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JACOBIAN CURVE OF SINGULAR FOLIATIONS

by Nuria CORRAL (*)

Dedicated to Felipe Cano, with admiration and gratitude

ABSTRACT. Topological properties of the jacobian curve Jr g of two folia-
tions F and G are described in terms of invariants associated to the foliations. The
main result gives a decomposition of the jacobian curve Jr g which depends on
how similar are the foliations F and G. The similarity between foliations is codified
in terms of the Camacho—Sad indices of the foliations with the notion of collinear
point or divisor. Our approach allows to recover the results concerning the factor-
ization of the jacobian curve of two plane curves and of the polar curve of a curve
or a foliation.

RiSUME. — Nous décrivons des propriétés topologiques de la courbe jacobienne
Jr,g de deux feuilletages F et G en termes des invariants associés aux feuilletages.
Le resultat principal donne une décomposition de la courbe jacobienne Jr g qui
dépend de la similitude des feuilletages F et G. Cette similitude entre les feuilletages
est codifiée en termes des indices de Camacho—Sad des feuilletages avec la notion
de point ou diviseur colinéaire. Notre approche permet de récupérer les résultats
concernant la factorisation de la courbe jacobienne de deux courbes planes et de
la courbe polaire d’une courbe ou d’un feuilletage.

1. Introduction

Given two germs of holomorphic functions f,g € C{x,y}, the Jacobian
determinant

J(f:g) = fx9y — fy9x

defines a curve called the jacobian curve of f and g (see [8, 23] for instance).
The analytic type of the jacobian curve is an invariant of the analytic type
of the pair of curves f = 0 and g = 0 but its topological type is not

Keywords: Jacobian curve, singular foliation, polar curve, Camacho—Sad index, equisin-
gularity data.

2020 Mathematics Subject Classification: 32565, 32550, 14H20.

(*) The author is supported by the Spanish research project PID2019-105621GB-
100/AEI/10.13039/501100011033 funded by the Agencia Estatal de Investigacién — Min-
isterio de Ciencia e Innovacién.



230 Nuria CORRAL

a topological invariant of the pair of curves (see [24]). Properties of the
jacobian curve have been studied by several authors in terms of properties
of the curves f = 0 and g = 0 (see for instance [8, 20], and [14] when g is
a characteristic approximated root of f).

This notion can be studied in the more general context given by the
theory of singular foliations: given two germs of foliations F and G in
(C2,0), defined by the 1-forms w = 0 and 1 = 0, the jacobian curve Jr g
of F and G is the curve given by

wAn=0.

Note that this is the curve of tangency between both foliations. It is easy
to show that the branches of Jr g are not separatrices of F or G provided
that the foliations F and G do not have common separatrices.

If the foliation G is non-singular, the jacobian curve Jr g coincides with
the polar curve of the foliation F. Properties of the equisingularity type of
polar curves of foliations have been studied in [9, 10, 12, 30]. Moreover, if
the foliation F is given by df = 0 with f € C{x,y}, we recover the notion
of polar curve of a plane curve. The local study of these curves has also
been widely treated by many authors (see for instance [7, 13, 21, 25] or the
recent works [2, 18]).

Moreover, the use of polar curves of foliations allowed to describe proper-
ties of foliations. In [6], the study of intersection properties of polar curves
of foliations permitted to characterize generalized curve foliations as well
as second type foliations; an expression of the GSV-index can also be given
in terms of these invariants (see also [15] for the dicritical case). There are
also some recent works that show the interest of jacobian curves or polar
curves of foliations in the study of analytic invariants of curves (see for
instance [16]) or singular foliations (see [26]).

The aim of this paper is to describe properties of the equisingularity type
of Jr ¢ in terms of invariants associated to the foliations F and G. Note
that, in general, the locus Jr g cannot be described from the data of F and
G. It is enough to consider the non-singular foliations F given by dax =0
and G defined by dz + h(z,y)dy = 0, hence the jacobian curve Jr g is
defined by h(z,y) = 0.

To illustrate the kind of conditions we are going to ask to the foliations
and the type of results that we can obtain, let us explain the relationship
between the multiplicity at the origin of the jacobian curve vy(Jr,g) and
the multiplicities of the foliations F and G. If the 1-forms w and n defining
F and G are given by w = A(x,y)dz + B(z,y)dy and n = P(z,y)dx +
Q(z,y) dy respectively, the jacobian curve Jr g is defined by J(z,y) =0
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JACOBIAN CURVE OF SINGULAR FOLIATIONS 231

where

A(z,y) B(z,y)
P(r,y) Q(=z,y)|

Thus the multiplicity at the origin vo(Jr,g) of the jacobian curve satisfies
(1.2) w(Jr.g) 2 vo(F) +n(9)

where vy(F), vo(G) denote the multiplicity at the origin of the foliations
F and G respectively. One of the first results describing the properties of
the jacobian curve shows that equality in (1.2) holds, that is,

vo(Jr,g) = vo(F) +10(9)

provided that the foliations F and G have different Camacho—Sad index at
any singular point in the exceptional divisor E! obtained after one blow-up

(1.1) J(z,y) =

(see Lemma 2.3).

The main result in this paper, Theorem 6.4, gives a factorization of the
jacobian curve Jr g of two generalized curve foliations F and G in terms
of invariants given by the dual graph of the common minimal reduction of
singularities of F and G. This result gives a decomposition of the jacobian
curve Jr g in two classes of components: one for which we can control some
properties of the topology from the data of F and G and another one for
which such a control is impossible. The properties of the components in that
decomposition depend on how “similar” are the foliations F and G in terms
of its singularities and Camacho—Sad indices at the common singularities.
We introduce the notion of collinear point and collinear divisor to measure
this similarity between the foliations (see Section 4 where properties of
collinear and non-collinear divisors are given).

The strategy used to prove the decomposition result is to study first
the case when the foliations F and G have separatrices with non-singular
irreducible components (Section 5). In this case, thanks to the hypothesis
over the separatrices, we can compute “by hand” the infinitely near points
of the jacobian curve under certain hypothesis over the foliations related
with the notion of collinearity (a key point is Lemma 4.13 relating the
weighted initial part of the 1-forms defining the foliations F and G and
the one of the equation of the jacobian curve). In these computations,
we use the existence of logarithmic models for generalized curve foliations
(proved in [9]) and the properties shared by a foliation and its logarithmic
model. Moreover, we describe the relationship between the jacobian curve
of two foliations and the one of its logarithmic models (see Lemmas 4.14
and 4.16). These results will allow us to do some computations for the
jacobian curve of two logarithmic foliations (see Theorem 5.2) and thus
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232 Nuria CORRAL

we get it for the jacobian curve of any non-dicritical generalized curve
foliations.

Then we use a ramification p : (C2,0) — (C2,0) to reduce the general
case to the previous one (Section 6). This strategy works since we can
prove that the curves p~'Jr g and J,-7 g “share” the same infinitely
near points in the common reduction of singularities of p*F and p*G (see
Lemma 6.1). Thus the results obtained in Section 5 can be used to describe
properties of p~1 Jx g and hence, recover properties of the curve Jr g since
the equisingularity data of a curve can be recovered from the one obtained
after ramification (see [10]). We include an appendix (Appendix A) devoted
to explain all the details concerning the ramification process.

Section 2 is devoted to introduce notations and local invariants of curves
and foliations which will be used throughout the paper. In Section 3 we re-
call the notion of logarithmic model (introduced in [9]) and some properties
of logarithmic foliations.

In the last part of the article (Section 7) we show the role that the
Camacho—Sad indices play to explain some behaviours of jacobian curves
of plane curves. In particular, we show how our results imply the re-
sults of T.-C. Kuo and A. Parusifiski concerning jacobian curves of plane
curves [20], the results of E. Garcia Barroso and J. Gwozdziewicz about
the jacobian curve of a plane curve and its approximate roots [14] and
also previous results about polar curves of foliations (given in [9, 30]).
All these results can be consider as particular cases of the results in this
paper.

The article finishes with two appendices. The first one contains results
concerning ramification. The second one is devoted to prove some formulas
which describe the multiplicity of intersection of the jacobian curve with
the separatrices of the foliations F and G in terms of the local invariants
associated to F and G. These formulas generalize some properties of polar
curves of a foliation given in [6, 9] which were key in the proof of the
characterization of generalized curve foliations and second type foliations
given in [6].
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JACOBIAN CURVE OF SINGULAR FOLIATIONS 233

2. Local invariants
2.1. Foliations

Let F be the space of singular foliations in (C%,0). An element F € F
is defined by a 1-form w = 0, with w = A(z,y) dz + B(x,y) dy, or by the
vector field v = —B(z,y)0/0z + A(x,y)0/0y where A, B € C{z,y} are
relatively prime. The origin is a singular point if A(0) = B(0) = 0. The
multiplicity vo(F) of F at the origin is the minimum of the orders vy(A),
vo(B) at the origin. Thus, the origin is a singular point of F if vo(F) > 1.

Consider a germ of irreducible analytic curve S at (C2,0). We say that S
is a separatrix of F at the origin if S is an invariant curve of the foliation
F. Therefore, if f = 0 is a reduced equation of S, we have that f divides
wAdf.

Let us now recall the desingularization process of a foliation. We say that
the origin is a simple singularity of F if there are local coordinates (x,y)
in (C?,0) such that F is given by a 1-form of the type

Aydx — pxrdy + h.o.t

with p # 0 and A/p € Qso. If A = 0, the singularity is called a saddle-
node. There are two formal invariant curves I'; and I'y which are tangent
to x = 0 and y = 0 respectively, and such that they are both convergent in
the case that Ay # 0. In the saddle-node situation with A = 0 and u # 0,
we say that the saddle-node is well oriented with respect to the curve I'y.

Let 71 : X; — (C2,0) be the blow-up of the origin with £; = 77 *(0) the
exceptional divisor. We say that the blow-up 7; (or the exceptional divisor
E,) is non-dicritical if E; is invariant by the strict transform 73 F of F;
otherwise, the exceptional divisor E; is generically transversal to 77 F and
we say that the blow-up 71 (or the divisor Fy) is dicritical.

A reduction of singularities of F is a morphism 7 : X — (C2,0), composi-
tion of a finite number of punctual blow-ups, such that the strict transform
m*F of F verifies that

e each irreducible component of the exceptional divisor 771(0) is ei-
ther invariant by 7*F or transversal to 7*F;
e all the singular points of 7*F are simple and do not belong to a
dicritical component of the exceptional divisor.
There exists a reduction of singularities as a consequence of Seidenberg’s
Desingularization Theorem [32]. Moreover, there is a minimal morphism 7
such that any other reduction of singularities of F factorizes through the
minimal one. The centers of the blow-ups of a reduction of singularities of
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234 Nuria CORRAL

F are called infinitely near points of F. If all the irreducible components
of the exceptional divisor are invariant by 7*F, we say that the foliation
F is non-dicritical; otherwise, F is called a dicritical foliation.

A non-dicritical foliation F is called a generalized curve foliation if there
are not saddle-node singularities in the reduction of singularities (see [3]).
We will denote G the space of non-dicritical generalized curve foliations in
(C2,0). The foliation F is of second type if all saddle-nodes of 7*F are well
oriented with respect to the exceptional divisor E = 7=1(0) (see [22]).

In order to describe properties of generalized curve foliations and second
type foliations, let us recall some local invariants used in the local study
of foliations in dimension two (see for instance [5]). The Milnor number
wo(F) is given by

po(F) = dime (fjf’By)} — (4,B),
where (A, B)o stands for the intersection multiplicity. Note that, if the
foliation is defined by df = 0, the Milnor number of the foliation coincides
with the one of the curve given by f = 0. Given an irreducible curve S and a
primitive parametrization v : (C,0) — (C?,0) of S with y(¢) = (z(¢),y(t)),
we have that S is a separatrix of F if and only if v*w = 0. In this case, the
Milnor number po(F,S) of F along S is given by

ord,(B(y(t))) —orde(z(t)) + 1 if x(t) # 0,

ord; (A(y(2))) —ordy(y(t)) +1 if y(t) # 0,

(this number is also called multiplicity of v along S, see [3, p. 152-153]). If
S is not a separatrix, we define the tangency order 7o(F,S) by

(2.2) T0(F,S) = ords(a(t))

where v*w = «(t)dt. If S = (y = 0) is a non-singular invariant curve of
the foliation F, the Camacho—Sad index of F relative to S at the origin is
given by

21 w(F,S) :{

a(z,0)

b(x, 0)

where the 1-form defining F is written as ya(z,y) dz + b(z, y) dy (see [4]).
Next result summarizes some of the properties of second type and gen-

eralized curve foliations that we will use throughout the text:

(2.3) To(F,S) = —Resp

THEOREM 2.1 ([3, 6, 22]). — Let F be a non-dicritical foliation and
consider Gy the foliation defined by df = 0 where f is a reduced equation
of the curve Sx of separatrices of F. Let m : X — (C2,0) be the minimal
reduction of singularities of F.
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(i) 7 is a reduction of singularities of Sx. Moreover, 7 is the minimal
reduction of singularities of the curve S if and only if F is of
second type;

(i) vo(F) = vo(Gy) and the equality holds if and only if F is of second
type;

(iil) po(F) = po(Gy) and the equality holds if and only if F is a gene-
ralized curve foliation;

(iv) if S is an irreducible curve which is not a separatrix of F, then
70(F,S) = 10(Gs,S) and the equality holds if and only if F is of
second type.

Recall that for the hamiltonian foliation Gy we have that 1y(Gf) =
vo(Sr) —1, 1o(Gr) = no(Sr) and 79(Gy, S) = (Sr, S)o — 1 where v (Sr) is
the multiplicity of the curve Sz at the origin, po(Sx) is the Milnor number
of the curve S and (Sr,S)o denotes the intersection multiplicity of the
curves Sy and S at the origin.

Notation. — Given a plane curve C in (C?,0), we denote by F¢ the sub-
space of F composed by the foliations having C' as curve of separatrices and
G¢ the foliations of F which are generalized curve foliations.

Moreover, for generalized curve foliations we have that

LEMMA 2.2 ([11]). — Assume that F is a non-dicritical generalized
curve foliation. Let m : (X, P) — (C?,0) be a morphism composition of
a finite number of punctual blow-ups and take an irreducible component E
of the exceptional divisor 7=1(0) with P € E. Then, the strict transforms
7" F and 7*Gy satisfy that

(i) vp(m*F) = vp(7"Gy);
(ii) pp(m*F,E) = pp(r*Gy, E).
where f = 0 is a reduced equation of the curve Sr of separatrices of F.

2.2. Weighted initial forms and Jacobian curves.

Fix coordinates (z,y) in (C2,0). Given a 1-form w, we can write w =
Zi’j wi; where w;; = A”xi_lyj dz + waiyj_l dy. We denote A(w) =
A(w;z,y) = {(i,j) : w;j # 0} and the Newton polygon N (F;z,y) =
N(F) = N(w) is given by the convex envelop of A(w) + (Rx0)?.

Given a rational number a € Q, we define the initial form of w with

Ing(w;z,y) = Z Wi

i+aj=k

weight o
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236 Nuria CORRAL

where ¢ + «j = k is the equation of the first line of slope —1/a which
intersects the Newton polygon N (F) in the coordinates (x,y). Note that
k = v(1,q)(w) where v o)(w) = min{i + aj : w;; # 0} is the (1, a)-degree
of w. Hence, we have that the multiplicity vo(F) = v 1)(w).

In a similar way, given any function f = Zm fijz'y? € C{z,y}, we
denote A(f) = A(f;z,y) = {(¢,4) : fij # 0} and the Newton polygon
N(C;z,y) = N(C) of the curve C = (f = 0) is the convex envelop of
A(f) + (Rs0)?. Note that N(C;x,y) = N(df;z,y) and N (F) = N(C) if
F € Ge. Thus, we can define the initial form In, (f;z,y) = Z(M)GL fija'y?
where L is the first line of slope —1/a which intersects N (C'). Note that,
if f =0 is an equation of the curve C, then Iny(f;x,y) gives an equation
of the tangent cone of C, and hence In; (f;z,y) = Zi+j:uo(C) fijz'y?.

With these notations we can state the first result which illustrates the
type of conditions we are going to ask the foliations F and G in order to
be able to describe properties of the jacobian curve Jrg.

LEMMA 2.3. — Let F and G be two foliations in (C2,0) and consider
Jr.g its jacobian curve. Let 71 : X1 — (C2,0) be the blow-up of the origin
and E* = 7 (0) be the exceptional divisor. If there is a point R € E* such
that the Camacho—Sad indices verify that Zgr(niF,E') # Igr(niG,E'),
then

vo(JTF.g) = vo(F) +vo(9).
Proof. — Take (z,y) coordinates such that = 0 is not tangent to the
foliations F and G and let (z1,y1) be coordinates in the first chart of the

blow-up such that 7 (z1,y1) = (z1,71%1) and E' = (21 = 0). Assume that
vo(Jr.g) > vo(F) + vo(G), then Ing(w) AIny(n) = 0. Thus, if write

Inl(w) = Auo(}-)(xv y) dz + BVO(]:)(x7 y) dy
Iny (n) = Pyyg)(z,y) dz + Quy(g)(z,y) dy

then we have that

(2.4) A7) (@, Y)Quy(0) (T, y) — Buy(7) (%, y) Py gy (T, y) = 0.

The computation of the Camacho-Sad index at a point R given by (0, ¢)
in the coordinates (x1,y;) gives

By, (7 (1,y)
A7) (L, y) +yBuy7) (1, y)
Quo(9)(1,9)
Py6)(1,y) + yQuy6)(1,y)

Ir(miF,E') = —Resy—.

Zr(miG, E") = — Res,—.
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The equality in (2.4), implies
Ip(m{F,E') = Ip(riG, EY)

for any point R in E'. This gives a contradiction with the hypothesis over
the foliations F and G. Il

The condition over the Camacho—Sad indices of the foliations in the
previous lemma is related with the notion of collinear point that will be
introduced in Section 4.

2.3. Equisingularity data and dual graph of plane curves

In this subsection we will fix some notations concerning the equisingu-
larity data of a plane curve C' = (J;_, C; in (C%,0) (see Appendix A.1
for more details). Given an irreducible component C; of C, we will de-
note n’ = vy(C;) the multiplicity of C; at the origin, {3, 5%, ... ,ﬁ;i} the
characteristic exponents of C; and {(m},n})}{", the Puiseux pairs of C;.

Let us denote 7o : X — (C2,0) the minimal reduction of singularities
of the curve C. The dual graph G(C) is constructed as follows: each irre-
ducible component E of the exceptional divisor 7,"'(0) is represented by a
vertex which we also call E (we identify a divisor and its associated vertex
in the dual graph). Two vertices are joined by an edge if and only if the as-
sociated divisors intersect. Each irreducible component of C' is represented
by an arrow joined to the only divisor which meets the strict transform
of C by m¢. We can give a weight to each vertex E of G(C) equal to the
self-intersection of the divisor F C X and this weighted dual graph is
equivalent to the equisingularity data of C.

If we denote by E' the irreducible component of 7'('51 (0) corresponding to
the divisor obtained by the blow-up of the origin, we can give an orientation
to the graph G(C) beginning from the first divisor E'. The geodesic of a
divisor E is the path which joins the first divisor E! with the divisor E.
The geodesic of a curve is the geodesic of the divisor that meets the strict
transform of the curve. Thus, there is a partial order in the set of vertices
of G(C) given by F < E’ if and only if the geodesic of E’ goes through E.
A maximal divisor in G(C') will be a maximal element in the set of vertices
of G(C') with this partial order. Given a divisor E of G(C), we denote by
Ig the set of indices i € {1,2,...,r} such that E belongs to the geodesic
of the curve C;.

Given a vertex E of G(C), we define the number b%, in the following way:
b% + 1 is the valence of F if E # E' and b<, is the valence of E' in G(C)
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(recall that the valence of a divisor F in G(C) is the number of arrows and
edges attached to E in G(C)). Given a divisor E of G(C), we say that E
is a bifurcation divisor of G(C) if b%, > 2 and a terminal divisor of G(C)
if 8% = 0. A dead arc is a path which joins a bifurcation divisor with a
terminal one without going through other bifurcation divisor. We denote
by B(C) the set of bifurcation divisors of G(C). If there is no confusion
with the curve C' we are working with, we will denote by = b%, for any
divisor E in G(C).

Given an irreducible component E of 75" (0), we denote by 7p : X5 —
(C2,0) the morphism reduction of ¢ to E (see [10]), that is, the morphism
which verifies that

o the morphism ¢ factorizes as m¢ = 7 o ) where g and 7l are
composition of punctual blow-ups;

o the divisor E is the strict transform by 7, of an irreducible com-
ponent Feq of 7@1(0) and F,.q C Xg is the only component of
75" (0) with self-intersection equal to —1.

We will denote by 73, C the strict transform of C' by the morphism 7g. The
points 75 C N Eyeq are called infinitely near points of C' in E.

Remark 2.4. — If C is a curve with only non-singular irreducible com-
ponents and E is an irreducible component of 7' (0), then the number of
infinitely near points of 73C' in Eycq is equal to bg. That is, the cardinal
of the set 7, C' N Eyeq coincides with bg.

3. Logarithmic foliations

Consider a germ of plane curve C = |J;_, C; in (C?,0). Take f € C{z,y}
such that C = (f = 0) and let us write f = f1--- f, with f; € C{z,y}
irreducible. Given A = (A1,..., ) € C", we can consider the logarithmic
foliation £ defined by

—~ dfi

(3.1) froe B A=t =0.
=1

fi

The logarithmic foliation Ef belongs to G¢ provided that A avoids certain
rational resonances. Each generalized curve foliation F € G¢ has a logarith-

mic model £§, that is, a logarithmic foliation such that the Camacho—Sad
indices of F and L§ coincide along the reduction of singularities (see [9]);
note that F and Ef have the same separatrices and the same minimal
reduction of singularities. Moreover, the logarithmic model of F is unique
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JACOBIAN CURVE OF SINGULAR FOLIATIONS 239

once a reduced equation of the separatrices is fixed. Thus, for each foliation
F € G¢, we denote by A(F) the exponent vector of the logarithmic model
of F and we denote G, the set of foliations F € G¢ such that A(F) = A.
A particular case of logarithmic foliation is the “hamiltonian” foliation de-
fined by df = 0 which corresponds to A = (1,.. ., 1); this foliation coincides
with the foliation G; used in Section 2.

Let us fix some notations concerning logarithmic foliations that will be
used in the sequel. Assume that the curve C' = [J;_, C; has only non-
singular irreducible components and consider a non-dicritical logarithmic
foliation L£§ given by (3.1). Let 7¢ : X¢ — (C%,0) be the minimal re-
duction of singularities of C, take E an irreducible component of 75" (0)
and consider 7g : Xg — (C2,0) the morphism reduction of 7¢ to E (see
Subsection 2.3). Given an irreducible component C; of C' and a divisor F
of 75'(0), we denote 5% = 1 if the geodesic of C; contains the divisor F'
and 5% = 0 otherwise, that is,

c; 1, ifjeIF,

£ =
F {o, if j & Ip.
The residue of the logarithmic foliation Lf along the divisor E is given by

T

(3.2) kp(LS) =D N Y €
1

j=1 E'<E

where E/ < E means all divisors in G(C) which are in the geodesic of E
(including E itself). Note that k(L) = > i1 )\jm% where m% is the
multiplicity of f; o mg along the divisor E (see [27, 28]).

Let {Rf,RY,..., RE } be the set of points m;,C' N Ereq where we denote
bp = b§ and put IglE ={i e {l,....;r} : 75CiN Freq = {RF}} for
l=1,2,...,bg, that is, i € IgE if E belongs to the geodesic of the curve

1
C; in G(C) and RF is an infinitely near point of C;. With the notations

introduced in Subsection 2.3, we have that Ig = U?L IgE.
‘L

An easy computation shows that the Camacho-Sad index of 75 L§ rel-
ative to Freq at a point RlE is given by
ZieIgE Ai
* pC _ 1

(see [9, Section 4]).
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In Appendix A we include a subsection where we explain the behaviour of
the above invariants associated to logarithmic foliations after ramification
(see Subsection A.3).

4. Collinear and non-collinear points and divisors

In this section we will introduce some notations and definitions in order
to describe properties of the jacobian curve that will be given in Section 5.

Let C and D be two plane curves in (C2,0) without common branches
and assume that the curve Z = C U D has only non-singular irreducible
components. Take now F € G¢ and G € Gp and let 7z : Xz — (C2,0) be
the minimal reduction of singularities of Z which gives a common reduction
of singularities of 7 and G. Recall that, given an irreducible component £
of 7,1(0), we denote by 7g : Xg — (C2,0) the morphism reduction of 7z
to E (see Section 2.3).

Remark 4.1. — With the above assumptions about Z, if v(E) = p (see
Appendix A.1), then the morphism 7 is a composition of p punctual blow-
ups

(C2’0) - (X1, P1) I (Xp-1,Pp-1) o Xp = Xg.

Moreover, if (x, y) are coordinates in (C2, 0), there is a change of coordinates
(z,y) = (Z,7 + ep(T)), with eg(z) = a1z + -+ + ap_12P~ 1, such that
the blow-up o; is given by z;_1 = z;, yj—1 = =z;y;, for j = 1,2,...,p,
where (z;,y;) are coordinates centered at P; and (zo,y0) = (Z,7). We
say that (Z,7) are coordinates in (C2?,0) adapted to E. Note that in these
coordinates, if (x,,y,) are coordinates in the first chart of E.q we have
that 75 (zp, yp) = (zp, 2hyp) and Ereq = (7, = 0).

In this section, we will denote by = b%. Let {R, Ry,..., R[. } be the
infinitely near points of Z in E, that is, 752 N Freqa = {RF RY, ..., REE}.
Note that these points are the union of the singular points of 7} F and
G in the first chart of Eyeq (the singular points of the foliations which
do not correspond to a corner of the divisor). We denote

ALYRP) = Tpe(n5G, Brea) — T (75 F, Erea)
where Zpe(m5F, Ereq) is the Camacho—Sad index of 75 F relative to Eyeq
at the point RF (see definition given in (2.3)). We will denote Ap(RF) =
Ag’g(RF ) if it is clear the foliations F and G we are working with.

In view of the notations given in [19, 20] for curves, we introduce the
following definitions for foliations:
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DEFINITION 4.2. — We say that an infinitely near point RlE of Z is a
collinear point for the foliations F and G in E if Ag(RF) = 0; otherwise
we say that RF is a non-collinear point.

We say that a divisor E is collinear (for the foliations F and G) if
Agp(RF) =0 for all | = 1,...,bg; otherwise E is called a non-collinear
divisor. A divisor E is called purely non-collinear if Ag(RF) # 0 for each
l=1,...,bg.

We denote by Col(E) the set of collinear points of E and by NCol(E)
the set of non-collinear points (for the foliations F and G). It is clear that
Col(E) UNCol(E) = {RY,RY,..., R} }.

Remark 4.3. — Note that if E is a maximal bifurcation divisor (with
the partial order in G(C) given in Subsection 2.3), then E is purely non-
collinear. This follows from the fact that, if F is a maximal bifurcation
divisor, then each infinitely near point R of Z in E is in the geodesic of
only one irreducible component of Z and hence it is a singular point for
only one of the foliations 73, F or n3,G. Moreover, it is a simple singularity.
In fact, we have that

_IRlE(ﬂ-E]:a Ered)7 if RlE S W*EOQE,
Ire(n3G, Brea),  if R € mpDNE.

Ap(Rf) = {

If RF € 75C N E, we have that Ipe (75 F, Ereda) # 0 since F is a general-
ized curve foliation and R¥ is a simple singularity of 75F (similarly when
RF € 75D N E). Consequently, Ap(REF) # 0 for each [ = 1,...,bg.

Although the definition of Ag(RF) seems different to the one given by
Kuo and Parusinski in [19, 20], we will show in Subsection 7.1 that both
definitions coincide in the case of curves.

Take coordinates (xy, yp) in the first chart of Eyeq such that mg(zp, yp) =
(Zp, 22Yp), Erea = (2 = 0) and assume that R = (0,¢f), 1 =1,2,...,bg,
in these coordinates. We define the rational function Mpg(z) = M9 (2)
associated to the divisor E for the foliations F and G by

be
(4.1) Mp(z) = %R'i).

z—c
=1 !

Remark 4.4. — Note that although AL9(RF) and M7 () depend on
the foliations F and G, we have that

c$,.ch cs.ch

ARIRE) = AR T (RE);, MO(2) = My (2)
provided that 7 € Ggx and G € Gp .

TOME 75 (2025), FASCICULE 1



242 Nuria CORRAL

Remark 4.5. — Observe that if E is a non-collinear divisor, then
Let M(E) ={QT,..., QL } be the set of points of Ereq given by QF =
(0,q;) in coordinates (x,,y,) where {qi,...,¢s,} is the set of zeros of

MEg(z). We denote by toe the multiplicity of ¢; as a zero of Mg(z) and
tHE) = >05 tqe the degree of the numerator of the rational function
Mpg(z). We put tp =0 for any P € E \ M(E). Note that it can happen
that M (E) = () (see Example in [20, p. 584]).

LEMMA 4.6. — If NCol(E) # 0, that is, E is a non-collinear divisor,
then we have that
(4.2) NCol(E)NM(E)=0 and §NCol(E)>1+ Y  tp=1+t(E).
PeM(E)

Moreover, if ZRlEeNCOl(E) Ag(RF) # 0, then we have that

ENCol(E) =1+ > t

PeM( E)

Proof. — With the notations above, we can write Mg(z) as follows

Ag(Rf)
M = — .
E(Z) Z 5 CF
RFeNCol(E)
Thus, the set of zeros of Mg(z) is given by the roots of the polynomial

(4.3) Y. Aswd) [ G-

REeNCol(E) J with j#l
RPENCoOl(E)

Consequently, if z = clb; is a zero of Mpg(z), then

Ap(ip) ][ (g —ef) =0
RY eNCol(E)
J#lo
which implies that Ag(Rf) = 0 and hence R ¢ NCol(E). Moreover, the
degree of the polynomial given in (4.3) is < §NCol(F) — 1; the equality is
attained when ZRlEeNCOI(E) Ag(RF) # 0. Thus we have the statements of
the lemma. O

Remark 4.7. — Observe that we can have that ZRF&NCol(E) Agp(RF) =
0 even if F is a purely non-collinear divisor. This can happen for instance
when E = FE!' is a bifurcation divisor since in this situation
St Tre (T F Brea) = Y173 Te (730, Brea) = —1 and this implies
ZREGNCOI(E) Ap(RF) =0 (see also Remark 4.11 and Corollary 4.12).
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Remark 4.8. — Note that it can happen that Col(F) N M (FE) # (. With
the notations of Section 3, consider the foliations F = Ef and G = Eﬁ’
where
C:(f:())a f(l’,y):(y*Z)(y+1’2)(y7$2)(y+2$2)7 A:(lalal,'?))
D=(9=0), g(z,y)=y+a)(y+z*+a2°)(y—a*+2°), p=(33,1).
Take Z = C U D. Consider the morphism ¢ = m; o 1o where m : X7 —
(C2,0) is the blow-up of the origin, By = 7, '(0) and 7 : Xo — (X;, P})
is the blow-up of the origin P; of the first chart of £} and Ey = 75 1(Pl).
Taking coordinates (x2,y2) in the first chart of F5 such that o(zs,y2) =
(9, 23y2) we have that o*Z N Ey = {RY?, RY?, RE2} where RY? = (0, —1),
RE2 = (0,1) and RS> = (0,—-2). A simple computation shows that

2 3
Ap(Ri®) = -7 Ap(R?) =0; Ap(Rg?) = 7.
Thus Col(E,) = {R5?} and NCol(E,) = {R¥? RY?}. Moreover, we have

that
2 1 3 1 z—1

THGrD H(+2) HE+2E+D)
which implies that M (Ey) = {sz}.

ME2 (Z) =

Given a non-collinear divisor F and a point P € E,.q, we define

tp, if Pe M(E),
(4.4) Te(P) =4 —1, if P € NCol(E),
0, otherwise.

Note that > p.p  7e(P) = t(E) — §NCol(E) which is a negative integer
(it is the degree of the rational function Mg(z)).

4.1. Collinear and non-collinear infinitely near points

Let us explain now the behaviour of collinear (resp. non-collinear) infini-
tely near points by blowing-up. Recall that here we denote bg = b% for any
divisor F in G(Z).

LEMMA 4.9. — Let E and E’ be two consecutive divisors in G(Z) with
E < E' andbg: = 1. We can write rgr = mgoo whereo : Xgr — (Xg, P) is
the blow-up with center at a point P € E,eq. Let Q be the point w5, ZNE! 4.

If P is a collinear point (resp. a non-collinear point) for the foliations F
and G in F, then Q is a collinear point (resp. non-collinear point) for E’.
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Proof. — Let us denote by Ered the strict transform of E,.q by o and
P= Emd NE/ 4. Given any singular foliation F, the Camacho-Sad indices
verify the following equalities (see [4])

Ip(75) F, Ereq) = Ip(whyF, Bred) — 1

Ip(njp T, Blea) + Lo(mi F, Ereq) = —1.

Moreover, since F is a generalized curve foliation, then Pisa simple sin-
gularity for 73, F and hence we have that

Lp(7i Fs Erea) - Tp(min Fy Bleg) = 1.
Then the index Zg (w3 F, El.q) can be computed as

1 B Ip(m5F, Ered)
Ip(npF, Erea) — 1 Ip(mhyF, Frea) — 1
Thus, using the expression above for the foliations F and G, we have that
1 Zo(mi F, Elea)
1 Io(7i G, Elea)
_ Ag(P)
 (Zp(rpF, Brea) — )(Zp(73G, Brea) — 1)

and then Ag/(Q) = 0 if and only if Ag(P) = 0. This gives the result. O

Consider now E and E’ two consecutive bifurcation divisors in G(Z),
that is, there is a chain of consecutive divisors

E0:E<E1<"‘<Ek_1<Ek:E/

(ﬂ—E’]: Ered) —-1-

Ap(Q) =

with b, = 1 for [ = 1,...,k — 1 and the morphism 7g = 7g o 0 where
o : Xg — (Xg, P) is a composition of k punctual blow-ups

(45) (Xp, P) &~ (Xp, P) <& &2 (Xp, ,, Pe1) & Xp.

If E and E’ are two consecutive bifurcation divisors as above, we say that
E' arises from E at P and we denote E <p E’.

As a consequence of Lemma 4.9, we have that if P is a collinear point
(resp. a non-collinear point) for F and G relative to E, then P, is a collinear
point (resp. non-collinear point) relative to F; for i = 1,..., k—1. Moreover,
we have that

COROLLARY 4.10. — Let E be the first bifurcation divisor in G(Z). We
can write Ty = 01 009 0 --- 00} as a composition of k punctual blow-ups

(C2,0) <2~ (X1, P) <& - &2 (Xpe1, Pocq) & Xp = Xg.

We denote E; = afl(PZ-,l) with Py = 0. Then all the divisors E;, 1 <1 <
k — 1, are collinear.
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Proof. — Since bg, = 1for I =1,...,k — 1, it is enough to prove that
Py is a collinear point for F and G relative to E; = E'. But this is a
consequence of the fact that Ip (0iF, Eired) = Ip, (071G, E1rea) = —1.
Thus the result follows straightforward. O

Remark 4.11. — Note that, if F is the first bifurcation divisor, the prop-
erties of the Camacho—Sad index imply that

be
> Ap(RP) =0
1=1
where 5,2 N Erea = {RY,...,RL }.
The above equality also holds in the following context:

COROLLARY 4.12. — Let E and E' be two consecutive bifurcation di-
visors in G(Z) such that E' arises from E at P. If P is a collinear point,
then

bE/
> Ap(Rf) =0
where 735, Z N El ., = {RF',.. RbEE//}

Proof. — As we have explained before we have that g = mg o o where

o: Xg — (Xg, P) is a composition of k punctual blow-ups
(Xp, P) &~ (Xp,,P1) <& - &2 (Xp,_,, Pe1) & Xp.

We denote E; = U{l(Pi,l) with Py = P and we have that bg, = 1
for i = 1,...,k — 1. Since P is a collinear point, then Zp(n5pF, Ered) =
Zp(m5G, Erea) and the properties of the Camacho-Sad indices imply that
Ip, (15, F, Fired) = Ip,(75,G, Ei rea) for i = 1,..., k — 1. Consequently, we
have that

bE’ bE’

Z E/ 71—E'“/__. Ered Z E’ ﬂ—E’g Ered)

which is equivalent to l:'l Ap(RF) = 0. 0

2. Weighted initial forms and non-collinear divisors

Let us introduce the following notation in order to describe the relation-
ship between the Newton polygon and the infinitely near points of a curve
(see Subsection 2.2 and also [10]). From now on we will always assume that
we choose coordinates (x,y) such that = 0 is not tangent to the curve
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Z = C'U D union of the separatrices of F and G. This will imply that
the first side of the Newton polygons N (F;z,y) and N(G;z,y) has slope
greater or equal to —1.

Assume that Z is a curve with only non-singular irreducible components
and consider 7z : Xz — (C?,0) its minimal reduction of singularities. Take
any divisor E of 7,;'(0) with v(E) = p and consider 7p : Xz — (C2,0)
the morphism reduction of 7z to E. With the notations introduced in
Remark 4.1, if (z,y) are coordinates adapted to E, the points 75, Z N Eyeq
are determined by In,(h;x,y) where h = 0 is a reduced equation of the
curve Z. More precisely, if we take (z,,y,) coordinates in the first chart of
Erea with mg(2y,yp) = (2p, 25y,) and Ereq = (7, = 0), thus the points of
T Z N Eyeq are given by z, = 0and > hijy), = 0 where Iny,(h; z,y) =
Zierj:k hija'y.

We are interested in determine the points 7577 g N Ered, thus if v(E) =

i+pj=Fk

p and (x,y) are coordinates adapted to E, we would like to determine
In,(J;x,y) where J(z,y) = 0 is an equation of the jacobian curve. Next
result proves that the initial form In,(J;z,y) is determined by the initial
forms In,(w),In,(n) of the 1-forms defining the foliations F and G provided
that the divisor E is non-collinear.

LEMMA 4.13. — Let E be an irreducible component of n,"(0) with
v(E) = p and take (x,y) coordinates adapted to E. If E is a non-collinear
divisor, then

Iny, (w) A ny (1) # 0,

where In,(w) = Iny,(w; z,y) and In,(n) = In,(n; x,y), and hence
In,(J;2,y) = Jp(z,y)

with In,(w) AIny(n) = Jp(z,y) dz A dy.

Proof. — Take an irreducible component E of 7, (0) with v(E) = p and
let (x,y) be coordinates adapted to E. Assume that In,(w) A Iny(n) = 0,
that is, if we write

In,(w) = Ar(z,y) de + Br(z,y) dy
In,(n) = Pr(z,y)dz + Qr(x,y) dy

then

(4.6) Ar(z,y)Q1(x,y) — Br(z,y)Pr(z,y) = 0.
Note that (Ar, Br) # (0,0) and (Pr, Q1) # (0,0).
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Take coordinates (xp, yp) in the first chart of E\cq such that mg(zp, yp) =
(zp, ¥0yp), Erea = (7, = 0) and assume that RE =(0,cF),forl=1,...,bg,
in these coordinates where 752 N Ereq = {RY{, ..., R[. }. Let w® and n¥
be the strict transforms of w and n by 7 with

w? = AE(xpa Yp) dzp + mpBE(xpv Yp) AYp,

" = PP(wy,yp) dzy + 2,Q (25, yp) dyp-

From the definition of the Camacho—Sad index we have that

. BE(0,y)
Ipe(npF, Erea) = — Res,_.& AE(0,y)’

. QF(0,y)
Ipe(mRG, Erea) = — Res,_.x PE(0,y)

Note that AE(Oa y) = AI(17 y)+pyBI(17 y)v BE(07 y) = BI(L y)v PE(Ov y) =
Pr(Ly) + pyQi(l,y) and Q%(0,y) = Qr(1,y). Thus, the equality given
in (4.6) implies
BZ(0,y) _ Q%(0.y)
AF(0,y)  PF(0,y)
and hence IRZE (m5F, Ered) = IRZE (175G, Ereq) for I = 1,...,bg, in contra-
diction with the fact that the divisor F is non-collinear. O
Observe that the result above is true for the first divisor E! although the
curves C' and D have singular irreducible components, and hence we have

that Lemma 2.3 can be obtained as a consequence of the previous result
since the conditions over the foliations F and G in Lemma 2.3 imply that
E' is a non-collinear divisor.

Moreover, next result shows that given ]-",.7? € G¢,x and g,é € Gp,p,
we have that

In,(Jr g;2,y) = Iny(J£ g5 7, )
provided that E is a non-collinear divisor with v(E) = p, where (z,y) are
coordinates adapted to £ and Jr g(x,y) =0 and Jz 5(z,y) = 0 are equa-
tions of the jacobian curves Jr g and Jz s respectively. Given a foliation
F, we will denote by wr a 1-form defining F and In,(wr) = In,(wr; x, y).
Thus we have the following result

LEMMA 4.14. — Let E be an irreducible component of w~*(0) with
v(E) = p and assume that (x,y) are coordinates adapted to E. Consider
foliations F,F € Gg,x and G,G € Gp,, then

In, (wr) = Iny(wz); Iny(wg) = Iny(wg)-
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Hence, if E is a non-collinear divisor, we have that
Inp(J}',Q§ IE, y) = Inp(‘]ﬁ,g’ (E, y)
Proof. — Let us prove that In,(wr) = Iny(wz). We can write
In,(wr) = A7 (z,y) de + BY (z,y) dy
In,(wg) = Af (2,y) de + BY (z,y) dy.

Take (zp,yp) coordinates in the first chart of Eyeq such that mg(xp,y,) =
(2p, 2Pyp) and Ereq = (2, = 0). Let wZ and oJ]E__ be the strict transforms of
wr and wz by mg with

w Af—.(a:p, Yp) dzp + %Bg (Tp, Yp) AYp,

wz = AZ(zp, yp) dz, + zpB]]%; (Tp Yp) dyp.

“rixh] “rlhj
il

Recall that we have that

AE(0,y) = AT (1,y) + pyBT (1,9); BZ(0,y) = Bf (1,y)
AZ(0,y) = AT (1,y) + pyBT (L y); BZ(0,y) = B (1,y)

and that the Camacho-Sad indices coincide for F and F , that is,
Ips (i F, Brea) = Ipr (75 F, Breq), forl=1,2,...,k,

where 75C N Ereq = {PE,..., PF}. Since C has only non-singular irre-
ducible components, if we write P¥ = (0,dF) in coordinates (z,y,) and
denote m{ = VpE (73,C), we have that

k
AZ(0,y) = =[[w-dam
=1

up to divide wf— and wg by a constant. Moreover, if we consider (z;,y;)
coordinates centered at PlE with #; = zp and y; = yp — dlE , the equality
of the Newton polygons N (5 F; 2, y1), N (m5F;z, 1) and N (7w5C; 21, y1)
implies

ord,_ge (BE(0,)) > m — 1 ord,_ye(BEQO,)) > mf — 1
(see [11, Lemma 1]) and we can write BE(0,y) = Hl 1(y— dE)ml *IBE( ),

BE_(O,y) = Hle(y - dF)ml _132_( ). Thus, from the definition of the
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Camacho—Sad index given in (2.3), we have that

BE BE
IPlE (mpF, Ereqd) = — Resy:dF AEES’ y; - _ Resy:dlE Hk (}—(y)d};)’
FUY 1=1\¥ — ¢
~ BE(0,y) BE(y)
IPE (WE./—'., Ercd) = —Res —dE £ 7 = — Res —dE £ .
: Y= AL(0,y) I (y — dP)

The equality of the Camacho—Sad indices
Tps (75 F, Evea) = Ipe (75 F, Erea),

for I =1,...,k, implies Ef—(y) = Bf;(y) and hence In,(wzr) = Iny(wz).
Finally, if F is a non-collinear divisor, the equality
Inp(J}-,Q; &€, y) = InP(J]:"MC;; &€, y)
is a direct consequence of Lemma 4.13. g
Remark 4.15. — Note that x = 0 can be a branch of Jr g although x = 0
is not tangent to the curve Z. Let us consider the foliations F and G given
by w =0 and n = 0 with
w = (zy — 627) dz + (y* — 6zy + 102%) dy
n = —62° dx + 3y° dy.
Thus Jr ¢ is given by J(z,y) = 0 with
J(z,y) = 3z(y® — 6xy® + 20y? — 1225y + 202°).

In this example, if we consider the blow-up 71 : X1 — (C2,0) of the origin,
the first divisor E' is non-collinear. Thus the result of Lemma 4.13 above
holds: we have that In;(w) = w, In;(n) = 3y*dy and hence In;(J) =
3zy?(y — 62).
Note that the rational function Mg (2) is given by
z—6
2(z=1)(z —2)(z — 3)

Mpi(z) = —

which determines the branch chl whose tangent cone is given by y—6z = 0
but we cannot determine the branch z = 0 of Jr ¢ (see statement of
Theorem 5.8).

The strategy to prove the results about the jacobian curve is based on
the properties that share a foliation and its logarithmic model. Next lemma
will allow to follow this strategy.
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LEMMA 4.16. — Consider foliations F, Ef € Gg,\ and g,ﬁf € Gp,u-
Let Jr g be the jacobian curve of F and G and [J», the jacobian curve
of L§ and Ef, Let E be an irreducible component of 7,*(0). If E is a
non-collinear divisor, we have that

TpJF,6 N Ered = TpIau N Ered
and the multiplicities satisfy that
vp(tpJrg) = ve(Tpdau)
at each point P € nJr g N Ered.
Proof. — Let E be an irreducible component of 7,'(0) with v(E) = p

and take (z,y) coordinates adapted to E. The result is a direct consequence
of the equality

Iny(Jr.g;2,y) = Iny(Jx i 2,y)
given in Lemma 4.14 provided that E is a non-collinear divisor, where
jacobian curves Jr g, J,, are given by Jr g(z,y) = 0 and Jy ,(z,y) =0
respectively. O

5. Properties of the jacobian curve

Let us consider two singular foliations F and G in (C2,0) defined by
the 1-forms w = 0 and n = 0 with w = A(z,y)dz + B(z,y)dy and n =
P(z,y)dz 4+ Q(z,y) dy. Recall that the jacobian curve Jr ¢ is defined by
J(x,y) = 0 where

J(SC,y) = A(Iay)Q(xay) - B(Ivy)P(I7y)

Next remark shows that the jacobian curve behaves well by a change of
coordinates.

Remark 5.1. — If F : (C%,0) — (C2,0) is a change of coordinates with
F = (Fy, Fy), the Jacobian curve of F*F and F*g is given by

AOF BoF Fl,x FLZJ
PoF QOF Fg,x F27y

=0.

Thus, the curve Jp-r p+g is defined by J o F' = 0. Hence, Jp-r p+g =
FYJTFg)-

In particular, we get that the analytic type of the jacobian curve of the
foliations F and G is an invariant of the analytic type of the pair of foliations
F and G.
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Assume that 7 € G¢ )y and G € Gp,, where C = Uzzl C; and D =
U;_, D; are two plane curves in (C2,0) without common irreducible com-
ponents. In this section, we will assume that the curve Z = C'U D has only
non-singular irreducible components and we consider 7z : Xz — (C2,0)
the minimal reduction of singularities of Z. Note that since Z has only
non-singular irreducible components, the centers of the blow-ups to obtain
wy are all free infinitely near points of Z. The general case will be treated
in Section 6.

In Section 4 we have introduced all the notions we need to state the re-
sults concerning the properties of the jacobian curve. If we want to compute
the infinitely near points of the jacobian curve of two foliations, Lemma 4.16
will allow to do computations for the jacobian curve of two logarithmic fo-
liations and then get the result for the jacobian curve of two generalized
curve foliations. The first result gives the multiplicity of the jacobian curve
at a point in the reduction of singularities in terms of the multiplicities
of the curves C' and D. In particular, we obtain that all infinitely near
points of the jacobian curve in the first chart of a divisor E of 7,;'(0) are
either infinitely near points of Z or a point in M (F). Note that z = 0 can
be tangent to the jacobian curve although it is not tangent to Z and we
cannot control this with the rational function Mg(z) (see Remark 4.15).
More precisely, given a divisor E, we can fix coordinates (z,y) adapted to
E (see Remark 4.1) and we can denote by E7 ; the points in the first chart
of Eieq. Then, we have

THEOREM 5.2. — Let E be an irreducible component of 7,"(0) and
assume that E is a non-collinear divisor. Given any P € E7,;, we have that

I/p(ﬂ'Ej]:vg) = I/p(’/TEC) + Z/P(’lTED) + TE(P)

In particular, if P € E}; with vp(nJrg) > 0, then P is an infinitely
near point of Z or a point in M(E).

Proof. — We prove here the result for logarithmic foliations. The general
case, when F and G are not necessarily logarithmic foliations is consequence
of Lemma 4.16.

Consider the logarithmic foliations £§ and Ef given by wy = 0 and
Ny = 0 with

T

wy = H(y — a;(x)) iAiW

i=1 oi(x)

CTTow— 6 S, 4 = Bi(@)
nu—g(y Bil ));uz s
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oo

where the curve C; is given by y — a;(z) = 0 with a;(2) = 32,7, J:z:J €
C{z} and the curve D; is given by y — 8;(2) = 0 with 3;(z) = 3°72, bial €

C{z}. Let us denote J ,, the jacobian curve of £§ and Eﬁ’ which is defined
by Jiu(x,y) =0 with

J)\,/L(xvy) = Ak(‘ra y)Qlt(xvy) - BA(as,y)P#(x, y)

where we write wy = Ax(z,y)dz + Ba(z,y)dy and 7, = P,(z,y)dz +
Qu(x,y)dy. More precisely, we can write

i1 i—=1
61 Salew) = fege| T
_ (@ i
12::1 Hiy=p:(z) 1; y—Pi(z)

where f(z,) = [Ty (y — ai(2)) and g(z,y) = [[}_, (y — Bi(x)) are equa-
tions of the curves C' and D respectively.

Let 7z : Xz — (C?,0) be the minimal reduction of singularities of
Z. Take E a bifurcation divisor of G(Z) with v(E) = p and consider

g Xg — (C2,0) the reduction of mz to E. Since the jacobian curve
behaves well by a change of coordinates (see Remark 5.1), we can assume
that the coordinates (x,y) are adapted to E. Take (z,,y,) coordinates
in the first chart of Fieq C Xpg such that mp(xy,y,) = (zp,7hy,) and
Eieq = (zp = 0). Let us compute the strict transform of J , by 7g.

Let usdenote I = {1,...,7},J ={1,...,s},I¥ ={i € I : E belongs to
the geodesic of C;} and J¥ = {j € J : E belongs to the geodesic of D;}.
We can write

r)dz +dy ) dx + dy
wy = f(z,y) Z )\T Z)\#)
N il icIE il
—Bi(z)dx + dy —Bi(z)dx + dy
N = 9(2,y i~ + Wi
pmol@n) | 2L w2 T

and hence, the jacobian curve J , is given by Jy ,(z,y) = 0 with

J)\,u(xay) = f(l’,y)g(ﬁc,y)M(I,y)
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where
N + Ay i N
M(z,y) = ie[X\:IE ty—a;(z) Z Ty—ay (af) ielz\:IE y—a;(z) ig]:E v—ci (@)
T , 5@ B (:v) _p |
iE%JE’ul yiﬁl(m + Z ) iE%JE yiﬁl(a:) +7€ZJE yfﬁz(w)

Since v(E) = p and (z,y) are coordinates adapted to E, we have that

ordg(ai(z)) =2p if i€ 1%, ord;(a;(x)) =mn; <p if el 1%,
ord,(Bi(x)) =p if ieJF;  ord.(Bi(x) =0 <p if i€ J~JF.

Thus, a;(z) =Y. .o aix’d if i € IF and B;(z) = ..o bia? if i € JF, but

Jj2pJ Jjzp i
@i(2) =3 s, a]xj with n; < pifi € I I and B;(x) = > isor b}x] with
0; < pifie J~J¥. Then, Ixu(Tp, 2hyp) is given by
I (@, xgyp) = f(xp’xgyp)g(xp’xgyp)ME(xpa Yp)
with
N 1
Mp(2p,yp) = FME(xp’yp)
i
where
(o A"
Ai—— z -
zeIZ\:IE 1‘"”5 yp*““ “CP( ) er<rE T lyp—ah top(-)
—pag,+a,(--)
PR ey Ry
Mp(zp,yp) = b o) o
 —oiby Ay (- izt %
zer\:JE . ap "=, () ieJZ\:JE oy Ttyp—bh Fap(-)
—pbytap ()
+z€ZJE Hi y;ﬂ_b%"'zp(“') + Z yp_bl +1Ep( -)

If Mg(0,y,) # 0, then the points 757 4 N Ered, in the first chart of Ejeq,
are given by =, = 0 and Jg(yp) = 0 where

TE(Yp) = F(0,4p)3(0,5,) Mg (0,,).

Let {Rf,..., R} be the union of the singular points of 75 LS and
7R LY in the first chart of Ereq, where R = (0, ¢f’) in coordinates (p, yp).
Note that {Rf,...,Rf} = 7}Z N Ereq. Denote my = vre(rpC) =
t{i € {1,...,7} : 75C; N Ereqa = {RF}} and mP = VRE (rnD) =
tH{je{l,....,s} : T5D; N Erq = {RF}} for l=1,2,...,bg.
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We have that

SoAni+ Y Aig o= P =
i€EINIE iere UrT0 ere P
ME(Ovy;D> =

i
zEJZ\JE pi0i + Z 'uly *bb zEZJE Yp—bp

Yo Aini+ Y Aip > yia

ieI~IE i€IB iere PP

> Hi0i+ D >

i€ J~JE ieJE ieJe " P
b Tpp(rhLS Erea)

1
! l; r=er
= —kp(LS)kEB(L))

X bf Lo (75L2 Brea)

=1 vn—er’

where kp(L{) = Y Xin; + Y. \ip and ”E(E;?) = Y po;+
S ANES iel®E i€EINJE

> wp are the residues of the logarithmic foliations along the divisor
ieJk

E (see (3.2)) and we use the expression of the Camacho—Sad index for a
logarithmic foliation given in (3.3). Consequently, we obtain that

MEg(0,y,) = _“E(EQ)KE<E;?)ME(?JP)

where Mpg(z) is the rational function associated to the divisor E for the
foliations £§ and L’E (see expression (4.1)) Then, the points 75 Jx, ;N Ered,
in the first chart of E..q, are given by =, = 0 and

be

[T — )+ Mi(y,) = 0.

i=1
(note that the curve C'U D has only non-singular irreducible components).
Let {q1,...,9s,} be the set of zeros of Mpg(z). For I = 1,2,...,sg, put
QF = (0,¢) and denote by toe the multiplicity of ¢, as a zero of Mg(2).
Thus, the points in 757, N Erea belong to Col(E) U NCol(E) U M(E).
Moreover, the multiplicity of 757y, at a point P € Eiq, in the first chart
of Fieq, is given by

vp(TpJIau) = ve(TEC) + ve(TpD) + Tu(P)

where 75(P) was defined by the expression (4.4). O
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Remark 5.3. — With the notations of the proof above, if the first divisor
E' is non-collinear, we have that the tangent cone of 7, £9,LP is given by
)
Ji(z,y) = 0 where

Ti@,y) =~ | D Nat [Ty —aio) | | Do w[[v—blo)

i=1 i i=1  j#i

+Z)‘iH( y — a)x) Z,ulblln — V).

=1 V) =1 JF

Thus, z = 0 is not tangent to the jacobian curve Jﬁg o provided that
il

(5.2) ke (£5) Y bl — kg (LF) Y Nial #0
1=1 1=1

where we recall that kg (L) = Yi_; A and kg (L) = 327 i By
Lemma 4.14, the above remarks hold for the jacobian curve Jr g for any
F € Gegn, § € Gp,y. In the example given in Remark 4.15 we have that
E?Zl \iai = Zle w;bt = 0 and hence the condition in (5.2) does not hold
whereas in the example given in Remark 4.8 condition in (5.2) holds and
hence = = 0 is not tangent to the jacobian curve.

The reader can find in Appendix A.1 some definitions related to the equi-
singularity data of curves used in the statements of the following results.

Consider now two consecutive bifurcation divisors E and E’ in G(Z)
such that E’ arises from E at P. As we have explained in Section 4, this
means that there is a chain of consecutive divisors

Ey=FE<FEi<---<FEp_ <E}€:E/

with bp, = 1for { = 1,...,k — 1 and the morphism mg = mg o 0 where
o : Xg — (Xg, P) is a composition of k punctual blow-ups

(5.3) (Xp, P) &~ (Xp, P) <& & (X, Po1) & Xp.

Now we can explain the behaviour of the branches of the jacobian curve
going through a non-collinear point. Next corollary states that the branches
of the jacobian curve going through a non-collinear point P in a bifurca-
tion divisor as above go through the points Pi,..., Px_1 given in the se-
quence (5.3), that is, the divisor E’ is in the geodesic of those branches of
Jr.g going through P in El.q.

TOME 75 (2025), FASCICULE 1



256 Nuria CORRAL

COROLLARY 5.4. — Let E and E’ be two consecutive bifurcation divi-
sors in G(Z) with E<pE'. If P € NCol(E), we have that

vp(rpJrg) = > vo(mmJrg)-
Qerl,,

In particular, we get that there is no irreducible component § of Jr g such
that 73,0 is attached to some intermediate component E;, 1 <i <k —1,
in the chain E < Fy < --- < Ep_1 < E’. Moreover,

(5.4) 1+ Y tq=tNCol(E).

QEM(E")

Hence E' is non-collinear.

Remark 5.5. — Note that from the above result, we get that there is no
irreducible component ¢ of Jr ¢ such that

v(E) < C(6,ve) < v(E)
where yg is a E'-curvette.

Proof of Corollary 5.4. — Let E and E’ be two consecutive bifurcation
divisors in G(Z) with E <p E’ and assume that P € NCol(E), thus
Ag(P) # 0. By Theorem 5.2 we have that

vp(rgJr.g) = vp(rpC) +vp(rpD) — 1.
Recall that £ <p E’ implies the existence of a chain of consecutive divisors
E0:E<E1<"‘<Ek_1<Ek:E/

with bp, = 1for I = 1,...,k — 1 and the morphism g = 7 o o where
o0 : Xg — (Xg, P) is a composition of k punctual blow-ups

(Xg, P) & (Xg,,P1) < - &2 (Xp,_,, Pec1) & Xp.

Since P is non-collinear, then each P; is non-collinear by Lemma 4.9, thus
Ag,(P;) # 0 and hence M(E;) =0 fori=1,...,k—1. In particular, using
again Theorem 5.2, we have that

vp,(7p,Jr.g) = vp,(7p,C) + vp,(1p, D) — 1.

Since the curves C' and D have only non-singular irreducible components,
and P; is the only infinitely near point of both curves in E;, we have that
vp,(15,C) = vp(15C) and vp, (1, D) = vp(npD) foralli=1,... )k — 1.
Consequently,

vp, (15, Jrg) =vp(npJrg), fori=1,... k-1
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Since E’ is a bifurcation divisor, we get that
VPk—l(WEk71‘7~7:7g) = Z VQ(WEVJ]{Q).
QeE;ed
Hence, from all the equalities above, we deduce that
vp(TpJr.g) = Z vQ(Tg JF,6)
QeE;ed

which proves the first statement of the corollary. Finally, in order to prove
the equality given in (5.4), it is enough to show that

> Ap(R)#0
REeNCOl(E’)
by Lemma 4.6. Let us assume that 3 pcncoipy Ap (R) = 0, which implies
Z IR(WE"f7 E;ed) = Z IR(W*E’gv Ell‘ed)
ReNCol(E') REeNCol(E’)
and, by the properties of the Camacho—Sad indices, we deduce that

Ip (WE"f7 E;ed) = Iﬁ’k_l(ﬂ-E/g7E;ed)

k—1

where we denote ]5k_1 = Ek—l,red NE!., and Ek_med is the strict transform
of E_1 red by 0. Since F and G are generalized curve foliations, then Pj_;
is a simple singularity for 7}, F and 7},G and hence we have that

Zp, (7 F, Eleq) Ip, (e T, Ek—l,red) =1

Tp, \(73G, Eleq) - Ip, (3G, Bk rea) = 1.
Consequently, given that

Ipy (75 Fs Er-1red) = Ip

k—1 k—1

(T Fy Eg—1rea) + 1
1
= " + ]_7
ka,l (TrE’]:’ Elied)
Ipey (75, G Ei1rea) = Ip, (753G, E—15ea) + 1
= ! +1
ka—l (WE,Q, E;ed) ’
we obtain that IPk—l(’]r}kff}-’ Ekfl’red) == ka_l(ﬂ';kilg,Ek,Lred). This
implies that Ag, ,(Px—1) = 0 which is not possible since Py_; is a non-
collinear point by Lemma 4.9. This ends the proof. O

k—1

k—1

In order to explain the behaviour of the branches of the jacobian curve
going through a collinear point, we introduce the following definition.
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DEFINITION 5.6. — Let E be a bifurcation divisor of G(Z) and take P a
collinear point of E.. We say that a set of non-collinear bifurcation divisors

{E1,...,Ey,} is a (non-collinear) cover of E at P if the following conditions
hold:

(i) E is in the geodesic of each Ey;
(ii) if {EY,. .. ,Ei(l)} is the set of all bifurcation divisors in the geodesic
of E; with

E<pE| <. <El,)<E

then either r(I) = 0 or else each E; is collinear;

(iii) if Z; is an irreducible component of Z with m5Z; N Ewea = {P},
then there exists a divisor E in the cover such that 7p, Z; N E; # 0,
that is, there is a divisor E; in the cover which is in the geodesic
of Zj.

Given a collinear point P of E, there is a unique cover of F at P. We can
find it as follows: take an irreducible component Z; of Z with 75, Z; N Eyeq =
{P}. Let E’ be the consecutive bifurcation divisor to E with F <p E’
belonging to the geodesic of Z;. If E’ is non-collinear, then E’ is one of
the bifurcation divisors in the cover of F at P, otherwise we repeat the
process above with the following bifurcation divisor in the geodesic of Z;.
Since the maximal bifurcation divisors are non-collinear (see Remark 4.3),
we will always find a non-collinear divisor in the geodesic of Z; verifying
condition (iii) in the above definition.

THEOREM 5.7. — Consider a non-collinear bifurcation divisor E of
G(Z) and a collinear point P of E. Take a cover {F1,...,FEy,} of E at P.
Then

P(TpJF.g) Z > v Jrg) =tr+ Y (1NCol(E) — t(E)).

=1 QEE) red =1
Consequently, there is a curve J E composed by irreducible components of
Jr,g such that, if 6 is a branch of Jg,
o 750N Ereqa = {P},
o C(6,vr,) <v(Ey) forl =1,...,u, where vyg, is any Ej-curvette.
Moreover, we have that

u

vo(JE) =tp + Y _(1NCol(E) — t(Ey)).

=1
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Proof. — Let E be a non-collinear bifurcation divisor of G(Z) and a
point P € Col(E). Consider a cover {E1,...,E,} of E at P. By Theo-
rem 5.2, we have that

llp(’/TEj]:g) = I/p(’/TEC) + I/P(T('ED) +tp

Z Y valtnJre) =Y, Y. (va(nhC0)+vo(nhD) +76(Q)).

=1 QEE} rea =1 QEE) rea

By the properties of a cover given in Definition 5.6, we have that

vp(ryC) +vp(npD) = Z Z (vq(mg,C) + vo(rE,D))
=1 QEF} rea

and the result is straightforward. O

The results above allow to give a decomposition of Jr g into bunches of
branches in the sense of the decomposition theorem of polar curves. Recall
that given a divisor E of 7,'(0), we denote by 7 : Xz — (C2,0) the
morphism reduction of 7z to E and we write 7z = wg o 7. Let B(Z)
be the set of bifurcation divisors of G(Z). Given any E € B(Z) which
is a non-collinear divisor for F and G, we define ch as the union of the
branches & of Jr ¢ such that

o ThENTRZ =0,
o if £/ < E, then m5{ N7 (E) = 0,
o if £/ > E, then 5, NE! 4 = 0.
Moreover, given a non-collinear divisor E, we denote JZ = Pecol(B) V. £
(with JZ = () if Col(E) = 0).
Thus, the previous results allow us to give a decomposition of

Jrg=Ju| |J J”
Ee€BN(Z)
(see below for the precise statement) such there is a certain control of the
topology of the irreducible components of Jr g obtained from the data of
the foliations F and G provided that the component of Jr g is attached
either to a non-collinear divisor or to a chain of collinear divisors which are
between two non-collinear bifurcation divisors. The irreducible components
corresponding to J* are the one attached to “isolated” collinear divisors for
which no control is possible.
Given a non-collinear bifurcation divisor E of G(Z), we denote

t(E) = > tQs

QEM (E)~Col(E)
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that is, the number of zeros of Mg(z) (counting with multiplicities) which
do not correspond to collinear points. Then, we can state the properties of
the decomposition of Jr g as follows:

THEOREM 5.8. — Consider F € G¢ and G € Gp such that Z = C U D
is a curve with only non-singular irreducible components. Let By(Z) be
the set of non-collinear bifurcation divisors of G(Z). Then there is a unique
decomposition Jr.g = J*U(Ugepy(2) JE) where JE = JE U JE with the
following properties

(i) v (JE) = t*(E). In particular, vo(JE) < 4NCol(E) — 1 < bg — 1.
(ii) mpJE NrpZ = 0.
(iii) 1fE’ < E, then m JJE N7y (E') = 0.
(iv) if E' > E, then 7}, JE N E!l = 0.
(v) if 6 is a branch of J¥, then 70 N Eyeq is a point in Col(E).
u(P

) WUIE) = Spcoqte + S5 ENCOET) — H(EF)) where

{EF,... ,Ef(P)} is a cover of E at P.

(vi

Moreover, if E is a purely non-collinear divisor with

> Ag(RP)#0,

REeNCol(E)
then
(5.5) vo(JE) = v (JE) =bp — 1.
Proof. — We have that
w(Jr) = > vp(tpJrg) = > tp =t"(E)

PeM(E)\Col(E) PeM(E)\Col(E)
< Y tp<§NCol(E)—1<bg—1
PEM(E)

where we have used the inequality given in (4.2) and the fact that
#NCol(E) < bg. This gives the first statement of the theorem.

Moreover, if E is a purely non-collinear divisor, then Col(E) = (), J¥ =
JE and §NCol(E) = bg. In addition, when ZRFGNCol(E) Ap(RF) #0 we
have that ZPGM(E) tp =  NCol(E) — 1 by Lemma 4.6. Consequently, we
deduce that

w(l®)= > vp(rpJrg)= Y, tp=4NCol(E)—1=bg—1

PeM(E) PeM(E)

and we obtain expression (5.5).
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Properties (ii), (iii) and (iv) are consequence of the definition of JE.
Properties (v) and (vi) follow directly from the definition of JZ and The-
orem 5.7. O

Note that the properties of JE can be stated in terms of coincidences
as follows: if d is an irreducible component of JE (with E a non-collinear
bifurcation divisor) and Z; is an irreducible component of Z = C'U D, then

(6,7 = {v(E)7 if F is in the geodesic of Z;,
C(ye,Z;), otherwise.
where vg is any E-curvette. Observe that v(E) = C(vg, Z;) when E is in
the geodesic of Z; and yg does not intersect £ at the points 73,2 N E.
Next result determines the intersection multiplicity of JZ, with the curves
of separatrices C' and D of the foliations F and G.

COROLLARY 5.9. — If E is a non-collinear bifurcation divisor, then

(JE,C)o =vp(C)-t(E);  (J}, D)y =ve(D) t"(E)

nc)
where vg(C) = (C,vg)o and vg(D) = (D,vg)o with yg any E-curvette.

Proof. — Let E be a non-collinear bifurcation divisor of G(Z) and let
ve be any E-curvette which does not intersect E at the points 7,2 N E.
By the properties of JZ, given in Theorem 5.8, we have that if § is a branch
of J¥ then

C(5,Cy) = v(E), if F is in the geodesic of C;,
T C(vg,C;), othewise.

Note that C(yg,C;) = wv(E) if E is in the geodesic of C; (that is,
i € Ig). Moreover, since yg and C; are non-singular curves, we have
that C(vg, Ci) = (vE, C;)o. Therefore, using the relationship between the
coincidence and the intersection multiplicity of two branches given in Re-
mark A.1, we have that

(0,Ci)o = 10(9) - (v&, Ci)o
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for a branch § of JZ,. Now, if we denote by B(JL,) the set of branches of
JE

., we have that

T

(T Cho = > (e o—Z >

=1 i=1 6€B(JE)

= Z Z (78, Ci)o = wo(J}) Z(’YE,Ci)o
1=16eB(JE,) i=1

— *(E) - v(C). 0

As a consequence of the result above and Propositions B.1 and B.3 we
obtain next corollary for non-dicritical generalized curve foliations which
relates invariants of the foliations F and G, such as the Milnor numbers
o the tangency orders, with data coming from the decomposition of the
jacobian curve.

COROLLARY 5.10. — With the hypothesis and notations of Theorem 5.8,
we get that

> w(JE)ve(Ch) < po(F.Ci) +70(G, Cy)

E€BnN(2)
and
> wllIE)we(C) —ve(D)) < po(F) — po(9)-
E€BnN(2)
Proof. — We have just proved that (JE,Ci)o = vo(JE)ve(C;). Thus,

using Proposition B.1, we get that

> (TR Clo= > wlIE)ve(C) < (Jrg, Ci)o

Ee€By(Z) EeBnN(2)

= uo(F, C;) + 10(G, Cy).

Now, from Corollary 5.9 and Proposition B.3, we obtain that

Y (o= UiD) = > wli)(e(C) - ve(D))

EeBnN(2) EeBn(2)
< (JIr,g,C)o — (Tr,g. D)o
= po(F) — po(G)

which gives the second inequality. 0

The general case of foliations with separatrices that can have singular
irreducible components will be treated in next section.
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6. General case

Consider two plane curves C' = |J;_, C; and D = |Jj;_, D; which can
have singular branches. Assume that C and D have no common irreducible
components. Let p : (C2,0) — (C2,0) be a ramification given in coordi-
nates by p(u,v) = (u™,v) such that the curve p~!Z has only non-singular
irreducible components where Z = C' U D. In this section we will denote
B the curve p~!'B for any plane curve B. See Appendix A for notations
concerning ramifications.

Take F and G foliations with C' and D as curve of separatrices respec-
tively. Let us study the relationship between the curves Jr¢ = p 1 Jr g
and jp*}"p*g.

Assume that the foliations F and G are given by w = 0 and n = 0 with

w=A(z,y)dz + B(z,y)dy; n=P(x,y)dz+ Q(x,y)dy,

then p*F and p*G are given by p*w = 0 and p*n = 0 where

prw = A", v)nu™ " du + B(u",v) dv;

p*n = P(u™, v)nu™ " du + Q(u™,v) dv.
Therefore, if we write J(z,y) = A(z,y)Q(x,y) — B(x,y)P(z,y), then the
curve p~1Jr g is given by J(u",v) = 0 whereas J,-r g is given by
nu™~1J(u",v) = 0. Let us see (Corollary 6.2) that p~'Jr g = J r,g satis-
fies the statements of Theorem 5.2 with respect to p~1Z = Z.

Let 75 : X — (C%,0) be the minimal reduction of singularities of Z.
We denote by E any irreducible componeri‘f of W;(O) and by 75 : X5 —
(C?,0) the morphism reduction of 75 to E. Let us state some properties
concerning the infinitely near points of Jr g and J,- 7 p=g:

LEMMA 6.1. — Let E be an irreducible component of wgl(O), We have
that
T 76 N Ereq = TpTpFpr6 N Ereg,
where Efed denote the points in the first chart of Ered. Moreover,
ve(npJ 7.6) = vp(TpJpF.p*G)
for each P € WEjf’g N E;‘Cd.
Proof. — Take E an irreducible component of 7751(0) with v(E) = p and

assume that (u,v) are coordinates adapted to E. If we denote J(u,v) =
J(u™,v), we have that

Inp(nu"_lj; u,v) = nu" ! Inp(j; U, ).
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Write
In,(J;u,v) Z hiju'v?.
i+pj=k
Hence, if (uy,,v,) are coordinates in the first chart of Ered cX 5 such that
T (up, vp) = (up,uhvp) and Erea = (up = 0), then the points 727 F g N

Ered, in the first chart of Ered, are given by u, = 0 and Zi+pj:k hijvg =0.
This proves that
TpI F.g N Efeq = T5TpF prg N Ereq
and that
vp (W;?;jf,g) =vp (T TpF p*g)
for each P € nggg N E’r*ed. O

Hence, when E is a non-collinear divisor for the foliations p*F and p*@,
the curve J,+r ,-g satisfies Theorem 5.2 with respect to p~'Z = Z, and
thanks to the previous lemma, we get the following result for p~'Jr g =

NEXE
COROLLARY 6.2. — Take E an irreducible component ofwgl (0) which is

a non-collinear divisor for the foliations p*F and p*G. Given any P € E‘:‘e Q>
we have that

UVp (ﬂ%j]:g) =vp <7T*E5'> +vp (ﬂ*EZN)) + 75(P).

In particular, if P € Efed with I/p(ﬂ'*Ej}‘,g) > 0, then P is an infinitely
near point of Z or a point in M(E).
Let E be a bifurcation divisor of G(Z) and consider E;, E;, two bifur-

cation divisors of G(~) associated to E. Recall that there is a bijection
between the sets of points 77, ZN Ered and 77 ZN Ered given by the map

Pk Ely — Ered (see Appendlx A). Thus we will denote by
{RE' RE' .. Rb } and {RE" RE" .,Rf;k} the sets of points

WEZZ N Ered and wEkZ N Ered respectlvely, with Rfk = phk(RFl) for
t = 1,2,...,bpr. By the results in Appendix A.3 (see Proposition A.4
and (A.7)), we get that

T ( T F, Emd) =Ty (wgkp*ﬂ E’fcd)

IRFI ( E“O g Ered) IRka (ﬂ-gkp*gaﬁfed)
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which implies
AE"vz (RtE‘l>:AE"uk (RtEk> fOl“ t:172,...,bEl,

with Az (RtEl) = Agf’p*g(R?l). Thus, E' is collinear (resp. non-collinear)
if and only if E¥ is also collinear (resp. non-collinear). So we can introduce
the following definition

DEFINITION 6.3. — We say that a bifurcation divisor E of G(Z) is
collinear (resp. non-collinear) for the foliations F and G when any of its as-

sociated divisors E' is collinear (resp. non-collinear) for the foliations p* F
and p*G.

Moreoyer, if R?L,Rfl are two points W*ElZ N Efed with pEl,E(Rfl) =
pEl’E(Rfl) where pgi @ ELq — Erea is the ramification defined in appen-
dix A, then

s (1) = ()

by (A.8) in Appendix A.3. Thus, we say that an infinitely near point R¥ of
Z in FEyeq is a collinear point (resp. non-collinear point) for the foliations
F and @G if, for any associated divisor E' and any infinitely near point Rfl
of p~1Z in E!_, with pEl’E(Rfl) = R¥, the point Rfl is collinear (resp.
non-collinear) for the foliations p*F and p*G. Given a bifurcation divisor E
of G(Z), we denote by Col(E) the set of collinear points of E and NCol(E)
the set of non-collinear points of F.

Corollary 6.2 and the results in Section 5 allow to give a decomposition
of Jr,g. By Theorem 5.8, we have a decomposition

j]:g = :]V* U U JE
EcBnN(2)

with JZ = Jfo U JCE . Given a non-collinear bifurcation divisor E of G(Z),
we define JE = JE U JE to be such that

g

s =B =
=1 =1

where {E! 1125, are the divisors of G(Z) associated to E and J* to be such
that p~'J* = J*. Hence, we can state the main result of this paper
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THEOREM 6.4. — Let us write Z = U::f Z; with Z; irreducible and
denote by Bn(Z) the set of non-collinear bifurcation divisors of G(Z).
Then there is a decomposition

Jrg=Ju| |J J”

E€BN(2)
with JE = JE U JF such that
ngng(bp — 1), if E does not belong to
(i) (L) < a dead arc,

npne(bp —1) —ng, otherwise.
(ii) For each irreducible component § of JE, we have that
o C(6,Z;) =v(E) if E belongs to the geodesic of Z;;
e C(0,Z;) =C(Z;, Z;) if E belongs to the geodesic of Z; but not
to the one of Z;.
(iii) For each irreducible component § of J¥| there exists an irreducible
component Z; of Z such that E belongs to its geodesic and

C(0,7;) > v(E).
Moreover, if E' is the first non-collinear bifurcation divisor in the

geodesic of Z; after E, then
C(8,Z;) < v(E).

7. Jacobian curves of hamiltonian foliations and Polar
curves of foliations

In this section we will explain how our results imply previous results
concerning jacobian curves of two plane curves or polar curves of foliations.

7.1. Jacobian of two curves

In [19, 20], T.-C. Kuo and A. Parusinki consider the Jacobian f,g, —
fyg2 = 0 of a pair of germs of holomorphic functions f, g without common
branches and give properties of its Puiseux series which they called polar
roots of the Jacobian. They define a tree-model, noted T'(f, g), which rep-
resents the Puiseux series of the curves C' = (f = 0) and D = (g = 0)
and the contact orders among these series. The tree-model T'(f,g) is con-
structed as follows: it starts with an horizontal bar B, called ground bar
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and a vertical segment on B, called the main trunk of the tree. This trunk
is marked with [p, q] where p = 1y(C) and g = (D). Let {yzc(sc)}fi(lc) and
{yP (:U)}l-'i(lD) be the Puiseux series of C' and D respectively, and denote

K2

{zi(@)})L1 the set {y ()12 U {yP (@)} with N = 10(C) + 1(D).
Denote by hg = min{ord,(z;(z) — zj(z)) : 1 < 4,57 < N}. A bar By
is drawn on top of the main trunk with h(By) = ho being the height of
By. The Puiseux series {z;(z)} are divided into equivalence classes (mod
By) by the following relation: z;(x) ~p, zr(x) if ord,(z;(z) — 2zx(x)) >
ho. Each equivalence class is represented by a vertical line, called trunk,
drawn on the top of By. Each trunk is marked by a bimultiplicity |[s,t]
where s (resp. ¢) denote the number of Puiseux series of C' (resp. of D)
in the equivalence class. The same construction is repeated recursively
on each trunk. The construction finishes with trunks which have bimul-
tiplicity [1,0] or [0, 1] representing each Puiseux series of the curve Z =
CuUD.

Let us now consider the curve Z = p~1Z where p : (C2,0) — (C2,0)
is any Z-ramification given by p(u,v) = (u",v) (see Appendix A). Since
the branches of Z are in bijection with the Puiseux series of Z and the
valuations of the bifurcation divisors of G(Z) represent the contact or-
ders among these series, then the tree model above T'(f,g) can be recov-
ered from the dual graph of G(Z): there is a bijection between the set
of bars of T(f,g) which are not the ground bar and the bifurcation di-
visors B(Z) of G(Z). For instance, the first bar By corresponds to the
first bifurcation divisor Ey of G(Z) and h(By) = ”(El) . The number of
trunks on By is equal to bg , that is, each trunk on BO correspond to an
infinitely near point of Z on E1 red- In partlcular given a trunk with bi-

multiplicity [s, t] corresponding to a point Rl 1, then s = VB (WEIC) and
t=v_g, (7T*~ '

D).
R; Eq
We shall illustrate with an example the relationship between T'(f, g) and
G(Z). The following example corresponds to the Example 1.1 in [20].

Example 7.1. — Take positive integers d, f with d < f and non-zero
constants A, B. Consider

flay) = (y+a)(y — o™ + AxPH) (y + 2 + Bal )
g(z,y) = (y — 2)(y — 2 — Azl (y + 24T — Bal )

and put C = (f = 0) and D = (g9 = 0). Since Z = C' U D has only non-
singular irreducible components, we do not need to consider a ramification.
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The dual graph G(Z) is given by

E 1&

Ch F+1 2

E Do
Eq E11+1 e e < Cs

D Ejr+1 Ds
G(Z)
while the tree-model is given by
C'g DQ C'j D3
(1,0] B3 [0, 1] (L0 By [0,1]
[1.1] [1,1]
.C.fl Bl D1
1,0] Bo (2, 2] [0,1] ‘
3. 3]
B.

where we have indicated the branches of C' and D corresponding to the
terminal trunks. Thus, the bijection among the bars in T(f,g) and the
bifurcation divisors in G(Z) is given by

By +— Ey; By «— E4.1; By «— E}y; B3 «— Epq
Wlth h,(Bo) = U(El) = 1, h(Bl) = U(Ed+1) = d+ 17 h(BQ) = ]’L(Bg) =
o(Bpi1) = v(Eyy ) = f+1.

Let us show that the notion of collinear point and collinear divisor given
in Section 4 correspond to the ones given in [19, 20] thanks to the bijections

explained above. Let B be a bar of T(f,g) and consider a Puiseux series
zi(x) of Z which goes through B, this means, that

zi(z) = zp(z) + cxB) ...

where zp(x) depends only on the bar B and ¢ is uniquely determined by
zi(x). If T is a trunk which contains zj(x), then it is said that the trunk 7'
grows on B at c. Let E be the bifurcation divisor of G(Z) corresponding
to B and consider

vp(u) = zi(u") = zp(u™) + cu™B) 4 ...

ANNALES DE L’INSTITUT FOURIER



JACOBIAN CURVE OF SINGULAR FOLIATIONS 269

Note that the curve given by v — vg(u) = 0 is a branch of Z such that E
belongs to its geodesic. This curve determines a unique point R in E‘red;
in this way we can establish the bijection among the trunks on B and the
infinitely near points of 7 on Emd.

Let now B be a bar of T'(f, g) that corresponds to a bifurcation divisor E
of G(Z) and T, 1 < k < by, be the set of trunks on B with bimultiplicity
[Pk, qx] where the trunk T; grows on B at ¢;. Let us denote {RF, . ,R{?E}
the set of infinitely near points of 7 in Ered with R? corresponding to the
trunk T;.

In [20], the authors define

vi(B) pk
Vg(B) gk

where v4(B) = ord, (f(z, zg(z) + caP))) for ¢ € C generic (resp. vy(B)),
and the rational function associated to B as

Ap(cy) =

b
o Ap(er)
Mp(2) =) o
k=1
Note that, if E is the bifurcation divisor of G(Z) such that E is associated

to E, then the curve given by y = zp(x) + cx™PB) is an E-curvette. Thus,
taking into account Proposition 2.5.3 of [7] for instance, we get that

(Ca 'YE)O

vi(B) = m(E)

with vg any E-curvette. Moreover, it is easy to verify that

1 vo(C)
c
vi(B) =~ (1 7)o
i=1
where 'yic is the curve given by v—yic (u™) = 0and vz is an E-curvette. Note
Cc
that we can compute the intersection Inul‘Epllclty (N%C RO = D p <E 57;2
where the sum runs over all the divisors E' in G(C) in the geodesic of E
C ~ C
and 57:3", = 1 if the geodesic of 4¢ contains the divisor £’ and 57:3", =0
otherwise. Thus, with the notations given in Section 3, we have that
! ¢
vs(B) = g (L)
where £C = Gf is the logarithmic foliation in G with A = (1,1,...,1),
that is, the hamiltonian foliation defined by df = 0 with f(u, v) = f(u",v).
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Moreover,
pk:VRkE(WEC)7 k=1,...,bp
and thus

(- pC I _ Pk o ~
IRkE(ﬂEL s Ered) = Wi (B) k=1,...,bz.

Consequently, with the notations introduced in Section 4, we have that
1 ~
Ap(c) = _EAE(RE) and Mpg(z) = —nMp(z).

Thus the notions of collinear divisor and collinear point given in Section 4
correspond to the ones given in [20] for bars and points on them, and the
results given in Section 5 imply some of the Theorems proved in [20].

7.2. Semiroots and Approximate roots

The notion of approximated root was introduced by Abhyankar and Moh
in [1] where they proved the following result:

PROPOSITION 7.2. — Let A be an integral domain and P(y) € Aly] be
a monic polynomial of degree d. If p is invertible in A and p divides d, then
there exists a unique monic polynomial Q(y) € Aly] such that the degree
of P — QP is less than d — d/p.

The unique polynomial @ given by the previous proposition is called the
p-th approximate root of P. Let us consider f(z,y) € C{x}[y] an irreducible
Weierstrass polynomial with characteristic exponents {8y, 1, ..., 84} and
denote e, = ged(Bo, f1,...,0k) for k = 1,...,g. Thus e; divides Sy =
deg, f. We will denote f (k) the ej-approximate root of f and we call them
the characteristic approximate roots of f. Next result ([1, Theorem 7.1])
gives the main properties of the characteristic approximate roots of f (see
also [17, 29]):

PROPOSITION 7.3. — Let f(x,y) € C{z}[y] be an irreducible Weier-
strass polynomial with characteristic exponents {fo, f1,...,Bq}. Then the
characteristic approximate roots f*) for k =0,1,...,9 — 1 verify:

(i) The degree in y of f*) is equal to By/es and C(f, f*)) = Bri1/Bo.
(ii) The polynomial f*) is irreducible with characteristic exponents

{Bo/ex,B1/ek, -, Br/er}
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In [14], E. Garcia Barroso and J. Gwozdziewicz studied the jacobian
curve of f and f*) and they give a result concerning its factorization
(see [14, Theorem 1]). In this section, we will prove that this result of
factorization can be obtained as a consequence of Theorem 6.4.

Remark 7.4. — In [29], P. Popescu-Pampu proved that all polynomials
in C{x}[y] satisfying condition (i) in the proposition above also verify con-
dition (ii). Hence, given an irreducible Weierstrass polynomial f(z,y) €
C{z}[y] with characteristic exponents {9, 81, ..., 3y}, we can consider the
monic polynomials in C{x }[y] satisfying condition (i) above which are called
k-semiroots of f (see [29, Definition 6.4]). Since we only need the properties
of characteristic approximate roots given in Proposition 7.3, in the rest of
the section, we will denote by f*) a k-semiroot of f, 0 < k< g — 1.

Let C be the curve defined by f = 0 and denote C*) the curve given by
f(k) = 0 with 0 < k < g — 1. Consider F € G¢ and F) e Gy . Note
that the minimal reduction of singularities 7¢ : X¢ — (C2,0) of the curve
C gives also a reduction of singularities of C'UC®). There are ¢ bifurcation
divisors in G(C). The set of bifurcation divisors of G(C) will be denote by
{E,...,E,} with v(E;) = % Remark that the dual graph G(C'UC®) is
given by (see [29] for instance):

Thus the sets of bifurcation divisors of G(C') and G(C' U C™®) coincide.
All bifurcation divisors of G(C'UC®)) are Puiseux divisors for C' while only
E1, ..., Ey are Puiseux divisors for C*). Then we have

LEMMA 7.5. — The set of non-collinear bifurcation divisors of G(C' U
C®)) for the foliations F and F*) is {Ey11,...,E,}.

Proof. — Let {(mi,n1),...,(mg,ng)} be the Puiseux pairs of C, then
we remind that By = vo(C) = n1---ng, ex = npq1---ng and Bi/Bo =
my/ny ---ny, for k = 1,..., g. Given a bifurcation divisor E; of G(CUC®),
we have that ng, = ny, ng, =n1---ni_1 = fo/er—1 and m(E}) = ngnpg =
ny---ny.
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Consider now the ramification p : (C2,0) — (C2,0) given by p(u,v) =
(u™,v) with n = By and denote C' = p=1C, C®) = p=1C®) . Take a bi-
furcation divisor E; and let {Ef}tf{ be the set of bifurcation divisors of
G(C U C™) associated to Ej.

In the case | < k+1, we have that 77 C’ﬂEl red = Tp C’(k) ﬂEt rod With

bge = ny in G(C UC®). Let us denote % C’ﬁ Ef rod = {R . RbEf}

Using the equations given in Section 3 and Appendix A, the computatlon
of the Camacho-Sad indices for the foliations p* F and p* F*) gives

~ Nig1 N
* * t _ + 9
(71) VA E; (ﬂ-Etp ]:a El,red) - _Zn E~ . Os
R, ! s=1 EgEf 5
5 % k) =t . Npy1 N
IREf (’/TEltp f( )aEl,rcd) - k)

Yl Ve

where C = (JI_, 0, and CF) = |, ™ o{¥). Hence, taking into account
the results of Appendix A, we have

IREf (W*E'?p*‘/—:v Ef,red) = IRE; (W*E{p*f(k)7 Ef,red)v s=1,..., bE‘t

and consequently, AE;(Rff) =0,s=1,..., bE;, for the foliations p*F and
p* F*). This proves that the bifurcation divisors E; of G(C U C®)) with
1 < k+ 1 are collinear for F and F®*).

Consider now the bifurcation divisor Ejy; of G(C U C*) and let

{Efﬁl}tﬂf{‘“ be the set of bifurcation divisors of G(C'UC®) associated to

FEiia. ~Although the cBrve ﬂ-EkHC(’“) does not intersect Ej41 red, the curve
W*EZHC’(’“) intersects E‘,;H red in One point foreacht =1,... g, which is

different from the ny1 points where 7% C intersects E}; +1,red- Note that

t
Ek+1

bp,,, =2in G(CUC(k)) and, by (A.2),bg, | =npp1+1in G(CUC®). Let

{Rfk“ R, ’““ } be the set of points (7

k+1

EZH req) With R Ef“ =Tk c®n EZH eq- Thus, we can compute the
k+1 k+1

Camacho-Sad of p*F and p*F*) at these points as in the previous case,
and prove that AEEH( Ek+1) #0,s=1,. bEiﬂ’ for the foliations p*F

and p*F*). Consequently Ej; is a non-collinear divisor for F and F*).

A It * ~(k)
EfHCﬂEkHJCd)U(WE;HC N
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However, we have that

bt
Bt

(7.2) Z AEt Ek+1) =0.

In fact, the divisor E, 41 arises from one of the divisors E} at one of the

points Rf of the set 7% C nEY kred- Slnce E}; is a collinear divisor, then

Rf * is a collinear point and (7.2) follows from Corollary 4.12.

Consider now a bifurcation divisor E; of G(C'UC™®) with I > k + 1. In
this case, we have that the curve g, C®) does not intersect Ej red, the curve
W*Efé(k) does not intersect Ef red and bge =y in G(CUC®) (see (A.2)).

Let us denote {R}", .. } the set of points 7% C’ N Ef red = Th (C’ U
C®) N Ef rod- With the notatlonb above, for s € {1 bEt} we have

that Z Et( Efp*]-' El red) is given by (7.1) while 7 LB (7% p*]—"(k) El red) =

0 since the points R ' are non-singular points for p*}' (k) This implies
AEt( El) #0,1< bEf’ and hence E; is a non-collinear divisor for the
foliations p*F and p*f (k). Moreover, we have that

byt

l ~
Et _ * * -t _ * * -t
ZAE; (Rs') = — Z;IRSEf (WE;P F, El,red) =1 +IQ(7TE;P F, El,red)

where @ is the only singular point of 7%, p* F in Ef different from the points
l
_, ~
RE'. By Proposition 4.4 in [9], we know that Zo (5 p"F B 10q) # 1 and

hence

byt
i _
Bt
ZAE;( $') #0. O
s=1

Thus, by Theorem 6.4 there is a decomposition

g
Tr.r =J*U ( U JZ')

i=k+1
where J* = JEi such that

(1) Vo(JkJrl) <N Ngt1-

(i) vo(JY) =nq-- nz_l(n, —Dfork+2<i<y.
(iii) if  is a branch of J*, k+ 1 < i < g, we have that C(,C) = g—;
(iv) if 7 is a branch of J*, then C(v,C) < %
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Note that 7 is a branch of J* if it is not a branch of any of the curves J¢,
k+1 <1 < g, and hence, 7y intersects a component F of the exceptional
divisor 7 1(0) which appears in the reduction of singularities of C' before
than Fjy1. Consequently we have that C(y,C) < v(Egt1) = Bgzl which
gives property (iv).

Let us prove that J**1 = (). From Section 6 we have that p~1J**! =
N J k+1

il with the notations of the proof of Lemma 7.5. Let us com-
pute ME}Z (z) for any ¢t € {1,...,n1---ng}. To simplify notations, let us
+1

denote b = bE;H = g1 + 1, R, = Rf’““ and A(E) = AE£+1(1§1). Thus,

we have that

Mg (2) =

k1 z—&8 z

where £ is a primitive ng41-root of a value a = aPki1 determined by the
Puiseux parametrizations of C. From the proof of Lemma 7.5, we obtain
that A(R,) = A(Ry) for any s,¢t € {1,...,b— 1}. Thus, taking into ac-
count (7.2), we get that

b—1
S T2 (2 =€)

) — A(P i#s A(Ry)
MEZ_H( z) = A(Ry) T — g + 2
~ neti=1 A(R; —aA(R;
SNV AL AL Y
2Nkt — z z(2Mk+1 — q)
where aA(ﬁB) # 0. Hence, Jnc’“+1 =@ forallt =1,...,n1---n; and
consequently JE+1 = ().

COROLLARY 7.6. — Let C be an irreducible curve and C*) the curve

given by the k-characteristic approximate root (or by a k-semiroot) with
0 < k< g—1. Consider F € G¢ and F® ¢ Gc . Thus, the jacobian
curve J. FLF® has a decomposition

g
\7]-"]:(19) =J"U ( U Ji>

i=k+2
such that

() vo(J) =ny---ni_1(n; —1) fork+2<i<g.
(if) if 7 is a branch of J', k +2 < i < g, we have that C(7,C) = &,
(iii) if v is a branch of J*, then C(vy,C) < %
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In particular, the result above implies the result of E. Garcia Barroso
and J. Gwozdziewicz ([14, Theorem 1]) concerning the jacobian curve of a
plane curve and its characteristic approximate roots.

Moreover, in [31], it is considered the jacobian curve Jrz gu) of a folia-
tion F with an irreducible separatrix f = 0 and the hamiltonian foliation
G®) defined by df®) = 0 with f*) a characteristic approximate root of
f. Corollary 7.6 also implies the main result of N. E. Saravia in [31, Theo-
rem 4.1] concerning factorization of Jz ga)

Remark 7.7. — Note that E' is always a collinear divisor for the foli-
ations F and F*) hence the hypothesis of Lemma 2.3 are not satisfied
and the multiplicity of Jr zu) can be greater than vo(F) + vo(FHR) =
v0(C) + v5(C™*)) — 2 as showed in the examples given in [14] or [31].

7.3. Polar curves of foliations

Given a germ of foliation F in (C2,0), a polar curve of F corresponds to
the jacobian curve of F and a non-singular foliation G. If we are interested
in the topological properties of a generic polar curve of F, it is enough to
consider a generic curve 77[{; 0] in the family of curves given by

wA (ady —bdx) =0

where w = 0 is a 1-form defining F and [a : b] € P_ (see [9, Section 2]).
When F is a hamiltonian foliation given by df = 0 we recover the notion
of polar curve of a plane curve. As we mention in the introduction, polar
curves play an important role in the study of singularities of plane curves
and also of foliations. There is a result, known as “decomposition theorem”,
which describes the minimal topological properties of the generic polar
curve of a plane curve C in terms of the topological type of the curve C
(see [25] for the case of C irreducible; [13] for C' with several branches).
In the case of foliations, the decomposition theorem also holds for the
generic polar curve of a generalized curve foliation F with an irreducible
separatrix (see [30]). In the general case of a generalized curve foliation F
whose curve of separatrices is not irreducible, the decomposition theorem
for its generic polar curve only holds under some conditions on the foliation
F (see [9]). Let us see that all these results can be recovered from the
results in this paper. In particular, we show that we can prove Theorems 5.1
and 6.1 in [9] which give the decomposition theorem for the polar curve
of a generalized curve foliation F and hence we get all the other results
concerning decompositions theorems.
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Let F be a generalized curve foliation in (C2,0) with C as curve of sep-
aratrices and denote by P a generic polar curve of F. We can assume
that P7 = J 7,6 where G is a non-singular foliation. Note that the curve
of separatrices D of G is a non-singular irreducible plane curve. Let us as-
sume first that C has only non-singular irreducible components, all of them
different from D, and take the notations of Section 4. Thus the minimal re-
duction of singularities 7¢ : X — (C2,0) is also the minimal reduction of
singularities of Z = CUD. Note that the dual graph G(Z) is obtained from
G(C) adding an arrow to the first divisor E' which represents the curve D.
Hence, if we denote b%, b%, the number associated to a divisor E in G(Z)
or G(C) respectively, as defined in Subsection 2.3, then %, = b%, + 1 and
bZ = b%, otherwise.

Consider E an irreducible component of the exceptional divisor 75" (0).
If E = E' is the divisor which appears after the blow-up of the origin, then
i DNEL, ={Q}and Q € 7}, CNEL . Thus, for R € E.; we have that

A]:ig(R) _ IQ(WE1Q7Er1ed)v if R=0Q,
b —Tr(n5, F,EL,), otherwise.

with Zo (7 G, EL,) = —1. If E # EY, then w2 N Eyeq = mjyC N Eyeq and

then AZ9(R) = —Zr(7}yF, Brea) for any R € Ereq.
With the hypothesis above and the notations of Section 4, we have that

LEMMA 7.8. — The following conditions are equivalent:

(i) There is no corner in 7' (0) such that 755 F has Camacho-Sad index
equal to —1.

(ii) All the components of the exceptional divisor 7'(0) are purely
non-collinear.

Proof. — Assume that (i) holds and that there is a component E of the
exceptional divisor which is not purely non-collinear, that is, there is a
singular point R € Eyeq of njF with Zr(nhF, Ered) = 0. Then R is not
a simple singularity for 75 F and hence, if 0 : Xg» — Xg is the blow-up
with center in R, and we denote by Ered the strict transform of E..q by o,
then we have that IR(ﬂE}", Ered) = —1 where R = El 4N Ered. Thus we
get a corner in 7' (0) with Camacho-Sad index equal to —1.

Conversely, assume now that all the components of the exceptional divi-
sor 71'51 (0) are purely non-collinear and there is a corner R= Ep_1NEj with
I5(n&F,Ex—1) = —1. Consider the morphism 7g, , : Xg, , — (C2,0)
and take the point R € Ej_1,eq that we have to blow-up to obtain the
divisor Ej. Thus, by the properties of the Camacho—Sad, we have that
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IR(’/TEIQ71 s Ek_1rea) = 0 but this contradicts that Ej_; is purely non-
collinear. O

In particular, let us see that Theorem 6.1 in [9] is consequence of The-
orem 5.2. Assume that the logarithmic model of F is non resonant, this
implies condition (i) in the lemma above (by [9, Proposition 4.4]) and hence
all the divisors in G(Z) are non-collinear. Note that E' is always a bifurca-
tion divisor in G(Z) and we have that ZReEl Ap1(R) = 0by Remark 4.11.
If we write 75, C N EL, = {R .. } and 75, DN EL, = {Q} with

RE' = (0,cE),1=1,.. bE1, and Q = ( ,d) in coordinates in the first

chart of Erled7 then the set of zeros of M g1(z) are given by the roots of the
polynomial
bC
1
H(z—c Z RE! (T F, Ered)H(z—ch )
=1 il

which has multiplicity equal to bgl — 1 provided that

Z cl +dz gt (Tin o Epeq) # 0.

Note that we can assume that this condition holds since we are consider a
generic polar curve.

Consider a component E of the exceptional divisor 7T51 (0). We have that
NCol(E) = 75CNEyeq if E # E' and NCol(E?) = (T CﬂErlcd)U(ﬂ;JlDﬂ
E! ;). Given a point P in 75C N Eyeq, by Theorem 5.2, we have that

vp(tyPT) = vp(rpC) — 1

and hence we have [9, Theorem 6.1]. If we take the point () given by 75, DN
EL ., we have that vg (15 P7) = vg(m: D) —1 = 0. Thus, by Theorem 5.8
we obtain that P¥ = J EeB(C J with the following properties

(i) vo(JF) =b§ — 1,

(ii) 75 JF NasC =0,

(iii) if B’ < E, then w5 JF Ny (E') = 0,

(iv) if B/ > E, then 7, JENE! ; =0,
which in particular implies the decomposition of the generic polar curve
given in Corollary 6.2 of [9] for C' with non-irreducible components. Thus
the decomposition in the general case ([9, Theorem 5.1]) follows from The-
orem 6.4.
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Appendix A. Equisingularity data and Ramification

The aim of this appendix is to explain the behaviour of plane curves
and their invariants under the action of a ramification. Although some of
these results can be found in [10, Appendix B], we include them here for
completeness.

A.1. Equisingularity data

In Subsection 2.3 we have introduced some notations concerning equi-
singularity of plane curves that will be used in the sequel. This appendix
completes Subsection 2.3 with more notations related with equisingularity
data that have already been used to prove some results or that will be
useful in order to describe the effect of ramification over a plane curve.

Recall that mc : X¢ — (C2,0) is the minimal reduction of singularities
of a curve C' = |Ji_, C;. Given an irreducible component E of 75'(0), a
curvette ¥ of the divisor F is a non-singular curve transversal to E at a
non-singular point of 7' (0). The projection v = ¢ (7) is a germ of plane
curve in (C2,0) and we say that +y is an E-curvette. We denote by m(FE) the
multiplicity at the origin of any FE-curvette and by v(E) the coincidence
C(vE,vg) of two E-curvettes yg, vy which cut E in different points. Note
that v(E) < v(E') if E < E’. Recall that the coincidence C(v,d) between
two irreducible curves v and ¢ is defined as
(A1) Cv,0) = sup {ords(y] (z) —y;(x))}

1<i<ro(7)

1<i<ro(9)
where {y; (w)}lyi(lw), {y}s(w)};'f]:(f) are the Puiseux series of v and ¢ respec-
tively.

Remark A.1. — Note that the coincidence C(v,d) between two irre-
ducible curves v and 0 and the intersection multiplicity (v,d)o of both
curves at the origin are related as follows (see Merle [25, Proposition 2.4]):
if {Bo,b1,-.., B} are the characteristic exponents of v and « is a ratio-
nal number such that 8, < o < Bg41 (Bg41 = ), then the following
statements are equivalent:

() €)= 2
s (77 5)0 _ Bq o — ﬂq
(i) () i ng + ny - ng
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where {(m;,n;)}?_, are the Puiseux pairs of v (ng = 1) and {Bo, 81, ..., B4}
is a minimal system of generators of the semigroup S(v) of ~.

Consider any curvette ¥g of E, then 7% (Yg) is also a curvette of Eyeq C
Xg and it is clear that m(E) = m(Frq) and v(E) = v(Eieq). Let
{BY,BE,... g(E)} be the characteristic exponents of vg = 7o (). Then
we have that m(E) = BF = vy(yE). There are two possibilities for the
value of v(E):

(i) either 7g is the minimal reduction of singularities of vg and then
v(E) = g(E)/ﬁO We say that E is a Puiseux divisor for m¢ (or C);

(ii) or mg is obtained by blowing-up ¢ > 1 times after the minimal
reduction of singularities of vg and in this situation v(E) = (BE st
q)/BE. In this situation, if E is a bifurcation divisor, we say that E
is a contact divisor for mo (or C).

Moreover, a bifurcation divisor E can belong to a dead arc only if it is a
Puiseux divisor.

Take E a bifurcation divisor of G(C) and let {(m¥ nf), (m¥ nd),...,
(mf(E)7 nf(E))} be the Puiseux pairs of an E-curvette yg, we denote

g — ngg), if E is a Puiseux divisor,
1, otherwise,

and np = m(E)/ng. Observe that, if E belongs to a dead arc with terminal
divisor F, then m(F') = ng. We define kg to be

o — g(E)—1, if E is a Puiseux divisor,
E g(E), if F is a contact divisor.

Hence we have that ng = n¥-.-nf .
E

Remark A.2. — Let E be a bifurcation divisor of G(C') which is a Puiseux
divisor for C' and take any ¢ € I (that is, E belongs to the geodesic of the
curve C;). We have two possibilities concerning v(E):

e cither v(F) = ﬁ,iEH/ﬁé, then we say that E is a Puiseux divisor
for Cjy;
e or v(E) corresponds to the coincidence of C; with another branch
of C, in this situation we say that F is a contact divisor for C;.
Note that, if F is a Puiseux divisor for C, then it is a Puiseux divisor for
at least one irreducible component C; with i € Ig, but it can be a contact
divisor for other branches C; with j € Ig, j # ¢. Consider for instance the
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curve C = C1 U Cy with C; = (y?2 — 23 = 0) and Cy = (y — 2% = 0). The
dual graph G(C) is given by

]

E E3
1 Oy

Es

Thus the divisor E3 is a Puiseux divisor for C and C; but it is a contact
divisor for Cs since v(Es3) = 3/2 = C(C1, Ca).

Example A.3. — If we consider a semiroot C*) of a curve C' as in Sub-
section 7.2, then all the bifurcation divisors Eq, Fy, ..., E, are Puiseux di-
visors for C; the divisors E1, Es, ..., E}, are also Puiseux divisors for C'%)
but Ej,1 is a contact divisor for c),

A.2. Ramification

Consider a plane curve C' = [J;_, C; in (C?,0). Let p: (C?,0) — (C?,0)
be any C-ramification, that is, p is transversal to C and C = p~1C has only
non-singular irreducible components. Consequently, if the ramification is
given by z = u™,y = v, then it is required that n = 0 mod (n',n?,...,n")
to ensure that C has only non-singular irreducible components where n® =
vo(C;). Each curve C; = p~1C; has exactly n' irreducible components and
the number of irreducible components of C is equal to v(C) = nl+4- - -+n".

1/n’

More precisely, let y'(z) = D isni aiz!/™ be a Puiseux series of C;, thus

all its Puiseux series are given by
yi(z) = afelal/™ for j=1,2,... 0,

I>nt

where ¢; is a primitive n‘-root of the unity. Then f;(z,y) = Hl":l(y—yl’(ac))
is a reduced equation of C;. If we put v}(u) = y}(u"), then v’ (u) € C{u}
since n/n* € N. Hence the curve % = (v —v}(u) = 0) is non-singular and it
is one of the irreducible components of p~*C;. Thus an equation of p~1C;
is given by

i

gi(u,0) = filu®,v) = [ (v = vi(u)).

=1
In particular we have that the irreducible components {a;- ;L:l of p~1C;
are in bijection with the Puiseux series of C;.
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It is well-known that the equisingularity type of a curve C is deter-
mined by the characteristic exponents {3, 5%, ..., Bl 7_, of its irreducible
components and the intersection multiplicities {(C’Z7 C’ i)otizs. In [10] it is
proved that the equisingularity data of C' can be recovered from the curve

parel

Let us explain now the relationship between the dual graphs G(C) and
G(C) of the minimal reduction of singularities of C' and C respectlvely
Observe that, if E and E’ are two consecutive vertices of G (C) with E < E,
then v(E’) = v(E)+1. Thus, G(C) is completely determined once we know
the bifurcation divisors, the order relations among them and the number
of edges which leave from each bifurcation divisor.

Let K; be the geodesic in G(C) of a branch C; of C and let I~(2 be
the sub-graph of G(é) corresponding to the geodesics of the irreducible
components {Jl}l 1 of p~1C;. Let us explain how to construct K; from
K;. Denote by B(K;) and B(K;) the bifurcation vertices of K; and K;
respectively. We say that a vertex E of B (K 1) is associated to a vertex E
of B(K;) if v(E) = nv(E). Note that there can be other bifurcation vertices
in G(C)~ B(K;) with valuation equal to nv(E) but they are not associated
to E.

Take a vertex E of B(K;). Consider first the case of E being the first
bifurcation divisor of B(K;) and take E’ its consecutive vertex in B(Kj;).
Then E has only one associated vertex E in B(I? ;) and there are two
possibilities for the number of edges which leave from it:

e If F is a Puiseux divisor for C;, then there are n} edges which leave
from E in K;; then E' has n associated vertices in B(K;).

e If F is a contact divisor for C;, then there is only one edge which
lea\@ from E in K ; and thus E’ has only one associated vertex in
B(K;).

Note that, if F is a Puiseux divisor for C, then F is a Puiseux divisor for
at least one irreducible component C; but it can be a contact divisor for
all the other irreducible components (see Remark A.2). Let E now be any
vertex of B(K;) and assume that we know the part of K, corresponding to
the vertices of K; with valuation < v(E). Then there are ny = nf ---nj_
vertices {El}lﬂfl associated to F and

e If I is a Puiseux divisor for C;, then there are n}cE 41 edges which

leave from each vertex El in I? ;
e If F is a contact divisor for Cz, then there is only one edge which
leaves from each vertex El in K
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The dual graph G(é) is constructed by gluing the graphs K i- Thus we
deduced that, if F is a divisor of G(C) associated to a divisor E of G(C),
then

be, if F is a contact divisor for C,
(bg — )ng, if F is a Puiseux divisor for C
(A2) bp= which belongs to a dead arc,

(bg —1)ng + 1, if E is a Puiseux divisor for C'

which does not belong to a dead arc.

Thus all vertices in G(C') associated to a divisor E of G(C) have the same
valence. Moreover, if yg is an E-curvette of a bifurcation divisor E of G(C),
the curve p~typ has m(FE) = ngpng irreducible components which are all
non-singular and each divisor E! belongs to the geodesic of exactly ng
branches of p~!vg which are curvettes of E! in different points.

Observe that there are non-bifurcation divisors of G(C') without associ-
ated divisors in G(C).

Due to the bijection between the Puiseux series of C; and the irreducible
components of p~1C;, we have that the choice of a vertex E! € B(K);)
associated to a bifurcation divisor E is equivalent to the choice of a np-th
root § of the unity. This implies that the vertex E! belongs to the geodesic
of ef, = n'/ny irreducible components {Uft}:ﬁl of p~1C;. Moreover, the
curve o}, is given by (v — nj,(u) = 0) where

nllt(u> = Z a’?s((ilt)susn/nia for t = 17 ) eiE,

s=nt

and {Cﬂt}fil are the ef-th roots of &. The cardinal of the set 7%, CinEL,
is given by

(s & Bl )= {nE, if F is a Puiseux divisor for Cj,
Bl 7 re -

1, if E is a contact divisor for C;.

Furthermore, if E is a Puiseux divisor for C; and P, are two different

points in 7%, C; N EL,, we have that

i

e
A. O = 0 = —E.
(A.3) vp(15C) VQ(TFElCZ) —
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and if F is a contact divisor for C; and we denote P the only point in the
set mp Cin Ered, then

(A.4) vp(n3 Ci) = €.

Consider now two divisors E' and E¥ associated to the same bifur-
cation divisor E of G(C), and let & and & be the ny-th roots of the
unity corresponding to the divisors E' and E¥. We can define a bijection
Pl k Eied — Ered as follows: the map p; sends the “infinity point” of
Eied (that is, the origin of the second chart of Ered) into t}}ve “infinity
point” of Ef Given another point P of Ered, we take an E'-curvette
'Vgl =(v— wgz( u) = 0) with

v(EY—1
(A.5) wE, Z a "l +af U v(E)’

=1

and such that 7% N El, = {P}. We define p;x(P) to be the point

El ’YEZ

Ek’ngk(P) N E* ,, where the curve fypl +P) = (v— g,’f(P)(u) = 0) is
given by

p (P) v(E) -1 fl fk L P gk v(B) Pl
Lk } : E E
vpe ()= “ (&) W Ay (51) u't.
i=1

Note that vp’ +P) s an EF-curvette.

Recall also that given any bifurcation divisor E of G(C) or E = E!
and any of its associated divisors E'in G(é), there is a morphism pz g
Eied — Fyeq which is a ramification of order ng (see [10, Lemma 8]). The
map pp g is defined as follows: pg:  sends the “infinity point” of Eied into
the “infinity point” of Ey.q and the origin of the first chart of El ed 1 sent
to the origin of the first chart of E,.q. For any other pomt P of Eer7
can take an E'-curvette vE = (=9, (u) = 0) with 7%5,~E, N El = {P}
Thus if ¢§z (u) is given by (A.5), we can consider the E-curvette 'yE given
by the Puiseux series

v(BH-1 }
yP(z) = Z aiszi/m(E) + af(gz)xv(El)/m(E)
i=1
and pgi (P) is the only point 75vE N Erea. Observe that, if E is a bifur-
cation divisor in the geodesic of a branch C; of C' and Elis any associated
divisor to F in G(é), then the morphism pg: p maps all the points in

T 6’1- N Eﬁed to the only point in 75C; N Ereq.
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Moreover, note that, if E! and E* are two divisors of G(é) associated
to a bifurcation divisor E of G(C), then the following diagram

P,k

il mk
Ered Ered

Ered
is commutative.

Finally remark that, if v, is a curvette of a terminal divisor E; of a dead
arc with bifurcation divisor E, then p~'vyg, is composed by m(E;) = np
non-singular irreducible components and each divisor E! belongs to the
geodesic of exactly one branch of p~lvg,, where {El}lﬁjl are the divisors

associated to F in G(C).

A.3. Logarithmic foliations and ramification

Consider the logarithmic foliation Ef defined by

fl"'frz)\idfz =0
=
with A = (A1,...,A) € C" and f; € C{z,y} (see Section 3 for notations
concerning logarithmic foliations). Let us see the behaviour of L after a
ramification.
Consider the curve C = |J,_, C; with C; = (f; = 0) and let p : (C2,0) —
(C2%,0) be any C-ramification, that is, p is transversal to C' and the curve

C = p~'C has only non-singular irreducible components. We refer to Sub-

sections 2.3, A.1 and A.2 for notations concerning equisingularity data of
curves and ramifications.
We have that p*£§ = £§. with
n n

——— —
P RS W W W

where ni = 1y(C;) for i = 1,...,r. We put p~'C; = C; = {Jé}{il where
each o is an irreducible curve. Moreover, we have that logarithmic models
behave well under ramification. More precisely,

PROPOSITION A.4 (see [9]). — Let F € G¢ and LS a logarithmic model
of F. If p: (C2,0) — (C2,0) is a C-ramification, then p* L is a logarithmic
model of p* F.
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Let mc : X¢ — (C2,0) be the minimal reduction of singularities of C'
and 75 : X5 — (C2,0) be the minimal reduction of singularities of C. Take
E a bifurcation divisor of G(C) and let E' be any bifurcation divisor of
G(C) associated to E. Given any i € Iy (that is, E is in the geodesic of
C;), there are e’ branches of p~1C; such that E! belongs to their geodesics
where e, = n'/ny and we have that the residue of the logarithmic foliation
L)\é* along the divisor Elis given by

i (L5 ZAZZ&

i=1 =1 pgRt
(see (3.2) for its definition). Let {RE' ey Rf;} be the set of points
T C N E oq and put mREl = I/REL( CZ-) fort =1,2,...,bz. Note that
mj!%f“l =#{se{l,...,n'} : ﬂElasﬂEied = {RtEl}} = Z—’; (the last equality
follows from equations (A.3) and (A.4) in Appendix A.2 where m?{fl is also
computed). With these notations we have that

(A.6) T o (s LS. ELy) = | Ziet MM
: RPN Grixes Ered n,;l(ﬁf*)

Observe that if E' and E* are two bifurcation divisors of G(C) associ-
ated to the same divisor E of G(C), we have that xz (L{.) = K g (Ef*).
Moreover, there is a bijection between the sets of points 7% C N Ered

and WEkO N Eree1 1nd1{ced l~)y the map Pl : El od — E (see Appen-
dix A.2). Hence, if {REk RE" .. } is the set of pomts % LCNEF,
with RF = pLr(RF ) fort=1,2,. bEk, we have that

(A.?) IRtEk( E}\* Ered) IRFZ( L}\* Ered) t - 1’2""’bE~'k'
Moreover, if RF,R? are two points in 7% C’ N Eled with pp (RFZ) =

pEl’E(RSEl) where pp f Ered — Fleq is the ramification defined in Ap-
pendix A.2, then

(A8) IRtE"( ‘C/\* Ered) IRfl( L)\* Ered)
since m;E, = mi%E‘l = Z—’; for i € Iy by equations (A.3) and (A.4).

t s
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Appendix B. Intersection multiplicities

We state now two results concerning the intersection multiplicity of the
jacobian curve of two foliations either with a single separatrix of one of
the foliations and with the curve of all separatrices. These intersection
multiplicities are computed in terms of local invariants of the foliations (see
Subsection 2.1 for notations). Consider two foliations F and G in (C?,0)

and denote by Jr g the jacobian curve of F and G.

PRrROPOSITION B.1. — Assume that F and G have no common separa-
trix. If S is an irreducible separatrix of F, we have that

(j]:,gaS)O = MO(]:a S) + TO(g7S)'

Proof. — Let us write w = A(z,y) da + B(z,y)dy and n = P(z,y) dx +
Q(z,y) dy the 1-forms defining F and G respectively. Let v(t) = (z(t), y(t))
be a parametrization of the curve S. We can assume, without loss of gen-
erality, that x(¢) # 0 and thus @(¢) # 0. Since S is a separatrix of F, then
A(y()z(t) + B(y(¢))y(t) = 0. Thus, we have that

(JTF.g,S)o = ordi{A(v(1))Q(v(t)) — B(v(£)) P(v(1))}

— ord, {Wczw(t» - B(W(t))P(v(t))}
)~ (ordy(a(t)) — 1)

T ord (P((0)(t) + Q1) (1)
= uo(f, S) + To(g, S)

where the last equality comes from the expression of po(F, S) given in (2.1)
and the definition of 79(G, S) given in (2.2). O

When G is a non-singular foliation, we obtain Proposition 1 in [6] for
the polar intersection number with respect to a branch of the curve of
separatrices of F. Note that, although in [6] it is assumed that the foliation
F is non-dicritical, the result is also true when F is a dicritical foliation.
Using property (iv) in Theorem 2.1, we get following consequence of the
above result:

= ord,(B(v(t))

COROLLARY B.2. — If G is a non-dicritical second type foliation and
Sg is the curve of separatrices of G, we have that

(j]—‘)g, S>0 = /Jo(]:, S) + (Sg,S)o —1.

Next result gives a relationship among the intersection multiplicities of
the jacobian curve with the curves of separatrices and the Milnor number
of the foliations.
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ProrosiTioN B.3. — Consider two non-dicritical second type foliations
F and G without common separatrices. Thus

(TF.6,57)0 — (TFr.g,S¢)0 = po(F) — po(9),

where Sz, Sg are the curves of separatrices of F and G respectively.

Proof. — Let B(Jr,g) be the set of irreducible components of Jrg.
Given any branch I' € B(Jrg), we denote by yr(t) = (zr(t),yr(t)) any
primitive parametrization of I'. Assume that the foliations F and G are
defined by the 1-forms w = Adx + Bdy and n = P dx + @ dy respectively.
Thus we have that A(yr(t))Q(yr(t)) — B(yr(t))P(yr(t)) = 0. Since T is
not a separatrix of G, then either Q(vr(t)) # 0 or P(yr(t)) £ 0. We will
assume that Q(yr(t)) # 0. Let us compute the intersection multiplicity of
(Jr,g,Sr)o taking into account property (iv) in Theorem 2.1:

(Trg:Sro= Y. @Srpo= Y, (0(FTI)+1)

reB(Jr,g) reB(Jrc)

= Y (ordef AQ(yr()ir(t) + B(yr()ir(f)} + 1)

reB(Jr.g)

B(yr(£))P(yr(t)) | .
o () + Bl ()i ()} + 1
FEB%}—@)< { Q(yr(t)) r r r } )

= Z ordi{B(yr(¢))} — Z ordi {Q(yr (1))}

reB(Jr,g) reB(Jr,g)

+ > (ord{ POyr(0)ir () + Qyr(1))gr(t)} +1)

reB(Jr,g)
= po(F) —po(G)+ DY ((G,T)+1)
reB(Jr,g)
= po(F) — po(9) + (Jr,6,5¢)o-
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