[Tresses, automorphismes intérieurs et le problème d’Andreadakis]
Nous généralisons les outils introduits dans [13] pour étudier le problème d’Andreadakis pour les sous-groupes de . En particulier, nous étudions comment la réponse au problème d’Andreadakis varie lorsque les automorphismes intérieurs sont ajoutés à un sous-groupe donné. Nous utilisons les résultats obtenus pour montrer notamment que l’égalité d’Andreadakis est vraie pour le groupe de tresses pures à brins modulo son centre agissant sur le groupe libre . Cette action est celle du groupe de difféotopie (pur, pointé) de la sphère avec points marqués sur le groupe fondamental de la sphère privée de points.
In this paper, we generalize the tools that were introduced in [13] in order to study the Andreadakis problem for subgroups of . In particular, we study the behaviour of the Andreadakis problem when we add inner automorphisms to a subgroup of . We notably use this to show that the Andreadakis equality holds for the pure braid group on strands modulo its center acting on the free group , that is, for the (pure, based) mapping class group of the -punctured sphere acting on its fundamental group.
Révisé le :
Accepté le :
Première publication :
Keywords: Lower central series, Central filtrations, Lie algebras, Automorphisms of free groups, Braid groups
Mot clés : Suite centrale descendante, filtrations centrales, algèbres de Lie, Automorphismes des groupes libres, groupes de tresses
Darné, Jacques 1
@unpublished{AIF_0__0_0_A101_0, author = {Darn\'e, Jacques}, title = {Braids, inner automorphisms and the {Andreadakis} problem}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3662}, language = {en}, note = {Online first}, }
Darné, Jacques. Braids, inner automorphisms and the Andreadakis problem. Annales de l'Institut Fourier, Online first, 43 p.
[1] The Kashiwara-Vergne conjecture and Drinfeld’s associators, Ann. Math., Volume 175 (2008), pp. 415-463 | DOI | Zbl
[2] On the automorphisms of free groups and free nilpotent groups, Proc. Lond. Math. Soc., Volume 15 (1965), pp. 239-268 | DOI | MR | Zbl
[3] Theorie der Zöpfe, Abh. Math. Semin. Univ. Hamb., Volume 4 (1925) no. 1, pp. 47-72 | DOI | MR | Zbl
[4] Theory of braids, Ann. Math., Volume 48 (1947), pp. 101-126 | DOI | MR
[5] Subgroups, automorphisms, and Lie algebras related to the basis-conjugating automorphism group, Algebra Logika, Volume 55 (2016) no. 6, pp. 670-703 | DOI | MR
[6] Automorphisms of free groups. I—erratum [ MR3084710], New York J. Math., Volume 22 (2016), pp. 1135-1137 http://nyjm.albany.edu:8000/j/2016/22_1135.html | MR | Zbl
[7] The braid group of a necklace, Math. Z., Volume 283 (2016) no. 3-4, pp. 995-1010 | DOI | MR | Zbl
[8] Braids, links, and mapping class groups, Annals of Mathematics Studies, 82, Princeton University Press; University of Tokyo Press, 1974, ix+228 pages | MR
[9] On the algebraical braid group, Ann. Math., Volume 49 (1948), pp. 654-658 | DOI | MR | Zbl
[10] Basis-conjugating automorphisms of a free group and associated Lie algebras, Groups, homotopy and configuration spaces (Geometry and Topology Monographs), Volume 13, Geometry and Topology Publications, 2008, pp. 147-168 | DOI | MR | Zbl
[11] Milnor invariants of braids and welded braids up to homotopy (2019) (https://arxiv.org/abs/1904.10677)
[12] On the stable Andreadakis problem, J. Pure Appl. Algebra, Volume 223 (2019) no. 12, pp. 5484-5525 | DOI | MR | Zbl
[13] On the Andreadakis problem for subgroups of , Int. Math. Res. Not. (2021) no. 19, pp. 14720-14742 | DOI | MR | Zbl
[14] The lower central series of generalized pure braid groups, Geometry and topology (Athens, Ga., 1985) (Lecture Notes in Pure and Applied Mathematics), Volume 105, Marcel Dekker, 1987, pp. 103-108 | MR | Zbl
[15] The Kontsevich integral and Milnor’s invariants, Topology, Volume 39 (2000) no. 6, pp. 1253-1289 | DOI | MR | Zbl
[16] On a subgroup of McCool group (2019) (https://arxiv.org/abs/1902.10033)
[17] The Galois representation arising from and Tate twists of even degree, Galois groups over (1989) | DOI
[18] Sur quelques propriétés des groupes d’automorphismes d’un groupe abstrait. (Généralisation d’un theorème de M. Ph. Hall), C. R. Acad. Sci. Paris, Volume 231 (1950), pp. 400-402 | MR | Zbl
[19] Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math., Volume 82 (1985) no. 1, pp. 57-75 | DOI | MR | Zbl
[20] Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. Éc. Norm. Supér., Volume 71 (1954), pp. 101-190 | DOI | Numdam | MR | Zbl
[21] Über Automorphismen von Fundamentalgruppen berandeter Flächen, Math. Ann., Volume 109 (1934) no. 1, pp. 617-646 | DOI | MR | Zbl
[22] Free groups and finite-type invariants of pure braids, Math. Proc. Camb. Philos. Soc., Volume 132 (2002) no. 1, pp. 117-130 | DOI | MR | Zbl
[23] Homotopy invariants of links, Invent. Math., Volume 95 (1989) no. 2, pp. 379-394 | DOI | MR | Zbl
[24] On the Andreadakis conjecture restricted to the “lower-triangular” automorphism groups of free groups, J. Algebra Appl., Volume 16 (2017) no. 5, 1750099, 31 pages | DOI | MR | Zbl
[25] Lie algebras and Lie groups, Lecture Notes in Mathematics, 1500, Springer, 2006, viii+168 pages 1964 lectures given at Harvard University, Corrected fifth printing of the second (1992) edition | MR
Cité par Sources :