in that
decomposition depend on how “similar” are the foliations F and G in terms
of its singularities and Camacho–Sad indices at the common singularities.
We introduce the notion of collinear point and collinear divisor to measure
this similarity between the foliations (see Section 4 where properties of
collinear and non-collinear divisors are given).

The strategy used to prove the decomposition result is to study first
the case when the foliations F and G have separatrices with non-singular
irreducible components (Section 5). In this case, thanks to the hypothesis
over the separatrices, we can compute “by hand” the infinitely near points
of the jacobian curve under certain hypothesis over the foliations related
with the notion of collinearity (a key point is Lemma 4.13 relating the
weighted initial part of the 1-forms defining the foliations F and G and
the one of the equation of the jacobian curve). In these computations,
we use the existence of logarithmic models for generalized curve foliations
(proved in [9]) and the properties shared by a foliation and its logarithmic
model. Moreover, we describe the relationship between the jacobian curve
of two foliations and the one of its logarithmic models (see Lemmas 4.14
and 4.16). These results will allow us to do some computations for the
jacobian curve of two logarithmic foliations (see Theorem 5.2) and thus

TOME 0 (0), FASCICULE 0



4 Nuria CORRAL

we get it for the jacobian curve of any non-dicritical generalized curve
foliations.

Then we use a ramification ρ : (C2, 0) → (C2, 0) to reduce the general
case to the previous one (Section 6). This strategy works since we can
prove that the curves ρ−1JF,G and Jρ∗F,ρ∗G “share” the same infinitely
near points in the common reduction of singularities of ρ∗F and ρ∗G (see
Lemma 6.1). Thus the results obtained in Section 5 can be used to describe
properties of ρ−1JF,G and hence, recover properties of the curve JF,G since
the equisingularity data of a curve can be recovered from the one obtained
after ramification (see [10]). We include an appendix (Appendix A) devoted
to explain all the details concerning the ramification process.

Section 2 is devoted to introduce notations and local invariants of curves
and foliations which will be used throughout the paper. In Section 3 we re-
call the notion of logarithmic model (introduced in [9]) and some properties
of logarithmic foliations.

In the last part of the article (Section 7) we show the role that the
Camacho–Sad indices play to explain some behaviours of jacobian curves
of plane curves. In particular, we show how our results imply the re-
sults of T.-C. Kuo and A. Parusiński concerning jacobian curves of plane
curves [20], the results of E. García Barroso and J. Gwoździewicz about
the jacobian curve of a plane curve and its approximate roots [14] and
also previous results about polar curves of foliations (given in [9, 30]).
All these results can be consider as particular cases of the results in this
paper.

The article finishes with two appendices. The first one contains results
concerning ramification. The second one is devoted to prove some formulas
which describe the multiplicity of intersection of the jacobian curve with
the separatrices of the foliations F and G in terms of the local invariants
associated to F and G. These formulas generalize some properties of polar
curves of a foliation given in [6, 9] which were key in the proof of the
characterization of generalized curve foliations and second type foliations
given in [6].
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2. Local invariants

2.1. Foliations

Let F be the space of singular foliations in (C2, 0). An element F ∈ F
is defined by a 1-form ω = 0, with ω = A(x, y) dx + B(x, y) dy, or by the
vector field v = −B(x, y)∂/∂x + A(x, y)∂/∂y where A,B ∈ C{x, y} are
relatively prime. The origin is a singular point if A(0) = B(0) = 0. The
multiplicity ν0(F) of F at the origin is the minimum of the orders ν0(A),
ν0(B) at the origin. Thus, the origin is a singular point of F if ν0(F) ⩾ 1.

Consider a germ of irreducible analytic curve S at (C2, 0). We say that S
is a separatrix of F at the origin if S is an invariant curve of the foliation
F . Therefore, if f = 0 is a reduced equation of S, we have that f divides
ω ∧ df .

Let us now recall the desingularization process of a foliation. We say that
the origin is a simple singularity of F if there are local coordinates (x, y)
in (C2, 0) such that F is given by a 1-form of the type

λy dx− µxdy + h.o.t

with µ ̸= 0 and λ/µ ̸∈ Q>0. If λ = 0, the singularity is called a saddle-
node. There are two formal invariant curves Γx and Γy which are tangent
to x = 0 and y = 0 respectively, and such that they are both convergent in
the case that λµ ̸= 0. In the saddle-node situation with λ = 0 and µ ̸= 0,
we say that the saddle-node is well oriented with respect to the curve Γy.

Let π1 : X1 → (C2, 0) be the blow-up of the origin with E1 = π−1
1 (0) the

exceptional divisor. We say that the blow-up π1 (or the exceptional divisor
E1) is non-dicritical if E1 is invariant by the strict transform π∗

1F of F ;
otherwise, the exceptional divisor E1 is generically transversal to π∗

1F and
we say that the blow-up π1 (or the divisor E1) is dicritical.

A reduction of singularities of F is a morphism π : X → (C2, 0), composi-
tion of a finite number of punctual blow-ups, such that the strict transform
π∗F of F verifies that

• each irreducible component of the exceptional divisor π−1(0) is ei-
ther invariant by π∗F or transversal to π∗F ;

• all the singular points of π∗F are simple and do not belong to a
dicritical component of the exceptional divisor.

There exists a reduction of singularities as a consequence of Seidenberg’s
Desingularization Theorem [32]. Moreover, there is a minimal morphism π

such that any other reduction of singularities of F factorizes through the
minimal one. The centers of the blow-ups of a reduction of singularities of

TOME 0 (0), FASCICULE 0
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F are called infinitely near points of F . If all the irreducible components
of the exceptional divisor are invariant by π∗F , we say that the foliation
F is non-dicritical; otherwise, F is called a dicritical foliation.

A non-dicritical foliation F is called a generalized curve foliation if there
are not saddle-node singularities in the reduction of singularities (see [3]).
We will denote G the space of non-dicritical generalized curve foliations in
(C2, 0). The foliation F is of second type if all saddle-nodes of π∗F are well
oriented with respect to the exceptional divisor E = π−1(0) (see [22]).

In order to describe properties of generalized curve foliations and second
type foliations, let us recall some local invariants used in the local study
of foliations in dimension two (see for instance [5]). The Milnor number
µ0(F) is given by

µ0(F) = dimC
C{x, y}
(A,B) = (A,B)0,

where (A,B)0 stands for the intersection multiplicity. Note that, if the
foliation is defined by df = 0, the Milnor number of the foliation coincides
with the one of the curve given by f = 0. Given an irreducible curve S and a
primitive parametrization γ : (C, 0)→ (C2, 0) of S with γ(t) = (x(t), y(t)),
we have that S is a separatrix of F if and only if γ∗ω = 0. In this case, the
Milnor number µ0(F , S) of F along S is given by

(2.1) µ0(F , S) =
{

ordt(B(γ(t)))− ordt(x(t)) + 1 if x(t) ̸= 0,
ordt(A(γ(t)))− ordt(y(t)) + 1 if y(t) ̸= 0,

(this number is also called multiplicity of v along S, see [3, p. 152-153]). If
S is not a separatrix, we define the tangency order τ0(F , S) by

(2.2) τ0(F , S) = ordt(α(t))

where γ∗ω = α(t) dt. If S = (y = 0) is a non-singular invariant curve of
the foliation F , the Camacho–Sad index of F relative to S at the origin is
given by

(2.3) I0(F , S) = −Res0
a(x, 0)
b(x, 0)

where the 1-form defining F is written as ya(x, y) dx+ b(x, y) dy (see [4]).
Next result summarizes some of the properties of second type and gen-

eralized curve foliations that we will use throughout the text:

Theorem 2.1 ([3, 6, 22]). — Let F be a non-dicritical foliation and
consider Gf the foliation defined by df = 0 where f is a reduced equation
of the curve SF of separatrices of F . Let π : X → (C2, 0) be the minimal
reduction of singularities of F .

ANNALES DE L’INSTITUT FOURIER



JACOBIAN CURVE OF SINGULAR FOLIATIONS 7

(i) π is a reduction of singularities of SF . Moreover, π is the minimal
reduction of singularities of the curve SF if and only if F is of
second type;

(ii) ν0(F) ⩾ ν0(Gf ) and the equality holds if and only if F is of second
type;

(iii) µ0(F) ⩾ µ0(Gf ) and the equality holds if and only if F is a gene-
ralized curve foliation;

(iv) if S is an irreducible curve which is not a separatrix of F , then
τ0(F , S) ⩾ τ0(Gf , S) and the equality holds if and only if F is of
second type.

Recall that for the hamiltonian foliation Gf we have that ν0(Gf ) =
ν0(SF )− 1, µ0(Gf ) = µ0(SF ) and τ0(Gf , S) = (SF , S)0− 1 where ν0(SF ) is
the multiplicity of the curve SF at the origin, µ0(SF ) is the Milnor number
of the curve SF and (SF , S)0 denotes the intersection multiplicity of the
curves SF and S at the origin.

Notation. — Given a plane curve C in (C2, 0), we denote by FC the sub-
space of F composed by the foliations having C as curve of separatrices and
GC the foliations of FC which are generalized curve foliations.

Moreover, for generalized curve foliations we have that

Lemma 2.2 ([11]). — Assume that F is a non-dicritical generalized
curve foliation. Let π : (X,P ) → (C2, 0) be a morphism composition of
a finite number of punctual blow-ups and take an irreducible component E
of the exceptional divisor π−1(0) with P ∈ E. Then, the strict transforms
π∗F and π∗Gf satisfy that

(i) νP (π∗F) = νP (π∗Gf );
(ii) µP (π∗F , E) = µP (π∗Gf , E).

where f = 0 is a reduced equation of the curve SF of separatrices of F .

2.2. Weighted initial forms and Jacobian curves.

Fix coordinates (x, y) in (C2, 0). Given a 1-form ω, we can write ω =∑
i,j ωij where ωij = Aijx

i−1yj dx + Bijx
iyj−1 dy. We denote ∆(ω) =

∆(ω;x, y) = {(i, j) : ωij ̸= 0} and the Newton polygon N (F ;x, y) =
N (F) = N (ω) is given by the convex envelop of ∆(ω) + (R⩾0)2.

Given a rational number α ∈ Q, we define the initial form of ω with
weight α

Inα(ω;x, y) =
∑

i+αj=k

ωij

TOME 0 (0), FASCICULE 0
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where i + αj = k is the equation of the first line of slope −1/α which
intersects the Newton polygon N (F) in the coordinates (x, y). Note that
k = ν(1,α)(ω) where ν(1,α)(ω) = min{i+ αj : ωij ̸= 0} is the (1, α)-degree
of ω. Hence, we have that the multiplicity ν0(F) = ν(1,1)(ω).

In a similar way, given any function f =
∑

ij fijx
iyj ∈ C{x, y}, we

denote ∆(f) = ∆(f ;x, y) = {(i, j) : fij ̸= 0} and the Newton polygon
N (C;x, y) = N (C) of the curve C = (f = 0) is the convex envelop of
∆(f) + (R⩾0)2. Note that N (C;x, y) = N (df ;x, y) and N (F) = N (C) if
F ∈ GC . Thus, we can define the initial form Inα(f ;x, y) =

∑
(i,j)∈L fijx

iyj

where L is the first line of slope −1/α which intersects N (C). Note that,
if f = 0 is an equation of the curve C, then In1(f ;x, y) gives an equation
of the tangent cone of C, and hence In1(f ;x, y) =

∑
i+j=ν0(C) fijx

iyj .
With these notations we can state the first result which illustrates the

type of conditions we are going to ask the foliations F and G in order to
be able to describe properties of the jacobian curve JF,G .

Lemma 2.3. — Let F and G be two foliations in (C2, 0) and consider
JF,G its jacobian curve. Let π1 : X1 → (C2, 0) be the blow-up of the origin
and E1 = π−1

1 (0) be the exceptional divisor. If there is a point R ∈ E1 such
that the Camacho–Sad indices verify that IR(π∗

1F , E1) ̸= IR(π∗
1G, E1),

then
ν0(JF,G) = ν0(F) + ν0(G).

Proof. — Take (x, y) coordinates such that x = 0 is not tangent to the
foliations F and G and let (x1, y1) be coordinates in the first chart of the
blow-up such that π1(x1, y1) = (x1, x1y1) and E1 = (x1 = 0). Assume that
ν0(JF,G) > ν0(F) + ν0(G), then In1(ω) ∧ In1(η) ≡ 0. Thus, if write

In1(ω) = Aν0(F)(x, y) dx+Bν0(F)(x, y) dy
In1(η) = Pν0(G)(x, y) dx+Qν0(G)(x, y) dy

then we have that

(2.4) Aν0(F)(x, y)Qν0(G)(x, y)−Bν0(F)(x, y)Pν0(G)(x, y) ≡ 0.

The computation of the Camacho–Sad index at a point R given by (0, c)
in the coordinates (x1, y1) gives

IR(π∗
1F , E1) = −Resy=c

Bν0(F)(1, y)
Aν0(F)(1, y) + yBν0(F)(1, y)

IR(π∗
1G, E1) = −Resy=c

Qν0(G)(1, y)
Pν0(G)(1, y) + yQν0(G)(1, y)

ANNALES DE L’INSTITUT FOURIER
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The equality in (2.4), implies

IR(π∗
1F , E1) = IR(π∗

1G, E1)

for any point R in E1. This gives a contradiction with the hypothesis over
the foliations F and G. □

The condition over the Camacho–Sad indices of the foliations in the
previous lemma is related with the notion of collinear point that will be
introduced in Section 4.

2.3. Equisingularity data and dual graph of plane curves

In this subsection we will fix some notations concerning the equisingu-
larity data of a plane curve C =

⋃r
i=1 Ci in (C2, 0) (see Appendix A.1

for more details). Given an irreducible component Ci of C, we will de-
note ni = ν0(Ci) the multiplicity of Ci at the origin, {βi

0, β
i
1, . . . , β

i
gi
} the

characteristic exponents of Ci and {(mi
l, n

i
l)}

gi

l=1 the Puiseux pairs of Ci.
Let us denote πC : XC → (C2, 0) the minimal reduction of singularities

of the curve C. The dual graph G(C) is constructed as follows: each irre-
ducible component E of the exceptional divisor π−1

C (0) is represented by a
vertex which we also call E (we identify a divisor and its associated vertex
in the dual graph). Two vertices are joined by an edge if and only if the as-
sociated divisors intersect. Each irreducible component of C is represented
by an arrow joined to the only divisor which meets the strict transform
of C by πC . We can give a weight to each vertex E of G(C) equal to the
self-intersection of the divisor E ⊂ XC and this weighted dual graph is
equivalent to the equisingularity data of C.

If we denote by E1 the irreducible component of π−1
C (0) corresponding to

the divisor obtained by the blow-up of the origin, we can give an orientation
to the graph G(C) beginning from the first divisor E1. The geodesic of a
divisor E is the path which joins the first divisor E1 with the divisor E.
The geodesic of a curve is the geodesic of the divisor that meets the strict
transform of the curve. Thus, there is a partial order in the set of vertices
of G(C) given by E < E′ if and only if the geodesic of E′ goes through E.
A maximal divisor in G(C) will be a maximal element in the set of vertices
of G(C) with this partial order. Given a divisor E of G(C), we denote by
IE the set of indices i ∈ {1, 2, . . . , r} such that E belongs to the geodesic
of the curve Ci.

Given a vertex E of G(C), we define the number bC
E in the following way:

bC
E + 1 is the valence of E if E ̸= E1 and bC

E1 is the valence of E1 in G(C)

TOME 0 (0), FASCICULE 0



10 Nuria CORRAL

(recall that the valence of a divisor E in G(C) is the number of arrows and
edges attached to E in G(C)). Given a divisor E of G(C), we say that E
is a bifurcation divisor of G(C) if bC

E ⩾ 2 and a terminal divisor of G(C)
if bC

E = 0. A dead arc is a path which joins a bifurcation divisor with a
terminal one without going through other bifurcation divisor. We denote
by B(C) the set of bifurcation divisors of G(C). If there is no confusion
with the curve C we are working with, we will denote bE = bC

E for any
divisor E in G(C).

Given an irreducible component E of π−1
C (0), we denote by πE : XE →

(C2, 0) the morphism reduction of πC to E (see [10]), that is, the morphism
which verifies that

• the morphism πC factorizes as πC = πE ◦ π′
E where πE and π′

E are
composition of punctual blow-ups;

• the divisor E is the strict transform by π′
E of an irreducible com-

ponent Ered of π−1
E (0) and Ered ⊂ XE is the only component of

π−1
E (0) with self-intersection equal to −1.

We will denote by π∗
EC the strict transform of C by the morphism πE . The

points π∗
EC ∩ Ered are called infinitely near points of C in E.

Remark 2.4. — If C is a curve with only non-singular irreducible com-
ponents and E is an irreducible component of π−1

C (0), then the number of
infinitely near points of π∗

EC in Ered is equal to bE . That is, the cardinal
of the set π∗

EC ∩ Ered coincides with bE .

3. Logarithmic foliations

Consider a germ of plane curve C =
⋃r

i=1 Ci in (C2, 0). Take f ∈ C{x, y}
such that C = (f = 0) and let us write f = f1 · · · fr with fi ∈ C{x, y}
irreducible. Given λ = (λ1, . . . , λr) ∈ Cr, we can consider the logarithmic
foliation LC

λ defined by

(3.1) f1 · · · fr

r∑
i=1

λi
dfi

fi
= 0.

The logarithmic foliation LC
λ belongs to GC provided that λ avoids certain

rational resonances. Each generalized curve foliation F ∈ GC has a logarith-
mic model LC

λ , that is, a logarithmic foliation such that the Camacho–Sad
indices of F and LC

λ coincide along the reduction of singularities (see [9]);
note that F and LC

λ have the same separatrices and the same minimal
reduction of singularities. Moreover, the logarithmic model of F is unique

ANNALES DE L’INSTITUT FOURIER



JACOBIAN CURVE OF SINGULAR FOLIATIONS 11

once a reduced equation of the separatrices is fixed. Thus, for each foliation
F ∈ GC , we denote by λ(F) the exponent vector of the logarithmic model
of F and we denote GC,λ the set of foliations F ∈ GC such that λ(F) = λ.
A particular case of logarithmic foliation is the “hamiltonian” foliation de-
fined by df = 0 which corresponds to λ = (1, . . . , 1); this foliation coincides
with the foliation Gf used in Section 2.

Let us fix some notations concerning logarithmic foliations that will be
used in the sequel. Assume that the curve C =

⋃r
i=1 Ci has only non-

singular irreducible components and consider a non-dicritical logarithmic
foliation LC

λ given by (3.1). Let πC : XC → (C2, 0) be the minimal re-
duction of singularities of C, take E an irreducible component of π−1

C (0)
and consider πE : XE → (C2, 0) the morphism reduction of πC to E (see
Subsection 2.3). Given an irreducible component Cj of C and a divisor F
of π−1

C (0), we denote εCj

F = 1 if the geodesic of Cj contains the divisor F
and ε

Cj

F = 0 otherwise, that is,

ε
Cj

F =
{

1, if j ∈ IF ,

0, if j ̸∈ IF .

The residue of the logarithmic foliation LC
λ along the divisor E is given by

(3.2) κE(LC
λ ) =

r∑
j=1

λj

∑
E′⩽E

ε
Cj

E′ ,

where E′ ⩽ E means all divisors in G(C) which are in the geodesic of E
(including E itself). Note that κE(LC

λ ) =
∑r

j=1 λjm
Cj

E where mCj

E is the
multiplicity of fj ◦ πE along the divisor E (see [27, 28]).

Let {RE
1 , R

E
2 , . . . , R

E
bE
} be the set of points π∗

EC ∩Ered where we denote
bE = bC

E and put IC
RE

l

= {i ∈ {1, . . . , r} : π∗
ECi ∩ Ered = {RE

l }} for
l = 1, 2, . . . , bE , that is, i ∈ IC

RE
l

if E belongs to the geodesic of the curve
Ci in G(C) and RE

i is an infinitely near point of Ci. With the notations
introduced in Subsection 2.3, we have that IE =

⋃bE

l=1 I
C
RE

l

.
An easy computation shows that the Camacho–Sad index of π∗

ELC
λ rel-

ative to Ered at a point RE
l is given by

(3.3) IRE
l

(π∗
ELC

λ , Ered) = −

∑
i∈IC

RE
l

λi

κE(LC
λ )

(see [9, Section 4]).
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In Appendix A we include a subsection where we explain the behaviour of
the above invariants associated to logarithmic foliations after ramification
(see Subsection A.3).

4. Collinear and non-collinear points and divisors

In this section we will introduce some notations and definitions in order
to describe properties of the jacobian curve that will be given in Section 5.

Let C and D be two plane curves in (C2, 0) without common branches
and assume that the curve Z = C ∪ D has only non-singular irreducible
components. Take now F ∈ GC and G ∈ GD and let πZ : XZ → (C2, 0) be
the minimal reduction of singularities of Z which gives a common reduction
of singularities of F and G. Recall that, given an irreducible component E
of π−1

Z (0), we denote by πE : XE → (C2, 0) the morphism reduction of πZ

to E (see Section 2.3).

Remark 4.1. — With the above assumptions about Z, if v(E) = p (see
Appendix A.1), then the morphism πE is a composition of p punctual blow-
ups

(C2, 0) σ1←− (X1, P1) σ2←− · · · σp−1←− (Xp−1, Pp−1) σp←− Xp = XE .

Moreover, if (x, y) are coordinates in (C2, 0), there is a change of coordinates
(x, y) = (x, y + εE(x)), with εE(x) = a1x + · · · + ap−1x

p−1, such that
the blow-up σj is given by xj−1 = xj , yj−1 = xjyj , for j = 1, 2, . . . , p,
where (xj , yj) are coordinates centered at Pj and (x0, y0) = (x, y). We
say that (x, y) are coordinates in (C2, 0) adapted to E. Note that in these
coordinates, if (xp, yp) are coordinates in the first chart of Ered we have
that πE(xp, yp) = (xp, x

p
pyp) and Ered = (xp = 0).

In this section, we will denote bE = bZ
E . Let {RE

1 , R
E
2 , . . . , R

E
bE
} be the

infinitely near points of Z in E, that is, π∗
EZ ∩Ered = {RE

1 , R
E
2 , . . . , R

E
bE
}.

Note that these points are the union of the singular points of π∗
EF and

π∗
EG in the first chart of Ered (the singular points of the foliations which

do not correspond to a corner of the divisor). We denote

∆F,G
E (RE

i ) = IRE
i

(π∗
EG, Ered)− IRE

i
(π∗

EF , Ered)

where IRE
i

(π∗
EF , Ered) is the Camacho–Sad index of π∗

EF relative to Ered

at the point RE
i (see definition given in (2.3)). We will denote ∆E(RE

i ) =
∆F,G

E (RE
i ) if it is clear the foliations F and G we are working with.

In view of the notations given in [19, 20] for curves, we introduce the
following definitions for foliations:
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Definition 4.2. — We say that an infinitely near point RE
l of Z is a

collinear point for the foliations F and G in E if ∆E(RE
l ) = 0; otherwise

we say that RE
l is a non-collinear point.

We say that a divisor E is collinear (for the foliations F and G) if
∆E(RE

l ) = 0 for all l = 1, . . . , bE ; otherwise E is called a non-collinear
divisor. A divisor E is called purely non-collinear if ∆E(RE

l ) ̸= 0 for each
l = 1, . . . , bE .

We denote by Col(E) the set of collinear points of E and by NCol(E)
the set of non-collinear points (for the foliations F and G). It is clear that
Col(E) ∪NCol(E) = {RE

1 , R
E
2 , . . . , R

E
bE
}.

Remark 4.3. — Note that if E is a maximal bifurcation divisor (with
the partial order in G(C) given in Subsection 2.3), then E is purely non-
collinear. This follows from the fact that, if E is a maximal bifurcation
divisor, then each infinitely near point RE

l of Z in E is in the geodesic of
only one irreducible component of Z and hence it is a singular point for
only one of the foliations π∗

EF or π∗
EG. Moreover, it is a simple singularity.

In fact, we have that

∆E(RE
l ) =

{
−IRE

l
(π∗

EF , Ered), if RE
l ∈ π∗

EC ∩ E,
IRE

l
(π∗

EG, Ered), if RE
l ∈ π∗

ED ∩ E.

If RE
l ∈ π∗

EC ∩ E, we have that IRE
l

(π∗
EF , Ered) ̸= 0 since F is a general-

ized curve foliation and RE
l is a simple singularity of π∗

EF (similarly when
RE

l ∈ π∗
ED ∩ E). Consequently, ∆E(RE

l ) ̸= 0 for each l = 1, . . . , bE .

Although the definition of ∆E(RE
l ) seems different to the one given by

Kuo and Parusiński in [19, 20], we will show in Subsection 7.1 that both
definitions coincide in the case of curves.

Take coordinates (xp, yp) in the first chart of Ered such that πE(xp, yp) =
(xp, x

p
pyp), Ered = (xp = 0) and assume that RE

l = (0, cE
l ), l = 1, 2, . . . , bE ,

in these coordinates. We define the rational function ME(z) = MF,G
E (z)

associated to the divisor E for the foliations F and G by

(4.1) ME(z) =
bE∑
l=1

∆E(RE
l )

z − cE
l

.

Remark 4.4. — Note that although ∆F,G
E (RE

l ) and MF,G
E (z) depend on

the foliations F and G, we have that

∆F,G
E (RE

l ) = ∆LC
λ ,LD

µ

E (RE
l ); MF,G

E (z) =MLC
λ ,LD

µ

E (z)

provided that F ∈ GC,λ and G ∈ GD,µ.

TOME 0 (0), FASCICULE 0



14 Nuria CORRAL

Remark 4.5. — Observe that if E is a non-collinear divisor, then
ME(z) ̸≡ 0.

Let M(E) = {QE
1 , . . . , Q

E
sE
} be the set of points of Ered given by QE

l =
(0, ql) in coordinates (xp, yp) where {q1, . . . , qsE

} is the set of zeros of
ME(z). We denote by tQE

l
the multiplicity of ql as a zero of ME(z) and

t(E) =
∑sE

l=1 tQE
l

the degree of the numerator of the rational function
ME(z). We put tP = 0 for any P ∈ E ∖M(E). Note that it can happen
that M(E) = ∅ (see Example in [20, p. 584]).

Lemma 4.6. — If NCol(E) ̸= ∅, that is, E is a non-collinear divisor,
then we have that

(4.2) NCol(E)∩M(E) = ∅ and ♯NCol(E)⩾ 1+
∑

P ∈M(E)

tP = 1+t(E).

Moreover, if
∑

RE
l

∈NCol(E) ∆E(RE
l ) ̸= 0, then we have that

♯NCol(E) = 1 +
∑

P ∈M(E)

tP .

Proof. — With the notations above, we can write ME(z) as follows

ME(z) =
∑

RE
l

∈NCol(E)

∆E(RE
l )

z − cE
l

.

Thus, the set of zeros of ME(z) is given by the roots of the polynomial

(4.3)
∑

RE
l

∈NCol(E)

∆E(RE
l )

∏
j with j ̸=l

RE
j ∈NCol(E)

(z − cE
j ).

Consequently, if z = cE
l0

is a zero of ME(z), then

∆E(RE
l0

)
∏

RE
j ∈NCol(E)

j ̸=l0

(cE
l0
− cE

j ) = 0

which implies that ∆E(RE
l0

) = 0 and hence RE
l0
̸∈ NCol(E). Moreover, the

degree of the polynomial given in (4.3) is ⩽ ♯NCol(E)− 1; the equality is
attained when

∑
RE

l
∈NCol(E) ∆E(RE

l ) ̸= 0. Thus we have the statements of
the lemma. □

Remark 4.7. — Observe that we can have that
∑

RE
l

∈NCol(E) ∆E(RE
l ) =

0 even if E is a purely non-collinear divisor. This can happen for instance
when E = E1 is a bifurcation divisor since in this situation∑bE

i=1 IRE
i

(π∗
EF , Ered) =

∑bE

i=1 IRE
i

(π∗
EG, Ered) = −1 and this implies∑

RE
l

∈NCol(E) ∆E(RE
l ) = 0 (see also Remark 4.11 and Corollary 4.12).
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Remark 4.8. — Note that it can happen that Col(E)∩M(E) ̸= ∅. With
the notations of Section 3, consider the foliations F = LC

λ and G = LD
µ

where

C = (f = 0), f(x, y) = (y− x)(y+ x2)(y− x2)(y+ 2x2), λ = (1, 1, 1, 3)

D = (g = 0), g(x, y) = (y + x)(y + x2 + x3)(y − x2 + x3), µ = (3, 3, 1).
Take Z = C ∪ D. Consider the morphism σ = π1 ◦ π2 where π1 : X1 →
(C2, 0) is the blow-up of the origin, E1 = π−1

1 (0) and π2 : X2 → (X1, P1)
is the blow-up of the origin P1 of the first chart of E1 and E2 = π−1

2 (P1).
Taking coordinates (x2, y2) in the first chart of E2 such that σ(x2, y2) =
(x2, x

2
2y2) we have that σ∗Z ∩E2 = {RE2

1 , RE2
2 , RE2

3 } where RE2
1 = (0,−1),

RE2
2 = (0, 1) and RE2

3 = (0,−2). A simple computation shows that

∆E(RE2
1 ) = − 2

11 ; ∆E(RE2
2 ) = 0; ∆E(RE2

3 ) = 3
11 .

Thus Col(E2) = {RE2
2 } and NCol(E2) = {RE2

1 , RE2
3 }. Moreover, we have

that
ME2(z) = − 2

11
1

(z + 1) + 3
11

1
(z + 2) = z − 1

11(z + 2)(z + 1)
which implies that M(E2) = {RE2

2 }.

Given a non-collinear divisor E and a point P ∈ Ered, we define

(4.4) τE(P ) =


tP , if P ∈M(E),
−1, if P ∈ NCol(E),
0, otherwise.

Note that
∑

P ∈Ered
τE(P ) = t(E) − ♯NCol(E) which is a negative integer

(it is the degree of the rational function ME(z)).

4.1. Collinear and non-collinear infinitely near points

Let us explain now the behaviour of collinear (resp. non-collinear) infini-
tely near points by blowing-up. Recall that here we denote bE = bZ

E for any
divisor E in G(Z).

Lemma 4.9. — Let E and E′ be two consecutive divisors in G(Z) with
E < E′ and bE′ = 1. We can write πE′ = πE◦σ where σ : XE′ → (XE , P ) is
the blow-up with center at a point P ∈ Ered. LetQ be the point π∗

E′Z∩E′
red.

If P is a collinear point (resp. a non-collinear point) for the foliations F
and G in E, then Q is a collinear point (resp. non-collinear point) for E′.
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Proof. — Let us denote by Ẽred the strict transform of Ered by σ and
P̃ = Ẽred ∩E′

red. Given any singular foliation F , the Camacho–Sad indices
verify the following equalities (see [4])

IP̃ (π∗
E′F , Ẽred) = IP (π∗

EF , Ered)− 1
IP̃ (π∗

E′F , E′
red) + IQ(π∗

E′F , E′
red) = −1.

Moreover, since F is a generalized curve foliation, then P̃ is a simple sin-
gularity for π∗

E′F and hence we have that

IP̃ (π∗
E′F , Ẽred) · IP̃ (π∗

E′F , E′
red) = 1.

Then the index IQ(π∗
E′F , E′

red) can be computed as

IQ(π∗
E′F , E′

red) = −1− 1
IP (π∗

EF , Ered)− 1 = − IP (π∗
EF , Ered)

IP (π∗
EF , Ered)− 1 .

Thus, using the expression above for the foliations F and G, we have that

∆E′(Q) =
∣∣∣∣1 IQ(π∗

E′F , E′
red)

1 IQ(π∗
E′G, E′

red)

∣∣∣∣
= ∆E(P )

(IP (π∗
EF , Ered)− 1)(IP (π∗

EG, Ered)− 1)
and then ∆E′(Q) = 0 if and only if ∆E(P ) = 0. This gives the result. □

Consider now E and E′ two consecutive bifurcation divisors in G(Z),
that is, there is a chain of consecutive divisors

E0 = E < E1 < · · · < Ek−1 < Ek = E′

with bEl
= 1 for l = 1, . . . , k − 1 and the morphism πE′ = πE ◦ σ where

σ : XE′ → (XE , P ) is a composition of k punctual blow-ups

(4.5) (XE , P ) σ1←− (XE1 , P1) σ2←− · · · σk−1←− (XEk−1 , Pk−1) σk←− XE′ .

If E and E′ are two consecutive bifurcation divisors as above, we say that
E′ arises from E at P and we denote E <P E′.

As a consequence of Lemma 4.9, we have that if P is a collinear point
(resp. a non-collinear point) for F and G relative to E, then Pl is a collinear
point (resp. non-collinear point) relative to El for l = 1, . . . , k−1. Moreover,
we have that

Corollary 4.10. — Let E be the first bifurcation divisor in G(Z). We
can write πE = σ1 ◦ σ2 ◦ · · · ◦ σk as a composition of k punctual blow-ups

(C2, 0) σ1←− (X1, P1) σ2←− · · · σk−1←− (Xk−1, Pk−1) σk←− Xk = XE .

We denote Ei = σ−1
i (Pi−1) with P0 = 0. Then all the divisors Ei, 1 ⩽ i ⩽

k − 1, are collinear.
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Proof. — Since bEl
= 1 for l = 1, . . . , k − 1, it is enough to prove that

P1 is a collinear point for F and G relative to E1 = E1. But this is a
consequence of the fact that IP1(σ∗

1F , E1,red) = IP1(σ∗
1G, E1,red) = −1.

Thus the result follows straightforward. □

Remark 4.11. — Note that, if E is the first bifurcation divisor, the prop-
erties of the Camacho–Sad index imply that

bE∑
l=1

∆E(RE
l ) = 0

where π∗
EZ ∩ Ered = {RE

1 , . . . , R
E
bE
}.

The above equality also holds in the following context:

Corollary 4.12. — Let E and E′ be two consecutive bifurcation di-
visors in G(Z) such that E′ arises from E at P . If P is a collinear point,
then

bE′∑
l=1

∆E′(RE′

l ) = 0

where π∗
E′Z ∩ E′

red = {RE′

1 , . . . , RE′

bE′}.

Proof. — As we have explained before we have that πE′ = πE ◦ σ where
σ : XE′ → (XE , P ) is a composition of k punctual blow-ups

(XE , P ) σ1←− (XE1 , P1) σ2←− · · · σk−1←− (XEk−1 , Pk−1) σk←− XE′ .

We denote Ei = σ−1
i (Pi−1) with P0 = P and we have that bEi

= 1
for i = 1, . . . , k − 1. Since P is a collinear point, then IP (π∗

EF , Ered) =
IP (π∗

EG, Ered) and the properties of the Camacho–Sad indices imply that
IPi

(π∗
Ei
F , Fi,red) = IPi

(π∗
Ei
G, Ei,red) for i = 1, . . . , k− 1. Consequently, we

have that
bE′∑
l=1
IRE′

l
(π∗

E′F , E′
red) =

bE′∑
l=1
IRE′

l
(π∗

E′G, E′
red)

which is equivalent to
∑bE′

l=1 ∆E′(RE′

l ) = 0. □

4.2. Weighted initial forms and non-collinear divisors

Let us introduce the following notation in order to describe the relation-
ship between the Newton polygon and the infinitely near points of a curve
(see Subsection 2.2 and also [10]). From now on we will always assume that
we choose coordinates (x, y) such that x = 0 is not tangent to the curve

TOME 0 (0), FASCICULE 0



18 Nuria CORRAL

Z = C ∪ D union of the separatrices of F and G. This will imply that
the first side of the Newton polygons N (F ;x, y) and N (G;x, y) has slope
greater or equal to −1.

Assume that Z is a curve with only non-singular irreducible components
and consider πZ : XZ → (C2, 0) its minimal reduction of singularities. Take
any divisor E of π−1

Z (0) with v(E) = p and consider πE : XE → (C2, 0)
the morphism reduction of πZ to E. With the notations introduced in
Remark 4.1, if (x, y) are coordinates adapted to E, the points π∗

EZ ∩Ered
are determined by Inp(h;x, y) where h = 0 is a reduced equation of the
curve Z. More precisely, if we take (xp, yp) coordinates in the first chart of
Ered with πE(xp, yp) = (xp, x

p
pyp) and Ered = (xp = 0), thus the points of

π∗
EZ∩Ered are given by xp = 0 and

∑
i+pj=k hijy

j
p = 0 where Inp(h;x, y) =∑

i+pj=k hijx
iyj .

We are interested in determine the points π∗
EJF,G ∩Ered, thus if v(E) =

p and (x, y) are coordinates adapted to E, we would like to determine
Inp(J ;x, y) where J(x, y) = 0 is an equation of the jacobian curve. Next
result proves that the initial form Inp(J ;x, y) is determined by the initial
forms Inp(ω), Inp(η) of the 1-forms defining the foliations F and G provided
that the divisor E is non-collinear.

Lemma 4.13. — Let E be an irreducible component of π−1
Z (0) with

v(E) = p and take (x, y) coordinates adapted to E. If E is a non-collinear
divisor, then

Inp(ω) ∧ Inp(η) ̸≡ 0,

where Inp(ω) = Inp(ω;x, y) and Inp(η) = Inp(η;x, y), and hence

Inp(J ;x, y) = Jp(x, y)

with Inp(ω) ∧ Inp(η) = Jp(x, y) dx ∧ dy.

Proof. — Take an irreducible component E of π−1
Z (0) with v(E) = p and

let (x, y) be coordinates adapted to E. Assume that Inp(ω) ∧ Inp(η) ≡ 0,
that is, if we write

Inp(ω) = AI(x, y) dx+BI(x, y) dy
Inp(η) = PI(x, y) dx+QI(x, y) dy

then

(4.6) AI(x, y)QI(x, y)−BI(x, y)PI(x, y) ≡ 0.

Note that (AI , BI) ̸≡ (0, 0) and (PI , QI) ̸≡ (0, 0).
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Take coordinates (xp, yp) in the first chart of Ered such that πE(xp, yp) =
(xp, x

p
pyp), Ered = (xp = 0) and assume that RE

l = (0, cE
l ), for l = 1, . . . , bE ,

in these coordinates where π∗
EZ ∩ Ered = {RE

1 , . . . , R
E
bE
}. Let ωE and ηE

be the strict transforms of ω and η by πE with

ωE = AE(xp, yp) dxp + xpB
E(xp, yp) dyp,

ηE = PE(xp, yp) dxp + xpQ
E(xp, yp) dyp.

From the definition of the Camacho–Sad index we have that

IRE
l

(π∗
EF , Ered) = −Resy=cE

l

BE(0, y)
AE(0, y) ,

IRE
l

(π∗
EG, Ered) = −Resy=cE

l

QE(0, y)
PE(0, y) .

Note thatAE(0, y) = AI(1, y)+pyBI(1, y),BE(0, y) = BI(1, y), PE(0, y) =
PI(1, y) + pyQI(1, y) and QE(0, y) = QI(1, y). Thus, the equality given
in (4.6) implies

BE(0, y)
AE(0, y) = QE(0, y)

PE(0, y)
and hence IRE

l
(π∗

EF , Ered) = IRE
l

(π∗
EG, Ered) for l = 1, . . . , bE , in contra-

diction with the fact that the divisor E is non-collinear. □

Observe that the result above is true for the first divisor E1 although the
curves C and D have singular irreducible components, and hence we have
that Lemma 2.3 can be obtained as a consequence of the previous result
since the conditions over the foliations F and G in Lemma 2.3 imply that
E1 is a non-collinear divisor.

Moreover, next result shows that given F , F̃ ∈ GC,λ and G, G̃ ∈ GD,µ,
we have that

Inp(JF,G ;x, y) = Inp(JF̃,G̃ ;x, y)

provided that E is a non-collinear divisor with v(E) = p, where (x, y) are
coordinates adapted to E and JF,G(x, y) = 0 and JF̃,G̃(x, y) = 0 are equa-
tions of the jacobian curves JF,G and JF̃,G̃ respectively. Given a foliation
F , we will denote by ωF a 1-form defining F and Inp(ωF ) = Inp(ωF ;x, y).
Thus we have the following result

Lemma 4.14. — Let E be an irreducible component of π−1(0) with
v(E) = p and assume that (x, y) are coordinates adapted to E. Consider
foliations F , F̃ ∈ GC,λ and G, G̃ ∈ GD,µ then

Inp(ωF ) = Inp(ωF̃ ); Inp(ωG) = Inp(ωG̃).
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Hence, if E is a non-collinear divisor, we have that

Inp(JF,G ;x, y) = Inp(JF̃,G̃ ;x, y).

Proof. — Let us prove that Inp(ωF ) = Inp(ωF̃ ). We can write

Inp(ωF ) = AF
I (x, y) dx+BF

I (x, y) dy

Inp(ωF̃ ) = AF̃
I (x, y) dx+BF̃

I (x, y) dy.

Take (xp, yp) coordinates in the first chart of Ered such that πE(xp, yp) =
(xp, x

p
pyp) and Ered = (xp = 0). Let ωE

F and ωE
F̃ be the strict transforms of

ωF and ωF̃ by πE with

ωE
F = AE

F (xp, yp) dxp + xpB
E
F (xp, yp) dyp,

ωE
F̃ = AE

F̃ (xp, yp) dxp + xpB
E
F̃ (xp, yp) dyp.

Recall that we have that

AE
F (0, y) = AF

I (1, y) + pyBF
I (1, y); BE

F (0, y) = BF
I (1, y)

AE
F̃ (0, y) = AF̃

I (1, y) + pyBF̃
I (1, y); BE

F̃ (0, y) = BF̃
I (1, y)

and that the Camacho–Sad indices coincide for F and F̃ , that is,

IP E
l

(π∗
EF , Ered) = IP E

l
(π∗

EF̃ , Ered), for l = 1, 2, . . . , k,

where π∗
EC ∩ Ered = {PE

1 , . . . , P
E
k }. Since C has only non-singular irre-

ducible components, if we write PE
l = (0, dE

l ) in coordinates (xp, yp) and
denote mC

l = νP E
l

(π∗
EC), we have that

AE
F (0, y) = AE

F̃ (0, y) =
k∏

l=1
(y − dE

l )mC
l

up to divide ωE
F and ωE

F̃ by a constant. Moreover, if we consider (xl, yl)
coordinates centered at PE

l with xl = xp and yl = yp − dE
l , the equality

of the Newton polygons N (π∗
EF ;xl, yl), N (π∗

EF̃ ;xl, yl) and N (π∗
EC;xl, yl)

implies

ordy=dE
l

(BE
F (0, y)) ⩾ mC

l − 1 ordy=dE
l

(BE
F̃ (0, y)) ⩾ mC

l − 1

(see [11, Lemma 1]) and we can write BE
F (0, y) =

∏k
l=1(y−dE

l )mC
l −1B̃E

F (y),
BE

F̃ (0, y) =
∏k

l=1(y − dE
l )mC

l −1B̃E
F̃ (y). Thus, from the definition of the
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Camacho–Sad index given in (2.3), we have that

IP E
l

(π∗
EF , Ered) = −Resy=dE

l

BE
F (0, y)

AE
F (0, y)

= −Resy=dE
l

B̃E
F (y)∏k

l=1(y − dE
l )
,

IP E
l

(π∗
EF̃ , Ered) = −Resy=dE

l

BE
F̃ (0, y)

AE
F̃ (0, y)

= −Resy=dE
l

B̃E
F̃ (y)∏k

l=1(y − dE
l )
.

The equality of the Camacho–Sad indices

IP E
l

(π∗
EF , Ered) = IP E

l
(π∗

EF̃ , Ered),

for l = 1, . . . , k, implies B̃E
F (y) = B̃E

F̃ (y) and hence Inp(ωF ) = Inp(ωF̃ ).
Finally, if E is a non-collinear divisor, the equality

Inp(JF,G ;x, y) = Inp(JF̃,G̃ ;x, y)

is a direct consequence of Lemma 4.13. □

Remark 4.15. — Note that x = 0 can be a branch of JF,G although x = 0
is not tangent to the curve Z. Let us consider the foliations F and G given
by ω = 0 and η = 0 with

ω = (xy − 6x2) dx+ (y2 − 6xy + 10x2) dy

η = −6x5 dx+ 3y2 dy.

Thus JF,G is given by J(x, y) = 0 with

J(x, y) = 3x(y3 − 6xy2 + 2x4y2 − 12x5y + 20x6).

In this example, if we consider the blow-up π1 : X1 → (C2, 0) of the origin,
the first divisor E1 is non-collinear. Thus the result of Lemma 4.13 above
holds: we have that In1(ω) = ω, In1(η) = 3y2 dy and hence In1(J) =
3xy2(y − 6x).

Note that the rational function ME1(z) is given by

ME1(z) = − z − 6
z(z − 1)(z − 2)(z − 3)

which determines the branch JE1

nc whose tangent cone is given by y−6x = 0
but we cannot determine the branch x = 0 of JF,G (see statement of
Theorem 5.8).

The strategy to prove the results about the jacobian curve is based on
the properties that share a foliation and its logarithmic model. Next lemma
will allow to follow this strategy.
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Lemma 4.16. — Consider foliations F ,LC
λ ∈ GC,λ and G,LD

µ ∈ GD,µ.
Let JF,G be the jacobian curve of F and G and Jλ,µ the jacobian curve
of LC

λ and LD
µ . Let E be an irreducible component of π−1

Z (0). If E is a
non-collinear divisor, we have that

π∗
EJF,G ∩ Ered = π∗

EJλ,µ ∩ Ered

and the multiplicities satisfy that

νP (π∗
EJF,G) = νP (π∗

EJλ,µ)

at each point P ∈ π∗
EJF,G ∩ Ered.

Proof. — Let E be an irreducible component of π−1
Z (0) with v(E) = p

and take (x, y) coordinates adapted to E. The result is a direct consequence
of the equality

Inp(JF,G ;x, y) = Inp(Jλ,µ;x, y)
given in Lemma 4.14 provided that E is a non-collinear divisor, where
jacobian curves JF,G , Jλ,µ are given by JF,G(x, y) = 0 and Jλ,µ(x, y) = 0
respectively. □

5. Properties of the jacobian curve

Let us consider two singular foliations F and G in (C2, 0) defined by
the 1-forms ω = 0 and η = 0 with ω = A(x, y) dx + B(x, y) dy and η =
P (x, y) dx + Q(x, y) dy. Recall that the jacobian curve JF,G is defined by
J(x, y) = 0 where

J(x, y) = A(x, y)Q(x, y)−B(x, y)P (x, y).

Next remark shows that the jacobian curve behaves well by a change of
coordinates.

Remark 5.1. — If F : (C2, 0) → (C2, 0) is a change of coordinates with
F = (F1, F2), the Jacobian curve of F ∗F and F ∗G is given by∣∣∣∣A ◦ F B ◦ F

P ◦ F Q ◦ F

∣∣∣∣ · ∣∣∣∣F1,x F1,y

F2,x F2,y

∣∣∣∣ = 0.

Thus, the curve JF ∗F,F ∗G is defined by J ◦ F = 0. Hence, JF ∗F,F ∗G =
F−1(JF,G).

In particular, we get that the analytic type of the jacobian curve of the
foliations F and G is an invariant of the analytic type of the pair of foliations
F and G.
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Assume that F ∈ GC,λ and G ∈ GD,µ where C =
⋃r

i=1 Ci and D =⋃s
i=1 Di are two plane curves in (C2, 0) without common irreducible com-

ponents. In this section, we will assume that the curve Z = C ∪D has only
non-singular irreducible components and we consider πZ : XZ → (C2, 0)
the minimal reduction of singularities of Z. Note that since Z has only
non-singular irreducible components, the centers of the blow-ups to obtain
πZ are all free infinitely near points of Z. The general case will be treated
in Section 6.

In Section 4 we have introduced all the notions we need to state the re-
sults concerning the properties of the jacobian curve. If we want to compute
the infinitely near points of the jacobian curve of two foliations, Lemma 4.16
will allow to do computations for the jacobian curve of two logarithmic fo-
liations and then get the result for the jacobian curve of two generalized
curve foliations. The first result gives the multiplicity of the jacobian curve
at a point in the reduction of singularities in terms of the multiplicities
of the curves C and D. In particular, we obtain that all infinitely near
points of the jacobian curve in the first chart of a divisor E of π−1

Z (0) are
either infinitely near points of Z or a point in M(E). Note that x = 0 can
be tangent to the jacobian curve although it is not tangent to Z and we
cannot control this with the rational function ME(z) (see Remark 4.15).
More precisely, given a divisor E, we can fix coordinates (x, y) adapted to
E (see Remark 4.1) and we can denote by E∗

red the points in the first chart
of Ered. Then, we have

Theorem 5.2. — Let E be an irreducible component of π−1
Z (0) and

assume that E is a non-collinear divisor. Given any P ∈ E∗
red, we have that

νP (π∗
EJF,G) = νP (π∗

EC) + νP (π∗
ED) + τE(P ).

In particular, if P ∈ E∗
red with νP (π∗

EJF,G) > 0, then P is an infinitely
near point of Z or a point in M(E).

Proof. — We prove here the result for logarithmic foliations. The general
case, when F and G are not necessarily logarithmic foliations is consequence
of Lemma 4.16.

Consider the logarithmic foliations LC
λ and LD

µ given by ωλ = 0 and
ηµ = 0 with

ωλ =
r∏

i=1
(y − αi(x))

r∑
i=1

λi
d(y − αi(x))
y − αi(x)

ηµ =
s∏

i=1
(y − βi(x))

s∑
i=1

µi
d(y − βi(x))
y − βi(x)
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where the curve Ci is given by y − αi(x) = 0 with αi(x) =
∑∞

j=1 a
i
jx

j ∈
C{x} and the curve Di is given by y−βi(x) = 0 with βi(x) =

∑∞
j=1 b

i
jx

j ∈
C{x}. Let us denote Jλ,µ the jacobian curve of LC

λ and LD
µ which is defined

by Jλ,µ(x, y) = 0 with

Jλ,µ(x, y) = Aλ(x, y)Qµ(x, y)−Bλ(x, y)Pµ(x, y)

where we write ωλ = Aλ(x, y) dx + Bλ(x, y) dy and ηµ = Pµ(x, y) dx +
Qµ(x, y) dy. More precisely, we can write

(5.1) Jλ,µ(x, y) = f(x, y)g(x, y)

∣∣∣∣∣∣∣∣
−

r∑
i=1

λi
α′

i(x)
y−αi(x)

r∑
i=1

λi

y−αi(x)

−
s∑

i=1
µi

β′
i(x)

y−βi(x)

s∑
i=1

µi

y−βi(x)

∣∣∣∣∣∣∣∣
where f(x, y) =

∏r
i=1(y − αi(x)) and g(x, y) =

∏s
i=1(y − βi(x)) are equa-

tions of the curves C and D respectively.
Let πZ : XZ → (C2, 0) be the minimal reduction of singularities of

Z. Take E a bifurcation divisor of G(Z) with v(E) = p and consider
πE : XE → (C2, 0) the reduction of πZ to E. Since the jacobian curve
behaves well by a change of coordinates (see Remark 5.1), we can assume
that the coordinates (x, y) are adapted to E. Take (xp, yp) coordinates
in the first chart of Ered ⊂ XE such that πE(xp, yp) = (xp, x

p
pyp) and

Ered = (xp = 0). Let us compute the strict transform of Jλ,µ by πE .
Let us denote I = {1, . . . , r}, J = {1, . . . , s}, IE = {i ∈ I : E belongs to

the geodesic of Ci} and JE = {j ∈ J : E belongs to the geodesic of Di}.
We can write

ωλ = f(x, y)

 ∑
i∈I∖IE

λi
−α′

i(x) dx+ dy
y − αi(x) +

∑
i∈IE

λi
−α′

i(x) dx+ dy
y − αi(x)


ηµ = g(x, y)

 ∑
i∈J∖JE

µi
−β′

i(x) dx+ dy
y − βi(x) +

∑
i∈JE

µi
−β′

i(x) dx+ dy
y − βi(x)


and hence, the jacobian curve Jλ,µ is given by Jλ,µ(x, y) = 0 with

Jλ,µ(x, y) = f(x, y)g(x, y)M(x, y)
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where

M(x,y) =

∣∣∣∣∣∣∣
∑

i∈I\IE

λi
−α′

i(x)
y−αi(x) +

∑
i∈IE

λi
−α′

i(x)
y−αi(x)

∑
i∈I\IE

λi

y−αi(x) +
∑

i∈IE

λi

y−αi(x)∑
i∈J\JE

µi
−β′

i(x)
y−βi(x) +

∑
i∈JE

µi
−β′

i(x)
y−βi(x)

∑
i∈J\JE

µi

y−βi(x) +
∑

i∈JE

µi

y−βi(x)

∣∣∣∣∣∣∣.
Since v(E) = p and (x, y) are coordinates adapted to E, we have that

ordx(αi(x)) ⩾ p if i ∈ IE ; ordx(αi(x)) = ni < p if i ∈ I ∖ IE ;

ordx(βi(x)) ⩾ p if i ∈ JE ; ordx(βi(x)) = oi < p if i ∈ J ∖ JE .

Thus, αi(x) =
∑

j⩾p a
i
jx

j if i ∈ IE and βi(x) =
∑

j⩾p b
i
jx

j if i ∈ JE , but
αi(x) =

∑
j⩾ni

ai
jx

j with ni < p if i ∈ I ∖ IE and βi(x) =
∑

j⩾oi
bi

jx
j with

oi < p if i ∈ J ∖ JE . Then, Jλ,µ(xp, x
p
pyp) is given by

Jλ,µ(xp, x
p
pyp) = f(xp, x

p
pyp)g(xp, x

p
pyp)M∗

E(xp, yp)

with

M∗
E(xp, yp) = 1

xp+1
p

ME(xp, yp)

where

ME(xp, yp) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
i∈I∖IE

λi
−niai

ni
+xp(··· )

x
p−ni
p yp−ai

ni
+xp(··· )

∑
i∈I∖IE

λix
p−ni
p

x
p−ni
p yp−ai

ni
+xp(··· )

+
∑

i∈IE

λi
−pai

p+xp(··· )
yp−ai

p+xp(··· ) +
∑

i∈IE

λi

yp−ai
p+xp(··· )

∑
i∈J∖JE

µi
−oibi

oi
+xp(··· )

x
p−oi
p yp−bi

oi
+xp(··· )

∑
i∈J∖JE

µix
p−oi
p

x
p−oi
p yp−bi

oi
+xp(··· )

+
∑

i∈JE

µi
−pbi

p+xp(··· )
yp−bi

p+xp(··· ) +
∑

i∈JE

µi

yp−bi
p+xp(··· )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

If ME(0, yp) ̸≡ 0, then the points π∗
EJλ,µ ∩Ered, in the first chart of Ered,

are given by xp = 0 and JE(yp) = 0 where

JE(yp) = f̃(0, yp)g̃(0, yp)ME(0, yp).

Let {RE
1 , . . . , R

E
bE
} be the union of the singular points of π∗

ELC
λ and

π∗
ELD

µ in the first chart of Ered, where RE
l = (0, cE

l ) in coordinates (xp, yp).
Note that {RE

1 , . . . , R
E
bE
} = π∗

EZ ∩ Ered. Denote mC
l = νRE

l
(π∗

EC) =
♯{i ∈ {1, . . . , r} : π∗

ECi ∩ Ered = {RE
l }} and mD

l = νRE
l

(π∗
ED) =

♯{j ∈ {1, . . . , s} : π∗
EDj ∩ Ered = {RE

l }} for l = 1, 2, . . . , bE .
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We have that

ME(0, yp) =

∣∣∣∣∣∣∣∣∣∣

∑
i∈I∖IE

λini +
∑

i∈IE

λi
−pai

p

yp−ai
p

∑
i∈IE

λi

yp−ai
p

∑
i∈J∖JE

µioi +
∑

i∈JE

µi
−pbi

p

yp−bi
p

∑
i∈JE

µi

yp−bi
p

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
∑

i∈I∖IE

λini +
∑

i∈IE

λip
∑

i∈IE

λi

yp−ai
p

∑
i∈J∖JE

µioi +
∑

i∈JE

µip
∑

i∈JE

µi

yp−bi
p

∣∣∣∣∣∣∣∣∣
= −κE(LC

λ )κE(LD
µ )

∣∣∣∣∣∣∣∣∣∣
1

bE∑
l=1

I
RE

l
(π∗

ELC
λ ,Ered)

yp−cE
l

1
bE∑
l=1

I
RE

l
(π∗

ELD
µ ,Ered)

yp−cE
l

∣∣∣∣∣∣∣∣∣∣
where κE(LC

λ ) =
∑

i∈I∖IE

λini +
∑

i∈IE

λip and κE(LD
µ ) =

∑
i∈J∖JE

µioi +∑
i∈JE

µip are the residues of the logarithmic foliations along the divisor

E (see (3.2)) and we use the expression of the Camacho–Sad index for a
logarithmic foliation given in (3.3). Consequently, we obtain that

ME(0, yp) = −κE(LC
λ )κE(LD

µ )ME(yp)

where ME(z) is the rational function associated to the divisor E for the
foliations LC

λ and LD
µ (see expression (4.1)) Then, the points π∗

EJλ,µ∩Ered,
in the first chart of Ered, are given by xp = 0 and

bE∏
i=1

(yp − cE
l )mC

l +mD
l ME(yp) = 0.

(note that the curve C ∪D has only non-singular irreducible components).
Let {q1, . . . , qsE

} be the set of zeros of ME(z). For l = 1, 2, . . . , sE , put
QE

l = (0, ql) and denote by tQE
l

the multiplicity of ql as a zero of ME(z).
Thus, the points in π∗

EJλ,µ ∩ Ered belong to Col(E) ∪ NCol(E) ∪M(E).
Moreover, the multiplicity of π∗

EJλ,µ at a point P ∈ Ered, in the first chart
of Ered, is given by

νP (π∗
EJλ,µ) = νP (π∗

EC) + νP (π∗
ED) + τE(P )

where τE(P ) was defined by the expression (4.4). □
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Remark 5.3. — With the notations of the proof above, if the first divisor
E1 is non-collinear, we have that the tangent cone of JLC

λ
,LD

µ
is given by

J1(x, y) = 0 where

J1(x, y) = −

 r∑
i=1

λia
i
1
∏
j ̸=i

(y − aj
1x)

 s∑
i=1

µi

∏
j ̸=i

(y − bj
1x)


+

r∑
i=1

λi

∏
j ̸=i

(y − aj
1x)

s∑
i=1

µib
i
1
∏
j ̸=i

(y − bj
1x).

Thus, x = 0 is not tangent to the jacobian curve JLC
λ

,LD
µ

provided that

(5.2) κE1(LC
λ )

s∑
i=1

µib
i
1 − κE1(LD

µ )
r∑

i=1
λia

i
1 ̸= 0

where we recall that κE1(LC
λ ) =

∑r
i=1 λi and κE1(LD

µ ) =
∑s

i=1 µi. By
Lemma 4.14, the above remarks hold for the jacobian curve JF,G for any
F ∈ GC,λ, G ∈ GD,µ. In the example given in Remark 4.15 we have that∑3

i=1 λia
i
1 =

∑3
i=1 µib

i
1 = 0 and hence the condition in (5.2) does not hold

whereas in the example given in Remark 4.8 condition in (5.2) holds and
hence x = 0 is not tangent to the jacobian curve.

The reader can find in Appendix A.1 some definitions related to the equi-
singularity data of curves used in the statements of the following results.

Consider now two consecutive bifurcation divisors E and E′ in G(Z)
such that E′ arises from E at P . As we have explained in Section 4, this
means that there is a chain of consecutive divisors

E0 = E < E1 < · · · < Ek−1 < Ek = E′

with bEl
= 1 for l = 1, . . . , k − 1 and the morphism πE′ = πE ◦ σ where

σ : XE′ → (XE , P ) is a composition of k punctual blow-ups

(5.3) (XE , P ) σ1←− (XE1 , P1) σ2←− · · · σk−1←− (XEk−1 , Pk−1) σk←− XE′ .

Now we can explain the behaviour of the branches of the jacobian curve
going through a non-collinear point. Next corollary states that the branches
of the jacobian curve going through a non-collinear point P in a bifurca-
tion divisor as above go through the points P1, . . . , Pk−1 given in the se-
quence (5.3), that is, the divisor E′ is in the geodesic of those branches of
JF,G going through P in Ered.
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Corollary 5.4. — Let E and E′ be two consecutive bifurcation divi-
sors in G(Z) with E<PE

′. If P ∈ NCol(E), we have that

νP (π∗
EJF,G) =

∑
Q∈E′

red

νQ(π∗
E′JF,G).

In particular, we get that there is no irreducible component δ of JF,G such
that π∗

E′δ is attached to some intermediate component Ei, 1 ⩽ i ⩽ k − 1,
in the chain E < E1 < · · · < Ek−1 < E′. Moreover,

(5.4) 1 +
∑

Q∈M(E′)

tQ = ♯NCol(E′).

Hence E′ is non-collinear.

Remark 5.5. — Note that from the above result, we get that there is no
irreducible component δ of JF,G such that

v(E) < C(δ, γE′) < v(E′)

where γE′ is a E′-curvette.

Proof of Corollary 5.4. — Let E and E′ be two consecutive bifurcation
divisors in G(Z) with E <P E′ and assume that P ∈ NCol(E), thus
∆E(P ) ̸= 0. By Theorem 5.2 we have that

νP (π∗
EJF,G) = νP (π∗

EC) + νP (π∗
ED)− 1.

Recall that E <P E′ implies the existence of a chain of consecutive divisors

E0 = E < E1 < · · · < Ek−1 < Ek = E′

with bEl
= 1 for l = 1, . . . , k − 1 and the morphism πE′ = πE ◦ σ where

σ : XE′ → (XE , P ) is a composition of k punctual blow-ups

(XE , P ) σ1←− (XE1 , P1) σ2←− · · · σk−1←− (XEk−1 , Pk−1) σk←− XE′ .

Since P is non-collinear, then each Pi is non-collinear by Lemma 4.9, thus
∆Ei(Pi) ̸= 0 and hence M(Ei) = ∅ for i = 1, . . . , k− 1. In particular, using
again Theorem 5.2, we have that

νPi
(π∗

Ei
JF,G) = νPi

(π∗
Ei
C) + νPi

(π∗
Ei
D)− 1.

Since the curves C and D have only non-singular irreducible components,
and Pi is the only infinitely near point of both curves in Ei, we have that
νPi(π∗

Ei
C) = νP (π∗

EC) and νPi(π∗
Ei
D) = νP (π∗

ED) for all i = 1, . . . , k − 1.
Consequently,

νPi(π∗
Ei
JF,G) = νP (π∗

EJF,G), for i = 1, . . . , k − 1.
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Since E′ is a bifurcation divisor, we get that

νPk−1(π∗
Ek−1
JF,G) =

∑
Q∈E′

red

νQ(π∗
E′JF,G).

Hence, from all the equalities above, we deduce that

νP (π∗
EJF,G) =

∑
Q∈E′

red

νQ(π∗
E′JF,G),

which proves the first statement of the corollary. Finally, in order to prove
the equality given in (5.4), it is enough to show that∑

R∈NCol(E′)

∆E′(R) ̸= 0

by Lemma 4.6. Let us assume that
∑

R∈NCol(E′) ∆E′(R) = 0, which implies∑
R∈NCol(E′)

IR(π∗
E′F , E′

red) =
∑

R∈NCol(E′)

IR(π∗
E′G, E′

red)

and, by the properties of the Camacho–Sad indices, we deduce that

IP̃ k−1
(π∗

E′F , E′
red) = IP̃ k−1

(π∗
E′G, E′

red)

where we denote P̃ k−1 = Ẽk−1,red∩E′
red and Ẽk−1,red is the strict transform

of Ek−1,red by σk. Since F and G are generalized curve foliations, then P̃ k−1
is a simple singularity for π∗

E′F and π∗
E′G and hence we have that

IP̃ k−1
(π∗

E′F , E′
red) · IP̃ k−1

(π∗
E′F , Ẽk−1,red) = 1

IP̃ k−1
(π∗

E′G, E′
red) · IP̃ k−1

(π∗
E′G, Ẽk−1,red) = 1.

Consequently, given that

IPk−1(π∗
Ek−1
F , Ek−1,red) = IP̃ k−1

(π∗
E′F , Ẽk−1,red) + 1

= 1
IP̃ k−1

(π∗
E′F , E′

red) + 1,

IPk−1(π∗
Ek−1
G, Ek−1,red) = IP̃ k−1

(π∗
E′G, Ẽk−1,red) + 1

= 1
IP̃ k−1

(π∗
E′G, E′

red) + 1,

we obtain that IPk−1(π∗
Fk−1
F , Ek−1,red) = IPk−1(π∗

Fk−1
G, Ek−1,red). This

implies that ∆Ek−1(Pk−1) = 0 which is not possible since Pk−1 is a non-
collinear point by Lemma 4.9. This ends the proof. □

In order to explain the behaviour of the branches of the jacobian curve
going through a collinear point, we introduce the following definition.
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Definition 5.6. — Let E be a bifurcation divisor of G(Z) and take P a
collinear point of E. We say that a set of non-collinear bifurcation divisors
{E1, . . . , Eu} is a (non-collinear) cover of E at P if the following conditions
hold:

(i) E is in the geodesic of each El;
(ii) if {El

1, . . . , E
l
r(l)} is the set of all bifurcation divisors in the geodesic

of El with

E <P El
1 < · · · < El

r(l) < El

then either r(l) = 0 or else each El
j is collinear;

(iii) if Zj is an irreducible component of Z with π∗
EZj ∩ Ered = {P},

then there exists a divisor El in the cover such that π∗
El
Zj ∩El ̸= ∅,

that is, there is a divisor El in the cover which is in the geodesic
of Zj .

Given a collinear point P of E, there is a unique cover of E at P . We can
find it as follows: take an irreducible component Zj of Z with π∗

EZj∩Ered =
{P}. Let E′ be the consecutive bifurcation divisor to E with E <P E′

belonging to the geodesic of Zj . If E′ is non-collinear, then E′ is one of
the bifurcation divisors in the cover of E at P , otherwise we repeat the
process above with the following bifurcation divisor in the geodesic of Zj .
Since the maximal bifurcation divisors are non-collinear (see Remark 4.3),
we will always find a non-collinear divisor in the geodesic of Zj verifying
condition (iii) in the above definition.

Theorem 5.7. — Consider a non-collinear bifurcation divisor E of
G(Z) and a collinear point P of E. Take a cover {E1, . . . , Eu} of E at P .
Then

νP (π∗
EJF,G)−

u∑
l=1

∑
Q∈El,red

νQ(π∗
El
JF,G) = tP +

u∑
l=1

(♯NCol(El)− t(El)).

Consequently, there is a curve JE
P composed by irreducible components of

JF,G such that, if δ is a branch of JE
P ,

• π∗
Eδ ∩ Ered = {P},

• C(δ, γEl
) < v(El) for l = 1, . . . , u, where γEl

is any El-curvette.

Moreover, we have that

ν0(JE
P ) = tP +

u∑
l=1

(♯NCol(El)− t(El)).
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Proof. — Let E be a non-collinear bifurcation divisor of G(Z) and a
point P ∈ Col(E). Consider a cover {E1, . . . , Eu} of E at P . By Theo-
rem 5.2, we have that

νP (π∗
EJF,G) = νP (π∗

EC) + νP (π∗
ED) + tP

u∑
l=1

∑
Q∈El,red

νQ(π∗
El
JF,G) =

u∑
l=1

∑
Q∈El,red

(νQ(π∗
El
C) + νQ(π∗

El
D) + τEl

(Q)).

By the properties of a cover given in Definition 5.6, we have that

νP (π∗
EC) + νP (π∗

ED) =
u∑

l=1

∑
Q∈El,red

(νQ(π∗
El
C) + νQ(π∗

El
D))

and the result is straightforward. □

The results above allow to give a decomposition of JF,G into bunches of
branches in the sense of the decomposition theorem of polar curves. Recall
that given a divisor E of π−1

Z (0), we denote by πE : XE → (C2, 0) the
morphism reduction of πZ to E and we write πZ = πE ◦ π′

E . Let B(Z)
be the set of bifurcation divisors of G(Z). Given any E ∈ B(Z) which
is a non-collinear divisor for F and G, we define JE

nc as the union of the
branches ξ of JF,G such that

• π∗
Eξ ∩ π∗

EZ = ∅,
• if E′ < E, then π∗

Eξ ∩ π′
E(E′) = ∅,

• if E′ > E, then π∗
E′ξ ∩ E′

red = ∅.
Moreover, given a non-collinear divisor E, we denote JE

c =
⋃

P ∈Col(E) J
E
P

(with JE
c = ∅ if Col(E) = ∅).

Thus, the previous results allow us to give a decomposition of

JF,G = J∗ ∪

 ⋃
E∈BN (Z)

JE


(see below for the precise statement) such there is a certain control of the
topology of the irreducible components of JF,G obtained from the data of
the foliations F and G provided that the component of JF,G is attached
either to a non-collinear divisor or to a chain of collinear divisors which are
between two non-collinear bifurcation divisors. The irreducible components
corresponding to J∗ are the one attached to “isolated” collinear divisors for
which no control is possible.

Given a non-collinear bifurcation divisor E of G(Z), we denote

t∗(E) =
∑

Q∈M(E)∖Col(E)

tQ,
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that is, the number of zeros ofME(z) (counting with multiplicities) which
do not correspond to collinear points. Then, we can state the properties of
the decomposition of JF,G as follows:

Theorem 5.8. — Consider F ∈ GC and G ∈ GD such that Z = C ∪D
is a curve with only non-singular irreducible components. Let BN (Z) be
the set of non-collinear bifurcation divisors of G(Z). Then there is a unique
decomposition JF,G = J∗ ∪ (

⋃
E∈BN (Z) J

E) where JE = JE
nc ∪JE

c with the
following properties

(i) ν0(JE
nc) = t∗(E). In particular, ν0(JE

nc) ⩽ ♯NCol(E)− 1 ⩽ bE − 1.
(ii) π∗

EJ
E
nc ∩ π∗

EZ = ∅.
(iii) if E′ < E, then π∗

EJ
E
nc ∩ π′

E(E′) = ∅.
(iv) if E′ > E, then π∗

E′JE
nc ∩ E′

red = ∅.
(v) if δ is a branch of JE

c , then π∗
Eδ ∩ Ered is a point in Col(E).

(vi) ν0(JE
c ) =

∑
P ∈C(E)(tP +

∑u(P )
l=1 (♯NCol(EP

l ) − t(EP
l ))) where

{EP
1 , . . . , E

P
u(P )} is a cover of E at P .

Moreover, if E is a purely non-collinear divisor with∑
RE

l
∈NCol(E)

∆E(RE
l ) ̸= 0,

then

(5.5) ν0(JE) = ν0(JE
nc) = bE − 1.

Proof. — We have that

ν0(JE
nc) =

∑
P ∈M(E)∖Col(E)

νP (π∗
EJF,G) =

∑
P ∈M(E)∖Col(E)

tP = t∗(E)

⩽
∑

P ∈M(E)

tP ⩽ ♯NCol(E)− 1 ⩽ bE − 1

where we have used the inequality given in (4.2) and the fact that
♯NCol(E) ⩽ bE . This gives the first statement of the theorem.

Moreover, if E is a purely non-collinear divisor, then Col(E) = ∅, JE =
JE

nc and ♯NCol(E) = bE . In addition, when
∑

RE
l

∈NCol(E) ∆E(RE
l ) ̸= 0 we

have that
∑

P ∈M(E) tP = ♯NCol(E) − 1 by Lemma 4.6. Consequently, we
deduce that

ν0(JE) =
∑

P ∈M(E)

νP (π∗
EJF,G) =

∑
P ∈M(E)

tP = ♯NCol(E)− 1 = bE − 1

and we obtain expression (5.5).
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Properties (ii), (iii) and (iv) are consequence of the definition of JE
nc.

Properties (v) and (vi) follow directly from the definition of JE
c and The-

orem 5.7. □

Note that the properties of JE
nc can be stated in terms of coincidences

as follows: if δ is an irreducible component of JE
nc (with E a non-collinear

bifurcation divisor) and Zi is an irreducible component of Z = C ∪D, then

C(δ, Zi) =
{
v(E), if E is in the geodesic of Zi,

C(γE , Zi), otherwise.

where γE is any E-curvette. Observe that v(E) = C(γE , Zi) when E is in
the geodesic of Zi and γE does not intersect E at the points π∗

EZ ∩ E.
Next result determines the intersection multiplicity of JE

nc with the curves
of separatrices C and D of the foliations F and G.

Corollary 5.9. — If E is a non-collinear bifurcation divisor, then

(JE
nc, C)0 = νE(C) · t∗(E); (JE

nc, D)0 = νE(D) · t∗(E)

where νE(C) = (C, γE)0 and νE(D) = (D, γE)0 with γE any E-curvette.

Proof. — Let E be a non-collinear bifurcation divisor of G(Z) and let
γE be any E-curvette which does not intersect E at the points π∗

EZ ∩ E.
By the properties of JE

nc given in Theorem 5.8, we have that if δ is a branch
of JE

nc then

C(δ, Ci) =
{
v(E), if E is in the geodesic of Ci,

C(γE , Ci), othewise.

Note that C(γE , Ci) = v(E) if E is in the geodesic of Ci (that is,
i ∈ IE). Moreover, since γE and Ci are non-singular curves, we have
that C(γE , Ci) = (γE , Ci)0. Therefore, using the relationship between the
coincidence and the intersection multiplicity of two branches given in Re-
mark A.1, we have that

(δ, Ci)0 = ν0(δ) · (γE , Ci)0

TOME 0 (0), FASCICULE 0



34 Nuria CORRAL

for a branch δ of JE
nc. Now, if we denote by B(JE

nc) the set of branches of
JE

nc, we have that

(JE
nc, C)0 =

r∑
i=1

(JE
nc, Ci)0 =

r∑
i=1

∑
δ∈B(JE

nc)

(δ, Ci)0

=
r∑

i=1

∑
δ∈B(JE

nc)

ν0(δ) · (γE , Ci)0 = ν0(JE
nc)

r∑
i=1

(γE , Ci)0

= t∗(E) · νE(C). □

As a consequence of the result above and Propositions B.1 and B.3 we
obtain next corollary for non-dicritical generalized curve foliations which
relates invariants of the foliations F and G, such as the Milnor numbers
o the tangency orders, with data coming from the decomposition of the
jacobian curve.

Corollary 5.10. — With the hypothesis and notations of Theorem 5.8,
we get that ∑

E∈BN (Z)

ν0(JE
nc)νE(Ci) ⩽ µ0(F , Ci) + τ0(G, Ci)

and ∑
E∈BN (Z)

ν0(JE
nc)(νE(C)− νE(D)) ⩽ µ0(F)− µ0(G).

Proof. — We have just proved that (JE
nc, Ci)0 = ν0(JE

nc)νE(Ci). Thus,
using Proposition B.1, we get that∑

E∈BN (Z)

(JE
nc, Ci)0 =

∑
E∈BN (Z)

ν0(JE
nc)νE(Ci) ⩽ (JF,G , Ci)0

= µ0(F , Ci) + τ0(G, Ci).

Now, from Corollary 5.9 and Proposition B.3, we obtain that∑
E∈BN (Z)

((JE
nc, C)0 − (JE

nc, D)0)) =
∑

E∈BN (Z)

ν0(JE
nc)(νE(C)− νE(D))

⩽ (JF,G , C)0 − (JF,G , D)0

= µ0(F)− µ0(G)

which gives the second inequality. □

The general case of foliations with separatrices that can have singular
irreducible components will be treated in next section.
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6. General case

Consider two plane curves C =
⋃r

i=1 Ci and D =
⋃s

j=1 Dj which can
have singular branches. Assume that C and D have no common irreducible
components. Let ρ : (C2, 0) → (C2, 0) be a ramification given in coordi-
nates by ρ(u, v) = (un, v) such that the curve ρ−1Z has only non-singular
irreducible components where Z = C ∪ D. In this section we will denote
B̃ the curve ρ−1B for any plane curve B. See Appendix A for notations
concerning ramifications.

Take F and G foliations with C and D as curve of separatrices respec-
tively. Let us study the relationship between the curves J̃ F,G = ρ−1JF,G
and Jρ∗F,ρ∗G .

Assume that the foliations F and G are given by ω = 0 and η = 0 with

ω = A(x, y) dx+B(x, y) dy; η = P (x, y) dx+Q(x, y) dy,

then ρ∗F and ρ∗G are given by ρ∗ω = 0 and ρ∗η = 0 where

ρ∗ω = A(un, v)nun−1 du+B(un, v) dv;

ρ∗η = P (un, v)nun−1 du+Q(un, v) dv.

Therefore, if we write J(x, y) = A(x, y)Q(x, y) − B(x, y)P (x, y), then the
curve ρ−1JF,G is given by J(un, v) = 0 whereas Jρ∗F,ρ∗G is given by
nun−1J(un, v) = 0. Let us see (Corollary 6.2) that ρ−1JF,G = J̃ F,G satis-
fies the statements of Theorem 5.2 with respect to ρ−1Z = Z̃.

Let πZ̃ : X̃ → (C2, 0) be the minimal reduction of singularities of Z̃.
We denote by Ẽ any irreducible component of π−1

Z̃
(0) and by πẼ : X̃Ẽ →

(C2, 0) the morphism reduction of πZ̃ to Ẽ. Let us state some properties
concerning the infinitely near points of J̃ F,G and Jρ∗F,ρ∗G :

Lemma 6.1. — Let Ẽ be an irreducible component of π−1
Z̃

(0). We have
that

π∗
Ẽ
J̃ F,G ∩ Ẽ∗

red = π∗
Ẽ
Jρ∗F,ρ∗G ∩ Ẽ∗

red,

where Ẽ∗
red denote the points in the first chart of Ẽred. Moreover,

νP (π∗
Ẽ
J̃ F,G) = νP (π∗

Ẽ
Jρ∗F,ρ∗G)

for each P ∈ π∗
Ẽ
J̃ F,G ∩ Ẽ∗

red.

Proof. — Take Ẽ an irreducible component of π−1
Z̃

(0) with v(Ẽ) = p and
assume that (u, v) are coordinates adapted to Ẽ. If we denote J̃(u, v) =
J(un, v), we have that

Inp(nun−1J̃ ;u, v) = nun−1 Inp(J̃ ;u, v).
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Write
Inp(J̃ ;u, v) =

∑
i+pj=k

hiju
ivj .

Hence, if (up, vp) are coordinates in the first chart of Ẽred ⊂ X̃Ẽ such that
πẼ(up, vp) = (up, u

p
pvp) and Ẽred = (up = 0), then the points π∗

Ẽ
J̃ F,G ∩

Ẽred, in the first chart of Ẽred, are given by up = 0 and
∑

i+pj=k hijv
j
p = 0.

This proves that

π∗
Ẽ
J̃ F,G ∩ Ẽ∗

red = π∗
Ẽ
Jρ∗F,ρ∗G ∩ Ẽ∗

red

and that
νP

(
π∗

Ẽ
J̃ F,G

)
= νP

(
π∗

Ẽ
Jρ∗F,ρ∗G

)
for each P ∈ π∗

Ẽ
J̃ F,G ∩ Ẽ∗

red. □

Hence, when Ẽ is a non-collinear divisor for the foliations ρ∗F and ρ∗G,
the curve Jρ∗F,ρ∗G satisfies Theorem 5.2 with respect to ρ−1Z = Z̃, and
thanks to the previous lemma, we get the following result for ρ−1JF,G =
J̃ F,G :

Corollary 6.2. — Take Ẽ an irreducible component of π−1
Z̃

(0) which is
a non-collinear divisor for the foliations ρ∗F and ρ∗G. Given any P ∈ Ẽ∗

red,
we have that

νP

(
π∗

Ẽ
J̃ F,G

)
= νP

(
π∗

Ẽ
C̃
)

+ νP

(
π∗

Ẽ
D̃
)

+ τẼ(P ).

In particular, if P ∈ Ẽ∗
red with νP (π∗

Ẽ
J̃ F,G) > 0, then P is an infinitely

near point of Z̃ or a point in M(Ẽ).

Let E be a bifurcation divisor of G(Z) and consider Ẽl, Ẽk two bifur-
cation divisors of G(Z̃) associated to E. Recall that there is a bijection
between the sets of points π∗

ẼlZ̃ ∩ Ẽl
red and π∗

Ẽk Z̃ ∩ Ẽk
red given by the map

ρl,k : Ẽl
red → Ẽk

red (see Appendix A). Thus we will denote by
{RẼl

1 , RẼl

2 , . . . , RẼl

b
Ẽl
} and {RẼk

1 , RẼk

2 , . . . , RẼk

b
Ẽk
} the sets of points

π∗
ẼlZ̃ ∩ Ẽl

red and π∗
Ẽk Z̃ ∩ Ẽk

red respectively, with RẼk

t = ρl,k(RẼl

t ) for
t = 1, 2, . . . , bẼk . By the results in Appendix A.3 (see Proposition A.4
and (A.7)), we get that

I
RẼl

t

(
π∗

Ẽlρ
∗F , Ẽl

red

)
= I

RẼk
t

(
π∗

Ẽkρ
∗F , Ẽk

red

)
I

RẼl
t

(
π∗

Ẽlρ
∗G, Ẽl

red

)
= I

RẼk
t

(
π∗

Ẽkρ
∗G, Ẽk

red

)
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which implies

∆Ẽl

(
RẼl

t

)
= ∆Ẽk

(
RẼk

t

)
for t = 1, 2, . . . , bẼl ,

with ∆Ẽl(RẼl

t ) = ∆ρ∗F,ρ∗G
Ẽl (RẼl

t ). Thus, Ẽl is collinear (resp. non-collinear)
if and only if Ẽk is also collinear (resp. non-collinear). So we can introduce
the following definition

Definition 6.3. — We say that a bifurcation divisor E of G(Z) is
collinear (resp. non-collinear) for the foliations F and G when any of its as-
sociated divisors Ẽl is collinear (resp. non-collinear) for the foliations ρ∗F
and ρ∗G.

Moreover, if RẼl

t , RẼl

s are two points π∗
ẼlZ̃ ∩ Ẽl

red with ρẼl,E(RẼl

t ) =
ρẼl,E(RẼl

s ) where ρẼl,E : Ẽl
red → Ered is the ramification defined in appen-

dix A, then

∆Ẽl

(
RẼl

t

)
= ∆Ẽk

(
RẼl

s

)
by (A.8) in Appendix A.3. Thus, we say that an infinitely near point RE of
Z in Ered is a collinear point (resp. non-collinear point) for the foliations
F and G if, for any associated divisor Ẽl and any infinitely near point RẼl

t

of ρ−1Z in Ẽl
red with ρẼl,E(RẼl

t ) = RE , the point RẼl

t is collinear (resp.
non-collinear) for the foliations ρ∗F and ρ∗G. Given a bifurcation divisor E
of G(Z), we denote by Col(E) the set of collinear points of E and NCol(E)
the set of non-collinear points of E.

Corollary 6.2 and the results in Section 5 allow to give a decomposition
of JF,G . By Theorem 5.8, we have a decomposition

J̃ F,G = J̃∗ ∪

 ⋃
Ẽ∈BN (Z̃)

J Ẽ


with J Ẽ = J Ẽ

nc ∪ J Ẽ
c . Given a non-collinear bifurcation divisor E of G(Z),

we define JE = JE
nc ∪ JE

c to be such that

ρ−1JE
nc =

nE⋃
l=1

J Ẽl

nc ; ρ−1JE
c =

nE⋃
l=1

J Ẽl

c

where {Ẽl}n
E

l=1 are the divisors of G(Z̃) associated to E and J∗ to be such
that ρ−1J∗ = J̃∗. Hence, we can state the main result of this paper
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Theorem 6.4. — Let us write Z =
⋃r+s

i=1 Zi with Zi irreducible and
denote by BN (Z) the set of non-collinear bifurcation divisors of G(Z).
Then there is a decomposition

JF,G = J∗ ∪

 ⋃
E∈BN (Z)

JE


with JE = JE

nc ∪ JE
c such that

(i) ν0(JE
nc) ⩽


nEnE(bE − 1), if E does not belong to

a dead arc,
nEnE(bE − 1)− nE , otherwise.

(ii) For each irreducible component δ of JE
nc we have that

• C(δ, Zi) = v(E) if E belongs to the geodesic of Zi;
• C(δ, Zj) = C(Zi, Zj) if E belongs to the geodesic of Zi but not

to the one of Zj .
(iii) For each irreducible component δ of JE

c , there exists an irreducible
component Zi of Z such that E belongs to its geodesic and

C(δ, Zi) > v(E).

Moreover, if E′ is the first non-collinear bifurcation divisor in the
geodesic of Zi after E, then

C(δ, Zi) < v(E′).

7. Jacobian curves of hamiltonian foliations and Polar
curves of foliations

In this section we will explain how our results imply previous results
concerning jacobian curves of two plane curves or polar curves of foliations.

7.1. Jacobian of two curves

In [19, 20], T.-C. Kuo and A. Parusińki consider the Jacobian fxgy −
fygx = 0 of a pair of germs of holomorphic functions f, g without common
branches and give properties of its Puiseux series which they called polar
roots of the Jacobian. They define a tree-model, noted T (f, g), which rep-
resents the Puiseux series of the curves C = (f = 0) and D = (g = 0)
and the contact orders among these series. The tree-model T (f, g) is con-
structed as follows: it starts with an horizontal bar B∗ called ground bar
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and a vertical segment on B∗ called the main trunk of the tree. This trunk
is marked with [p, q] where p = ν0(C) and q = ν0(D). Let {yC

i (x)}ν0(C)
i=1 and

{yD
i (x)}ν0(D)

i=1 be the Puiseux series of C and D respectively, and denote
{zj(x)}N

j=1 the set {yC
i (x)}ν0(C)

i=1 ∪ {yD
i (x)}ν0(D)

i=1 with N = ν0(C) + ν0(D).
Denote by h0 = min{ordx(zi(x) − zj(x)) : 1 ⩽ i, j ⩽ N}. A bar B0
is drawn on top of the main trunk with h(B0) = h0 being the height of
B0. The Puiseux series {zj(x)} are divided into equivalence classes (mod
B0) by the following relation: zj(x) ∼B0 zk(x) if ordx(zj(x) − zk(x)) >
h0. Each equivalence class is represented by a vertical line, called trunk,
drawn on the top of B0. Each trunk is marked by a bimultiplicity [s, t]
where s (resp. t) denote the number of Puiseux series of C (resp. of D)
in the equivalence class. The same construction is repeated recursively
on each trunk. The construction finishes with trunks which have bimul-
tiplicity [1, 0] or [0, 1] representing each Puiseux series of the curve Z =
C ∪D.

Let us now consider the curve Z̃ = ρ−1Z where ρ : (C2, 0) → (C2, 0)
is any Z-ramification given by ρ(u, v) = (un, v) (see Appendix A). Since
the branches of Z̃ are in bijection with the Puiseux series of Z and the
valuations of the bifurcation divisors of G(Z̃) represent the contact or-
ders among these series, then the tree model above T (f, g) can be recov-
ered from the dual graph of G(Z̃): there is a bijection between the set
of bars of T (f, g) which are not the ground bar and the bifurcation di-
visors B(Z̃) of G(Z̃). For instance, the first bar B0 corresponds to the
first bifurcation divisor Ẽ1 of G(Z̃) and h(B0) = v(Ẽ1)

n . The number of
trunks on B0 is equal to bẼ1

, that is, each trunk on B0 correspond to an
infinitely near point of Z̃ on Ẽ1,red. In particular, given a trunk with bi-
multiplicity [s, t] corresponding to a point RẼ1

i , then s = ν
R

Ẽ1
i

(π∗
Ẽ1
C) and

t = ν
R

Ẽ1
i

(π∗
Ẽ1
D).

We shall illustrate with an example the relationship between T (f, g) and
G(Z̃). The following example corresponds to the Example 1.1 in [20].

Example 7.1. — Take positive integers d, f with d < f and non-zero
constants A,B. Consider

f(x, y) = (y + x)(y − xd+1 +Axf+1)(y + xd+1 +Bxf+1)

g(x, y) = (y − x)(y − xd+1 −Axf+1)(y + xd+1 −Bxf+1)

and put C = (f = 0) and D = (g = 0). Since Z = C ∪ D has only non-
singular irreducible components, we do not need to consider a ramification.
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The dual graph G(Z) is given by

while the tree-model is given by

where we have indicated the branches of C and D corresponding to the
terminal trunks. Thus, the bijection among the bars in T (f, g) and the
bifurcation divisors in G(Z) is given by

B0 ←→ E1; B1 ←→ Ed+1; B2 ←→ E′
f+1; B3 ←→ Ef+1

with h(B0) = v(E1) = 1, h(B1) = v(Ed+1) = d + 1, h(B2) = h(B3) =
v(Ef+1) = v(E′

f+1) = f + 1.

Let us show that the notion of collinear point and collinear divisor given
in Section 4 correspond to the ones given in [19, 20] thanks to the bijections
explained above. Let B be a bar of T (f, g) and consider a Puiseux series
zk(x) of Z which goes through B, this means, that

zk(x) = zB(x) + cxh(B) + · · ·

where zB(x) depends only on the bar B and c is uniquely determined by
zk(x). If T is a trunk which contains zk(x), then it is said that the trunk T
grows on B at c. Let Ẽ be the bifurcation divisor of G(Z̃) corresponding
to B and consider

vk(u) = zk(un) = zB(un) + cunh(B) + · · ·
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Note that the curve given by v − vk(u) = 0 is a branch of Z̃ such that Ẽ
belongs to its geodesic. This curve determines a unique point R in Ẽred;
in this way we can establish the bijection among the trunks on B and the
infinitely near points of Z̃ on Ẽred.

Let now B be a bar of T (f, g) that corresponds to a bifurcation divisor Ẽ
of G(Z̃) and Tk, 1 ⩽ k ⩽ bẼ , be the set of trunks on B with bimultiplicity
[pk, qk] where the trunk Ti grows on B at ci. Let us denote {RẼ

1 , . . . , R
Ẽ
bẼ
}

the set of infinitely near points of Z̃ in Ẽred with RẼ
i corresponding to the

trunk Ti.
In [20], the authors define

∆B(ck) =
∣∣∣∣νf (B) pk

νg(B) qk

∣∣∣∣ , 1 ⩽ k ⩽ bẼ

where νf (B) = ordx(f(x, zB(x) + cxh(B))) for c ∈ C generic (resp. νg(B)),
and the rational function associated to B as

MB(z) =
bẼ∑

k=1

∆B(ck)
z − ck

.

Note that, if E is the bifurcation divisor of G(Z) such that Ẽ is associated
to E, then the curve given by y = zB(x) + cxh(B) is an E-curvette. Thus,
taking into account Proposition 2.5.3 of [7] for instance, we get that

νf (B) = (C, γE)0

m(E)

with γE any E-curvette. Moreover, it is easy to verify that

νf (B) = 1
n

ν0(C)∑
i=1

(γC
i , γẼ)0

where γC
i is the curve given by v−yC

i (un) = 0 and γẼ is an Ẽ-curvette. Note
that we can compute the intersection multiplicity (γC

i , γẼ)0 =
∑

Ẽ′⩽Ẽ ε
γC

i

Ẽ′

where the sum runs over all the divisors Ẽ′ in G(C̃) in the geodesic of Ẽ
and ε

γC
i

Ẽ′ = 1 if the geodesic of γC
i contains the divisor Ẽ′ and ε

γC
i

Ẽ′ = 0
otherwise. Thus, with the notations given in Section 3, we have that

νf (B) = 1
n
κẼ(LC̃)

where LC̃ = Gf̃ is the logarithmic foliation in GC̃ with λ = (1, 1, . . . , 1),
that is, the hamiltonian foliation defined by df̃ = 0 with f̃(u, v) = f(un, v).
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Moreover,
pk = νRẼ

k
(π∗

Ẽ
C̃), k = 1, . . . , bẼ

and thus

IRẼ
k

(π∗
Ẽ
LC̃ , Ẽred) = − pk

nνf (B) , k = 1, . . . , bẼ .

Consequently, with the notations introduced in Section 4, we have that

∆B(ck) = − 1
n

∆Ẽ(RẼ
k ) and MẼ(z) = −nMB(z).

Thus the notions of collinear divisor and collinear point given in Section 4
correspond to the ones given in [20] for bars and points on them, and the
results given in Section 5 imply some of the Theorems proved in [20].

7.2. Semiroots and Approximate roots

The notion of approximated root was introduced by Abhyankar and Moh
in [1] where they proved the following result:

Proposition 7.2. — Let A be an integral domain and P (y) ∈ A[y] be
a monic polynomial of degree d. If p is invertible in A and p divides d, then
there exists a unique monic polynomial Q(y) ∈ A[y] such that the degree
of P −Qp is less than d− d/p.

The unique polynomial Q given by the previous proposition is called the
p-th approximate root of P . Let us consider f(x, y) ∈ C{x}[y] an irreducible
Weierstrass polynomial with characteristic exponents {β0, β1, . . . , βg} and
denote ek = gcd(β0, β1, . . . , βk) for k = 1, . . . , g. Thus ek divides β0 =
degy f . We will denote f (k) the ek-approximate root of f and we call them
the characteristic approximate roots of f . Next result ([1, Theorem 7.1])
gives the main properties of the characteristic approximate roots of f (see
also [17, 29]):

Proposition 7.3. — Let f(x, y) ∈ C{x}[y] be an irreducible Weier-
strass polynomial with characteristic exponents {β0, β1, . . . , βg}. Then the
characteristic approximate roots f (k) for k = 0, 1, . . . , g − 1 verify:

(i) The degree in y of f (k) is equal to β0/ek and C(f, f (k)) = βk+1/β0.
(ii) The polynomial f (k) is irreducible with characteristic exponents
{β0/ek, β1/ek, . . . , βk/ek}.
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In [14], E. García Barroso and J. Gwoździewicz studied the jacobian
curve of f and f (k) and they give a result concerning its factorization
(see [14, Theorem 1]). In this section, we will prove that this result of
factorization can be obtained as a consequence of Theorem 6.4.

Remark 7.4. — In [29], P. Popescu-Pampu proved that all polynomials
in C{x}[y] satisfying condition (i) in the proposition above also verify con-
dition (ii). Hence, given an irreducible Weierstrass polynomial f(x, y) ∈
C{x}[y] with characteristic exponents {β0, β1, . . . , βg}, we can consider the
monic polynomials in C{x}[y] satisfying condition (i) above which are called
k-semiroots of f (see [29, Definition 6.4]). Since we only need the properties
of characteristic approximate roots given in Proposition 7.3, in the rest of
the section, we will denote by f (k) a k-semiroot of f , 0 ⩽ k ⩽ g − 1.

Let C be the curve defined by f = 0 and denote C(k) the curve given by
f (k) = 0 with 0 ⩽ k ⩽ g − 1. Consider F ∈ GC and F (k) ∈ GC(k) . Note
that the minimal reduction of singularities πC : XC → (C2, 0) of the curve
C gives also a reduction of singularities of C∪C(k). There are g bifurcation
divisors in G(C). The set of bifurcation divisors of G(C) will be denote by
{E1, . . . , Eg} with v(Ei) = βi

β0
. Remark that the dual graph G(C ∪C(k)) is

given by (see [29] for instance):

Thus the sets of bifurcation divisors of G(C) and G(C ∪ C(k)) coincide.
All bifurcation divisors of G(C∪C(k)) are Puiseux divisors for C while only
E1, . . . , Ek are Puiseux divisors for C(k). Then we have

Lemma 7.5. — The set of non-collinear bifurcation divisors of G(C ∪
C(k)) for the foliations F and F (k) is {Ek+1, . . . , Eg}.

Proof. — Let {(m1, n1), . . . , (mg, ng)} be the Puiseux pairs of C, then
we remind that β0 = ν0(C) = n1 · · ·ng, ek = nk+1 · · ·ng and βk/β0 =
mk/n1 · · ·nk for k = 1, . . . , g. Given a bifurcation divisor El of G(C∪C(k)),
we have that nEl

= nl, nEl
= n1 · · ·nl−1 = β0/el−1 and m(El) = nEl

nE =
n1 · · ·nl.
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Consider now the ramification ρ : (C2, 0) → (C2, 0) given by ρ(u, v) =
(un, v) with n = β0 and denote C̃ = ρ−1C, C̃(k) = ρ−1C(k). Take a bi-
furcation divisor El and let {Ẽt

l}
n

El
t=1 be the set of bifurcation divisors of

G(C̃ ∪ C̃(k)) associated to El.
In the case l < k+ 1, we have that π∗

Ẽt
l

C̃ ∩ Ẽt
l,red = π∗

Ẽt
l

C̃(k)∩ Ẽt
l,red with

bẼt
l

= nl in G(C̃ ∪ C̃(k)). Let us denote π∗
Ẽt

l

C̃ ∩ Ẽt
l,red = {RẼt

l
1 , . . . , R

Ẽt
l

bẼt
l

}.
Using the equations given in Section 3 and Appendix A, the computation
of the Camacho–Sad indices for the foliations ρ∗F and ρ∗F (k) gives

I
R

Ẽt
l

s

(π∗
Ẽt

l

ρ∗F , Ẽt
l,red) = − nl+1 · · ·ng∑n

s=1
∑

Ẽ⩽Ẽt
l
εσs

Ẽ

(7.1)

I
R

Ẽt
l

s

(π∗
Ẽt

l

ρ∗F (k), Ẽt
l,red) = − nl+1 · · ·nk∑n1···nk

s=1
∑

Ẽ⩽Ẽt
l
εσ

(k)
s

Ẽ

where C̃ =
⋃n

s=1 σs and C̃(k) =
⋃n1···nk

s=1 σ
(k)
s . Hence, taking into account

the results of Appendix A, we have

I
R

Ẽt
l

s

(π∗
Ẽt

l

ρ∗F , Ẽt
l,red) = I

R
Ẽt

l
s

(π∗
Ẽt

l

ρ∗F (k), Ẽt
l,red), s = 1, . . . , bẼt

l

and consequently, ∆Ẽt
l
(RẼt

l
s ) = 0, s = 1, . . . , bẼt

l
, for the foliations ρ∗F and

ρ∗F (k). This proves that the bifurcation divisors El of G(C ∪ C(k)) with
l < k + 1 are collinear for F and F (k).

Consider now the bifurcation divisor Ek+1 of G(C ∪ C(k)) and let
{Ẽt

k+1}
n

Ek+1
t=1 be the set of bifurcation divisors of G(C̃ ∪ C̃(k)) associated to

Ek+1. Although the curve π∗
Ek+1

C(k) does not intersect Ek+1,red, the curve
π∗

Ẽt
k+1

C̃(k) intersects Ẽt
k+1,red in one point for each t = 1, . . . , nEk+1

which is

different from the nk+1 points where π∗
Ẽt

k+1
C̃ intersects Ẽt

k+1,red. Note that

bEk+1 = 2 in G(C∪C(k)) and, by (A.2), bẼt
k+1

= nk+1+1 in G(C̃∪C̃(k)). Let

{RẼt
k+1

1 , . . . , R
Ẽt

k+1
bẼt

k+1

} be the set of points (π∗
Ẽt

k+1
C̃∩Ẽt

k+1,red)∪(π∗
Ẽt

k+1
C̃(k)∩

Ẽt
k+1,red) with R

Ẽt
k+1

bẼt
k+1

= π∗
Ẽt

k+1
C̃(k) ∩ Ẽt

k+1,red. Thus, we can compute the

Camacho–Sad of ρ∗F and ρ∗F (k) at these points as in the previous case,
and prove that ∆Ẽt

k+1
(RẼt

k+1
s ) ̸= 0, s = 1, . . . , bẼt

k+1
, for the foliations ρ∗F

and ρ∗F (k). Consequently Ek+1 is a non-collinear divisor for F and F (k).
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However, we have that

(7.2)

bẼt
k+1∑

s=1
∆Ẽt

k+1
(RẼt

k+1
s ) = 0.

In fact, the divisor Ẽt
k+1 arises from one of the divisors Ẽr

k at one of the
points RẼr

k
t of the set π∗

Ẽr
k

C̃ ∩ Ẽr
k,red. Since Ẽr

k is a collinear divisor, then

R
Ẽr

k
t is a collinear point and (7.2) follows from Corollary 4.12.
Consider now a bifurcation divisor El of G(C ∪ C(k)) with l > k + 1. In

this case, we have that the curve π∗
El
C(k) does not intersect El,red, the curve

π∗
Ẽt

l

C̃(k) does not intersect Ẽt
l,red and bẼt

l
= nl in G(C̃ ∪ C̃(k)) (see (A.2)).

Let us denote {RẼt
l

1 , . . . , R
Ẽt

l

bẼt
l

} the set of points π∗
Ẽt

l

C̃ ∩ Ẽt
l,red = π∗

Ẽt
l

(C̃ ∪

C̃(k)) ∩ Ẽt
l,red. With the notations above, for s ∈ {1, . . . , bẼt

l
}, we have

that I
R

Ẽt
l

s

(π∗
Ẽt

l

ρ∗F , Ẽt
l,red) is given by (7.1) while I

R
Ẽt

l
s

(π∗
Ẽt

l

ρ∗F (k), Ẽt
l,red) =

0 since the points RẼt
l

s are non-singular points for ρ∗F (k). This implies
∆Ẽt

l
(RẼt

l
s ) ̸= 0, 1 ⩽ s ⩽ bẼt

l
, and hence El is a non-collinear divisor for the

foliations ρ∗F and ρ∗F (k). Moreover, we have that
bẼt

l∑
s=1

∆Ẽt
l
(RẼt

l
s ) = −

bẼt
l∑

s=1
I

R
Ẽt

l
s

(π∗
Ẽt

l

ρ∗F , Ẽt
l,red) = 1 + IQ(π∗

Ẽt
l

ρ∗F , Ẽt
l,red)

where Q is the only singular point of π∗
Ẽt

l

ρ∗F in Ẽt
l different from the points

R
Ẽt

l
s . By Proposition 4.4 in [9], we know that IQ(π∗

Ẽt
l

ρ∗F , Ẽt
l,red) ̸= −1 and

hence
bẼt

l∑
s=1

∆Ẽt
l
(RẼt

l
s ) ̸= 0. □

Thus, by Theorem 6.4 there is a decomposition

JF,F(k) = J∗ ∪

(
g⋃

i=k+1
J i

)
where J i = JEi

nc , such that
(i) ν0(Jk+1) < n1 · · ·nk+1.
(ii) ν0(J i) = n1 · · ·ni−1(ni − 1) for k + 2 ⩽ i ⩽ g.
(iii) if γ is a branch of J i, k + 1 ⩽ i ⩽ g, we have that C(γ,C) = βi

β0
.

(iv) if γ is a branch of J∗, then C(γ,C) < βk+1
β0

.
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Note that γ is a branch of J∗ if it is not a branch of any of the curves J i,
k+ 1 ⩽ i ⩽ g, and hence, π∗

Cγ intersects a component E of the exceptional
divisor π−1

C (0) which appears in the reduction of singularities of C before
than Ek+1. Consequently we have that C(γ,C) < v(Ek+1) = βk+1

β0
which

gives property (iv).
Let us prove that Jk+1 = ∅. From Section 6 we have that ρ−1Jk+1 =⋃n1···nk

t=1 J
Ẽt

k+1
nc with the notations of the proof of Lemma 7.5. Let us com-

pute MẼt
k+1

(z) for any t ∈ {1, . . . , n1 · · ·nk}. To simplify notations, let us

denote b̃ = bẼt
k+1

= nk+1 + 1, R̃s = R
Ẽt

k+1
s and ∆(R̃l) = ∆Ẽt

k+1
(R̃l). Thus,

we have that

MẼt
k+1

(z) =
b̃−1∑
s=1

∆(R̃s)
z − ξs

+ ∆(R̃b̃)
z

where ξ is a primitive nk+1-root of a value a = aẼt
k+1 determined by the

Puiseux parametrizations of C. From the proof of Lemma 7.5, we obtain
that ∆(R̃s) = ∆(R̃t) for any s, t ∈ {1, . . . , b̃ − 1}. Thus, taking into ac-
count (7.2), we get that

MẼt
k+1

(z) = ∆(R̃1)

∑b̃−1
s=1

∏nk+1
t=1
t̸=s

(z − ξt)

znk+1 − a
+ ∆(R̃b̃)

z

= ∆(R̃1)nk+1z
nk+1−1

znk+1 − a
+ ∆(R̃b̃)

z
= −a∆(R̃b̃)
z(znk+1 − a)

where a∆(R̃b̃) ̸= 0. Hence, J Ẽt
k+1

nc = ∅ for all t = 1, . . . , n1 · · ·nk and
consequently Jk+1 = ∅.

Corollary 7.6. — Let C be an irreducible curve and C(k) the curve
given by the k-characteristic approximate root (or by a k-semiroot) with
0 ⩽ k ⩽ g − 1. Consider F ∈ GC and F (k) ∈ GC(k) . Thus, the jacobian
curve JF,F(k) has a decomposition

JF,F(k) = J∗ ∪

(
g⋃

i=k+2
J i

)

such that

(i) ν0(J i) = n1 · · ·ni−1(ni − 1) for k + 2 ⩽ i ⩽ g.
(ii) if γ is a branch of J i, k + 2 ⩽ i ⩽ g, we have that C(γ,C) = βi

β0
.

(iii) if γ is a branch of J∗, then C(γ,C) < βk+1
β0

.
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In particular, the result above implies the result of E. García Barroso
and J. Gwoździewicz ([14, Theorem 1]) concerning the jacobian curve of a
plane curve and its characteristic approximate roots.

Moreover, in [31], it is considered the jacobian curve JF,G(k) of a folia-
tion F with an irreducible separatrix f = 0 and the hamiltonian foliation
G(k) defined by df (k) = 0 with f (k) a characteristic approximate root of
f . Corollary 7.6 also implies the main result of N. E. Saravia in [31, Theo-
rem 4.1] concerning factorization of JF,G(k) .

Remark 7.7. — Note that E1 is always a collinear divisor for the foli-
ations F and F (k), hence the hypothesis of Lemma 2.3 are not satisfied
and the multiplicity of JF,F(k) can be greater than ν0(F) + ν0(F (k)) =
ν0(C) + ν0(C(k))− 2 as showed in the examples given in [14] or [31].

7.3. Polar curves of foliations

Given a germ of foliation F in (C2, 0), a polar curve of F corresponds to
the jacobian curve of F and a non-singular foliation G. If we are interested
in the topological properties of a generic polar curve of F , it is enough to
consider a generic curve PF

[a:b] in the family of curves given by

ω ∧ (a dy − bdx) = 0

where ω = 0 is a 1-form defining F and [a : b] ∈ P1
C (see [9, Section 2]).

When F is a hamiltonian foliation given by df = 0 we recover the notion
of polar curve of a plane curve. As we mention in the introduction, polar
curves play an important role in the study of singularities of plane curves
and also of foliations. There is a result, known as “decomposition theorem”,
which describes the minimal topological properties of the generic polar
curve of a plane curve C in terms of the topological type of the curve C
(see [25] for the case of C irreducible; [13] for C with several branches).
In the case of foliations, the decomposition theorem also holds for the
generic polar curve of a generalized curve foliation F with an irreducible
separatrix (see [30]). In the general case of a generalized curve foliation F
whose curve of separatrices is not irreducible, the decomposition theorem
for its generic polar curve only holds under some conditions on the foliation
F (see [9]). Let us see that all these results can be recovered from the
results in this paper. In particular, we show that we can prove Theorems 5.1
and 6.1 in [9] which give the decomposition theorem for the polar curve
of a generalized curve foliation F and hence we get all the other results
concerning decompositions theorems.
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Let F be a generalized curve foliation in (C2, 0) with C as curve of sep-
aratrices and denote by PF a generic polar curve of F . We can assume
that PF = JF,G where G is a non-singular foliation. Note that the curve
of separatrices D of G is a non-singular irreducible plane curve. Let us as-
sume first that C has only non-singular irreducible components, all of them
different from D, and take the notations of Section 4. Thus the minimal re-
duction of singularities πC : XC → (C2, 0) is also the minimal reduction of
singularities of Z = C∪D. Note that the dual graph G(Z) is obtained from
G(C) adding an arrow to the first divisor E1 which represents the curve D.
Hence, if we denote bZ

E , bC
E the number associated to a divisor E in G(Z)

or G(C) respectively, as defined in Subsection 2.3, then bZ
E1 = bC

E1 + 1 and
bZ

E = bC
E otherwise.

Consider E an irreducible component of the exceptional divisor π−1
C (0).

If E = E1 is the divisor which appears after the blow-up of the origin, then
π∗

E1D∩E1
red = {Q} and Q ̸∈ π∗

E1C ∩E1
red. Thus, for R ∈ E1

red we have that

∆F,G
E1 (R) =

{
IQ(π∗

E1G, E1
red), if R = Q,

−IR(π∗
E1F , E1

red), otherwise.

with IQ(π∗
E1G, E1

red) = −1. If E ̸= E1, then π∗
EZ ∩Ered = π∗

EC ∩Ered and
then ∆F,G

E (R) = −IR(π∗
EF , Ered) for any R ∈ Ered.

With the hypothesis above and the notations of Section 4, we have that

Lemma 7.8. — The following conditions are equivalent:
(i) There is no corner in π−1

C (0) such that π∗
CF has Camacho–Sad index

equal to −1.
(ii) All the components of the exceptional divisor π−1

C (0) are purely
non-collinear.

Proof. — Assume that (i) holds and that there is a component E of the
exceptional divisor which is not purely non-collinear, that is, there is a
singular point R ∈ Ered of π∗

EF with IR(π∗
EF , Ered) = 0. Then R is not

a simple singularity for π∗
EF and hence, if σ : XE′ → XE is the blow-up

with center in R, and we denote by Ẽred the strict transform of Ered by σ,
then we have that IR̃(π∗

Ẽ
F , Ẽred) = −1 where R̃ = E′

red ∩ Ẽred. Thus we
get a corner in π−1

C (0) with Camacho–Sad index equal to −1.
Conversely, assume now that all the components of the exceptional divi-

sor π−1
C (0) are purely non-collinear and there is a corner R̃ = Ek−1∩Ek with

IR̃(π∗
CF , Ek−1) = −1. Consider the morphism πEk−1 : XEk−1 → (C2, 0)

and take the point R ∈ Ek−1,red that we have to blow-up to obtain the
divisor Ek. Thus, by the properties of the Camacho–Sad, we have that
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IR(π∗
Ek−1,red

F , Ek−1,red) = 0 but this contradicts that Ek−1 is purely non-
collinear. □

In particular, let us see that Theorem 6.1 in [9] is consequence of The-
orem 5.2. Assume that the logarithmic model of F is non resonant, this
implies condition (i) in the lemma above (by [9, Proposition 4.4]) and hence
all the divisors in G(Z) are non-collinear. Note that E1 is always a bifurca-
tion divisor in G(Z) and we have that

∑
R∈E1 ∆E1(R) = 0 by Remark 4.11.

If we write π∗
E1C ∩ E1

red = {RE1

1 , . . . , RE1

bC
E1
} and π∗

E1D ∩ E1
red = {Q} with

RE1

l = (0, cE1

l ), l = 1, . . . , bC
E1 , and Q = (0, d) in coordinates in the first

chart of E1
red, then the set of zeros ofME1(z) are given by the roots of the

polynomial

bC
E1∏

j=1
(z − cE1

j ) + (z − d)
bC

E1∑
l=1
I

RE1
l

(π∗
E1F , E1

red)
∏
j ̸=l

(z − cE1

j )

which has multiplicity equal to bC
E1 − 1 provided that

bC
E1∑

j=1
cE1

j + d

bC
E1∑

l=1
I

RE1
l

(π∗
E1F , E1

red) ̸= 0.

Note that we can assume that this condition holds since we are consider a
generic polar curve.

Consider a component E of the exceptional divisor π−1
C (0). We have that

NCol(E) = π∗
EC∩Ered if E ̸= E1 and NCol(E1) = (π∗

E1C∩E1
red)∪(π∗

E1D∩
E1

red). Given a point P in π∗
EC ∩ Ered, by Theorem 5.2, we have that

νP (π∗
EPF ) = νP (π∗

EC)− 1

and hence we have [9, Theorem 6.1]. If we take the point Q given by π∗
E1D∩

E1
red, we have that νQ(π∗

E1PF ) = νQ(π∗
E1D)−1 = 0. Thus, by Theorem 5.8

we obtain that PF =
⋃

E∈B(C) J
E with the following properties

(i) ν0(JE) = bC
E − 1,

(ii) π∗
EJ

E ∩ π∗
EC = ∅,

(iii) if E′ < E, then π∗
EJ

E ∩ π′
E(E′) = ∅,

(iv) if E′ > E, then π∗
E′JE ∩ E′

red = ∅,
which in particular implies the decomposition of the generic polar curve
given in Corollary 6.2 of [9] for C with non-irreducible components. Thus
the decomposition in the general case ([9, Theorem 5.1]) follows from The-
orem 6.4.
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Appendix A. Equisingularity data and Ramification

The aim of this appendix is to explain the behaviour of plane curves
and their invariants under the action of a ramification. Although some of
these results can be found in [10, Appendix B], we include them here for
completeness.

A.1. Equisingularity data

In Subsection 2.3 we have introduced some notations concerning equi-
singularity of plane curves that will be used in the sequel. This appendix
completes Subsection 2.3 with more notations related with equisingularity
data that have already been used to prove some results or that will be
useful in order to describe the effect of ramification over a plane curve.

Recall that πC : XC → (C2, 0) is the minimal reduction of singularities
of a curve C =

⋃r
i=1 Ci. Given an irreducible component E of π−1

C (0), a
curvette γ̃ of the divisor E is a non-singular curve transversal to E at a
non-singular point of π−1

C (0). The projection γ = πC(γ̃) is a germ of plane
curve in (C2, 0) and we say that γ is an E-curvette. We denote by m(E) the
multiplicity at the origin of any E-curvette and by v(E) the coincidence
C(γE , γ

′
E) of two E-curvettes γE , γ

′
E which cut E in different points. Note

that v(E) < v(E′) if E < E′. Recall that the coincidence C(γ, δ) between
two irreducible curves γ and δ is defined as

(A.1) C(γ, δ) = sup
1⩽i⩽ν0(γ)
1⩽j⩽ν0(δ)

{ordx(yγ
i (x)− yδ

j (x))}

where {yγ
i (x)}ν0(γ)

i=1 , {yδ
j (x)}ν0(δ)

j=1 are the Puiseux series of γ and δ respec-
tively.

Remark A.1. — Note that the coincidence C(γ, δ) between two irre-
ducible curves γ and δ and the intersection multiplicity (γ, δ)0 of both
curves at the origin are related as follows (see Merle [25, Proposition 2.4]):
if {β0, β1, . . . , βg} are the characteristic exponents of γ and α is a ratio-
nal number such that βq ⩽ α < βq+1 (βg+1 = ∞), then the following
statements are equivalent:

(i) C(γ, δ) = α

ν0(γ)

(ii) (γ, δ)0

ν0(δ) = βq

n1 · · ·nq−1
+ α− βq

n1 · · ·nq
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where {(mi, ni)}g
i=1 are the Puiseux pairs of γ (n0 = 1) and {β0, β1, . . . , βg}

is a minimal system of generators of the semigroup S(γ) of γ.

Consider any curvette γ̃E of E, then π′
E(γ̃E) is also a curvette of Ered ⊂

XE and it is clear that m(E) = m(Ered) and v(E) = v(Ered). Let
{βE

0 , β
E
1 , . . . , β

E
g(E)} be the characteristic exponents of γE = πC(γ̃E). Then

we have that m(E) = βE
0 = ν0(γE). There are two possibilities for the

value of v(E):
(i) either πE is the minimal reduction of singularities of γE and then

v(E) = βE
g(E)/β

E
0 . We say that E is a Puiseux divisor for πC (or C);

(ii) or πE is obtained by blowing-up q ⩾ 1 times after the minimal
reduction of singularities of γE and in this situation v(E) = (βE

g(E)+
q)/βE

0 . In this situation, if E is a bifurcation divisor, we say that E
is a contact divisor for πC (or C).

Moreover, a bifurcation divisor E can belong to a dead arc only if it is a
Puiseux divisor.

Take E a bifurcation divisor of G(C) and let {(mE
1 , n

E
1 ), (mE

2 , n
E
2 ), . . . ,

(mE
g(E), n

E
g(E))} be the Puiseux pairs of an E-curvette γE , we denote

nE =
{
ng(E), if E is a Puiseux divisor,
1, otherwise,

and nE = m(E)/nE . Observe that, if E belongs to a dead arc with terminal
divisor F , then m(F ) = nE . We define kE to be

kE =
{
g(E)− 1, if E is a Puiseux divisor,
g(E), if E is a contact divisor.

Hence we have that nE = nE
1 · · ·nE

kE
.

Remark A.2. — Let E be a bifurcation divisor ofG(C) which is a Puiseux
divisor for C and take any i ∈ IE (that is, E belongs to the geodesic of the
curve Ci). We have two possibilities concerning v(E):

• either v(E) = βi
kE+1/β

i
0, then we say that E is a Puiseux divisor

for Ci;
• or v(E) corresponds to the coincidence of Ci with another branch

of C, in this situation we say that E is a contact divisor for Ci.
Note that, if E is a Puiseux divisor for C, then it is a Puiseux divisor for
at least one irreducible component Ci with i ∈ IE , but it can be a contact
divisor for other branches Cj with j ∈ IE , j ̸= i. Consider for instance the
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curve C = C1 ∪ C2 with C1 = (y2 − x3 = 0) and C2 = (y − x2 = 0). The
dual graph G(C) is given by

Thus the divisor E3 is a Puiseux divisor for C and C1 but it is a contact
divisor for C2 since v(E3) = 3/2 = C(C1, C2).

Example A.3. — If we consider a semiroot C(k) of a curve C as in Sub-
section 7.2, then all the bifurcation divisors E1, E2, . . . , Eg are Puiseux di-
visors for C; the divisors E1, E2, . . . , Ek are also Puiseux divisors for C(k)

but Ek+1 is a contact divisor for C(k).

A.2. Ramification

Consider a plane curve C =
⋃r

i=1 Ci in (C2, 0). Let ρ : (C2, 0)→ (C2, 0)
be any C-ramification, that is, ρ is transversal to C and C̃ = ρ−1C has only
non-singular irreducible components. Consequently, if the ramification is
given by x = un, y = v, then it is required that n ≡ 0 mod (n1, n2, . . . , nr)
to ensure that C̃ has only non-singular irreducible components where ni =
ν0(Ci). Each curve C̃i = ρ−1Ci has exactly ni irreducible components and
the number of irreducible components of C̃ is equal to ν0(C) = n1+· · ·+nr.

More precisely, let yi(x) =
∑

l⩾ni ai
lx

l/ni be a Puiseux series of Ci, thus
all its Puiseux series are given by

yi
j(x) =

∑
l⩾ni

ai
lε

lj
i x

l/ni

for j = 1, 2, . . . , ni,

where εi is a primitive ni-root of the unity. Then fi(x, y) =
∏ni

l=1(y−yi
l(x))

is a reduced equation of Ci. If we put vi
j(u) = yi

j(un), then vi
j(u) ∈ C{u}

since n/ni ∈ N. Hence the curve σi
j = (v−vi

j(u) = 0) is non-singular and it
is one of the irreducible components of ρ−1Ci. Thus an equation of ρ−1Ci

is given by

gi(u, v) = fi(un, v) =
ni∏

l=1
(v − vi

l(u)).

In particular we have that the irreducible components {σi
j}ni

j=1 of ρ−1Ci

are in bijection with the Puiseux series of Ci.
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It is well-known that the equisingularity type of a curve C is deter-
mined by the characteristic exponents {βi

0, β
i
1, . . . , β

i
gi
}r

i=1 of its irreducible
components and the intersection multiplicities {(Ci, Cj)0}i ̸=j . In [10] it is
proved that the equisingularity data of C can be recovered from the curve
ρ−1C.

Let us explain now the relationship between the dual graphs G(C) and
G(C̃) of the minimal reduction of singularities of C and C̃ respectively.
Observe that, if Ẽ and Ẽ′ are two consecutive vertices ofG(C̃) with Ẽ < Ẽ′,
then v(Ẽ′) = v(Ẽ)+1. Thus, G(C̃) is completely determined once we know
the bifurcation divisors, the order relations among them and the number
of edges which leave from each bifurcation divisor.

Let Ki be the geodesic in G(C) of a branch Ci of C and let K̃i be
the sub-graph of G(C̃) corresponding to the geodesics of the irreducible
components {σi

l}ni

l=1 of ρ−1Ci. Let us explain how to construct K̃i from
Ki. Denote by B(K̃i) and B(Ki) the bifurcation vertices of K̃i and Ki

respectively. We say that a vertex Ẽ of B(K̃i) is associated to a vertex E
of B(Ki) if v(Ẽ) = nv(E). Note that there can be other bifurcation vertices
in G(C̃)∖B(K̃i) with valuation equal to nv(E) but they are not associated
to E.

Take a vertex E of B(Ki). Consider first the case of E being the first
bifurcation divisor of B(Ki) and take E′ its consecutive vertex in B(Ki).
Then E has only one associated vertex Ẽ in B(K̃i) and there are two
possibilities for the number of edges which leave from it:

• If E is a Puiseux divisor for Ci, then there are ni
1 edges which leave

from Ẽ in K̃i; then E′ has ni
1 associated vertices in B(K̃i).

• If E is a contact divisor for Ci, then there is only one edge which
leave from Ẽ in K̃i and thus E′ has only one associated vertex in
B(K̃i).

Note that, if E is a Puiseux divisor for C, then E is a Puiseux divisor for
at least one irreducible component Ci but it can be a contact divisor for
all the other irreducible components (see Remark A.2). Let E now be any
vertex of B(Ki) and assume that we know the part of K̃i corresponding to
the vertices of Ki with valuation ⩽ v(E). Then there are nE = ni

1 · · ·ni
kE

vertices {Ẽl}n
E

l=1 associated to E and

• If E is a Puiseux divisor for Ci, then there are ni
kE+1 edges which

leave from each vertex Ẽl in K̃i.
• If E is a contact divisor for Ci, then there is only one edge which

leaves from each vertex Ẽl in K̃i.
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The dual graph G(C̃) is constructed by gluing the graphs K̃i. Thus we
deduced that, if Ẽ is a divisor of G(C̃) associated to a divisor E of G(C),
then

(A.2) bẼ =



bE , if E is a contact divisor for C,
(bE − 1)nE , if E is a Puiseux divisor for C

which belongs to a dead arc,
(bE − 1)nE + 1, if E is a Puiseux divisor for C

which does not belong to a dead arc.

Thus all vertices in G(C̃) associated to a divisor E of G(C) have the same
valence. Moreover, if γE is an E-curvette of a bifurcation divisor E of G(C),
the curve ρ−1γE has m(E) = nEnE irreducible components which are all
non-singular and each divisor Ẽl belongs to the geodesic of exactly nE

branches of ρ−1γE which are curvettes of Ẽl in different points.
Observe that there are non-bifurcation divisors of G(C) without associ-

ated divisors in G(C̃).
Due to the bijection between the Puiseux series of Ci and the irreducible

components of ρ−1Ci, we have that the choice of a vertex Ẽl ∈ B(K̃i)
associated to a bifurcation divisor E is equivalent to the choice of a nE-th
root ξl of the unity. This implies that the vertex Ẽl belongs to the geodesic
of ei

E = ni/nE irreducible components {σi
lt}

ei
E

t=1 of ρ−1Ci. Moreover, the
curve σi

lt is given by (v − ηi
lt(u) = 0) where

ηi
lt(u) =

∑
s⩾ni

ai
s(ζilt)susn/ni

, for t = 1, . . . , ei
E ,

and {ζilt}
ei

E
t=1 are the ei

E-th roots of ξl. The cardinal of the set π∗
ẼlC̃i∩ Ẽl

red
is given by

♯(π∗
ẼlC̃i ∩ Ẽl

red) =
{
nE , if E is a Puiseux divisor for Ci,
1, if E is a contact divisor for Ci.

Furthermore, if E is a Puiseux divisor for Ci and P,Q are two different
points in π∗

ẼlC̃i ∩ Ẽl
red, we have that

(A.3) νP (π∗
ẼlC̃i) = νQ(π∗

ẼlC̃i) = ei
E

nE
;

ANNALES DE L’INSTITUT FOURIER



JACOBIAN CURVE OF SINGULAR FOLIATIONS 55

and if E is a contact divisor for Ci and we denote P the only point in the
set π∗

ẼlC̃i ∩ Ẽl
red, then

(A.4) νP (π∗
ẼlC̃i) = ei

E .

Consider now two divisors Ẽl and Ẽk associated to the same bifur-
cation divisor E of G(C), and let ξl and ξk be the nE-th roots of the
unity corresponding to the divisors Ẽl and Ẽk. We can define a bijection
ρl,k : Ẽl

red → Ẽk
red as follows: the map ρl,k sends the “infinity point” of

Ẽl
red (that is, the origin of the second chart of Ẽl

red) into the “infinity
point” of Ẽk

red. Given another point P of Ẽl
red, we take an Ẽl-curvette

γP
Ẽl = (v − ψP

Ẽl(u) = 0) with

(A.5) ψP
Ẽl(u) =

v(Ẽl)−1∑
i=1

aẼl

i ui + aP
v(Ẽl)u

v(Ẽl),

and such that π∗
Ẽlγ

P
Ẽl ∩ Ẽl

red = {P}. We define ρl,k(P ) to be the point
π∗

Ẽkγ
ρl,k(P )
Ẽk ∩ Ẽk

red, where the curve γ
ρl,k(P )
Ẽk = (v − ψ

ρl,k(P )
Ẽk (u) = 0) is

given by

ψ
ρl,k(P )
Ẽk (u) =

v(Ẽl)−1∑
i=1

aẼl

i

(
ξk

ξl

)i

ui + aP
v(Ẽl)

(
ξk

ξl

)v(Ẽl)
uv(Ẽl).

Note that γρl,k(P )
Ẽk is an Ẽk-curvette.

Recall also that given any bifurcation divisor E of G(C) or E = E1

and any of its associated divisors Ẽl in G(C̃), there is a morphism ρẼl,E :
Ẽl

red → Ered which is a ramification of order nE (see [10, Lemma 8]). The
map ρẼl,E is defined as follows: ρẼl,E sends the “infinity point” of Ẽl

red into
the “infinity point” of Ered and the origin of the first chart of Ẽl

red is sent
to the origin of the first chart of Ered. For any other point P of Ẽl

red, we
can take an Ẽl-curvette γP

Ẽl = (v−ψP
Ẽl(u) = 0) with π∗

Ẽlγ
P
Ẽl ∩ Ẽl

red = {P}.
Thus if ψP

Ẽl(u) is given by (A.5), we can consider the E-curvette γP
E given

by the Puiseux series

yP (x) =
v(Ẽl)−1∑

i=1
aẼl

i xi/m(E) + aP
v(Ẽl)x

v(Ẽl)/m(E),

and ρẼl,E(P ) is the only point π∗
Eγ

P
E ∩Ered. Observe that, if E is a bifur-

cation divisor in the geodesic of a branch Ci of C and Ẽl is any associated
divisor to E in G(C̃), then the morphism ρẼl,E maps all the points in
π∗

ẼlC̃i ∩ Ẽl
red to the only point in π∗

ECi ∩ Ered.
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Moreover, note that, if Ẽl and Ẽk are two divisors of G(C̃) associated
to a bifurcation divisor E of G(C), then the following diagram

Ẽl
red

ρl,k //

ρ
Ẽl,E ""

Ẽk
red

ρ
Ẽk,E||

Ered
is commutative.

Finally remark that, if γEt is a curvette of a terminal divisor Et of a dead
arc with bifurcation divisor E, then ρ−1γEt

is composed by m(Et) = nE

non-singular irreducible components and each divisor Ẽl belongs to the
geodesic of exactly one branch of ρ−1γEt

, where {Ẽl}n
E

l=1 are the divisors
associated to E in G(C̃).

A.3. Logarithmic foliations and ramification

Consider the logarithmic foliation LC
λ defined by

f1 · · · fr

r∑
i=1

λi
dfi

fi
= 0

with λ = (λ1, . . . , λr) ∈ Cr and fi ∈ C{x, y} (see Section 3 for notations
concerning logarithmic foliations). Let us see the behaviour of LC

λ after a
ramification.

Consider the curve C =
⋃r

i=1 Ci with Ci = (fi = 0) and let ρ : (C2, 0)→
(C2, 0) be any C-ramification, that is, ρ is transversal to C and the curve
C̃ = ρ−1C has only non-singular irreducible components. We refer to Sub-
sections 2.3, A.1 and A.2 for notations concerning equisingularity data of
curves and ramifications.

We have that ρ∗LC
λ = LC̃

λ∗ with

λ∗ = (
n1︷ ︸︸ ︷

λ1, . . . , λ1, . . . ,

nr︷ ︸︸ ︷
λr, . . . , λr)

where ni = ν0(Ci) for i = 1, . . . , r. We put ρ−1Ci = C̃i = {σi
t}ni

t=1 where
each σi

t is an irreducible curve. Moreover, we have that logarithmic models
behave well under ramification. More precisely,

Proposition A.4 (see [9]). — Let F ∈ GC and LC
λ a logarithmic model

of F . If ρ : (C2, 0)→ (C2, 0) is a C-ramification, then ρ∗LC
λ is a logarithmic

model of ρ∗F .
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Let πC : XC → (C2, 0) be the minimal reduction of singularities of C
and πC̃ : XC̃ → (C2, 0) be the minimal reduction of singularities of C̃. Take
E a bifurcation divisor of G(C) and let Ẽl be any bifurcation divisor of
G(C̃) associated to E. Given any i ∈ IE (that is, E is in the geodesic of
Ci), there are ei

E branches of ρ−1Ci such that Ẽl belongs to their geodesics
where ei

E = ni/nE and we have that the residue of the logarithmic foliation
LC̃

λ∗ along the divisor Ẽl is given by

κẼl(LC̃
λ∗) =

r∑
i=1

λi

ni∑
t=1

∑
Ẽ⩽Ẽl

ε
σi

t

Ẽ
.

(see (3.2) for its definition). Let {RẼl

1 , RẼl

2 , . . . , RẼl

b
Ẽl
} be the set of points

π∗
ẼlC̃ ∩ Ẽl

red and put mi

RẼl
t

= ν
RẼl

t
(π∗

ẼlC̃i) for t = 1, 2, . . . , bẼl . Note that

mi

RẼl
t

= ♯{s ∈ {1, . . . , ni} : π∗
Ẽlσ

i
s∩Ẽl

red = {RẼl

t }} = ei
E

nE
(the last equality

follows from equations (A.3) and (A.4) in Appendix A.2 where mi

RẼl
t

is also
computed). With these notations we have that

(A.6) I
RẼl

t
(π∗

ẼlLC̃
λ∗ , Ẽl

red) = −

∑
i∈IE

λim
i

RẼl
t

κẼl(LC̃
λ∗)

.

Observe that if Ẽl and Ẽk are two bifurcation divisors of G(C̃) associ-
ated to the same divisor E of G(C), we have that κẼl(LC̃

λ∗) = κẼk (LC̃
λ∗).

Moreover, there is a bijection between the sets of points π∗
ẼlC̃ ∩ Ẽl

red

and π∗
Ẽk C̃ ∩ Ẽk

red induced by the map ρl,k : Ẽl
red → Ẽk

red (see Appen-
dix A.2). Hence, if {RẼk

1 , RẼk

2 , . . . , RẼk

b
Ẽk
} is the set of points π∗

Ẽk C̃ ∩ Ẽk
red

with RẼk

t = ρl,k(RẼl

t ) for t = 1, 2, . . . , bẼk , we have that

(A.7) I
RẼk

t
(π∗

ẼkLC̃
λ∗ , Ẽk

red) = I
RẼl

t
(π∗

ẼlLC̃
λ∗ , Ẽl

red), t = 1, 2, . . . , bẼk .

Moreover, if RẼl

t , RẼl

s are two points in π∗
ẼlC̃ ∩ Ẽl

red with ρẼl,E(RẼl

t ) =
ρẼl,E(RẼl

s ) where ρẼl,E : Ẽl
red → Ered is the ramification defined in Ap-

pendix A.2, then

(A.8) I
RẼl

t
(π∗

ẼlLC̃
λ∗ , Ẽl

red) = I
RẼl

s
(π∗

ẼlLC̃
λ∗ , Ẽl

red)

since mi

RẼl
t

= mi
RẼl

s

= ei
E

nE
for i ∈ IE by equations (A.3) and (A.4).
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Appendix B. Intersection multiplicities

We state now two results concerning the intersection multiplicity of the
jacobian curve of two foliations either with a single separatrix of one of
the foliations and with the curve of all separatrices. These intersection
multiplicities are computed in terms of local invariants of the foliations (see
Subsection 2.1 for notations). Consider two foliations F and G in (C2, 0)
and denote by JF,G the jacobian curve of F and G.

Proposition B.1. — Assume that F and G have no common separa-
trix. If S is an irreducible separatrix of F , we have that

(JF,G , S)0 = µ0(F , S) + τ0(G, S).

Proof. — Let us write ω = A(x, y) dx+B(x, y) dy and η = P (x, y) dx+
Q(x, y) dy the 1-forms defining F and G respectively. Let γ(t) = (x(t), y(t))
be a parametrization of the curve S. We can assume, without loss of gen-
erality, that x(t) ̸= 0 and thus ẋ(t) ̸= 0. Since S is a separatrix of F , then
A(γ(t))ẋ(t) +B(γ(t))ẏ(t) = 0. Thus, we have that

(JF,G , S)0 = ordt{A(γ(t))Q(γ(t))−B(γ(t))P (γ(t))}

= ordt

{
−B(γ(t))ẏ(t)

ẋ(t) Q(γ(t))−B(γ(t))P (γ(t))
}

= ordt(B(γ(t)))− (ordt(x(t))− 1)
+ ordt{P (γ(t))ẋ(t) +Q(γ(t))ẏ(t)}

= µ0(F , S) + τ0(G, S)

where the last equality comes from the expression of µ0(F , S) given in (2.1)
and the definition of τ0(G, S) given in (2.2). □

When G is a non-singular foliation, we obtain Proposition 1 in [6] for
the polar intersection number with respect to a branch of the curve of
separatrices of F . Note that, although in [6] it is assumed that the foliation
F is non-dicritical, the result is also true when F is a dicritical foliation.
Using property (iv) in Theorem 2.1, we get following consequence of the
above result:

Corollary B.2. — If G is a non-dicritical second type foliation and
SG is the curve of separatrices of G, we have that

(JF,G , S)0 = µ0(F , S) + (SG , S)0 − 1.

Next result gives a relationship among the intersection multiplicities of
the jacobian curve with the curves of separatrices and the Milnor number
of the foliations.

ANNALES DE L’INSTITUT FOURIER



JACOBIAN CURVE OF SINGULAR FOLIATIONS 59

Proposition B.3. — Consider two non-dicritical second type foliations
F and G without common separatrices. Thus

(JF,G , SF )0 − (JF,G , SG)0 = µ0(F)− µ0(G),

where SF , SG are the curves of separatrices of F and G respectively.

Proof. — Let B(JF,G) be the set of irreducible components of JF,G .
Given any branch Γ ∈ B(JF,G), we denote by γΓ(t) = (xΓ(t), yΓ(t)) any
primitive parametrization of Γ. Assume that the foliations F and G are
defined by the 1-forms ω = Adx+B dy and η = P dx+Qdy respectively.
Thus we have that A(γΓ(t))Q(γΓ(t)) − B(γΓ(t))P (γΓ(t)) = 0. Since Γ is
not a separatrix of G, then either Q(γΓ(t)) ̸≡ 0 or P (γΓ(t)) ̸≡ 0. We will
assume that Q(γΓ(t)) ̸≡ 0. Let us compute the intersection multiplicity of
(JF,G , SF )0 taking into account property (iv) in Theorem 2.1:

(JF,G ,SF )0 =
∑

Γ∈B(JF,G)

(Γ, SF )0 =
∑

Γ∈B(JF,G)

(τ0(F ,Γ) + 1)

=
∑

Γ∈B(JF,G)

(ordt{A(γΓ(t))ẋΓ(t) +B(γΓ(t))ẏΓ(t)}+ 1)

=
∑

Γ∈B(JF,G)

(
ordt

{
B(γΓ(t))P (γΓ(t))

Q(γΓ(t)) ẋΓ(t) +B(γΓ(t))ẏΓ(t)
}

+ 1
)

=
∑

Γ∈B(JF,G)

ordt{B(γΓ(t))} −
∑

Γ∈B(JF,G)

ordt{Q(γΓ(t))}

+
∑

Γ∈B(JF,G)

(ordt{P (γΓ(t))ẋΓ(t) +Q(γΓ(t))ẏΓ(t)}+ 1)

= µ0(F)− µ0(G) +
∑

Γ∈B(JF,G)

(τ0(G,Γ) + 1)

= µ0(F)− µ0(G) + (JF,G , SG)0. □
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