Multipliers for Hardy spaces of Dirichlet series
[Multiplicateurs pour espaces de Hardy de séries de Dirichlet]
Annales de l'Institut Fourier, Online first, 37 p.

On charaterise l’espace de multiplicateurs de l’espace de Hardy de séries de Dirichlet p en q por tout 1p,q. Pour une série de Dirichlet fixée on analyse quelques proprietés estructurales de l’operateur de multiplication associé. Particularement on étude la norme, la norme essentielle et l’espectre d’un tell operateur. On utilise la identification naturell existant entre éspaces de séries de Dirichlet avec espaces de fonctions holomorphes en infinites variables, et on applique des méthodes de l’analyse complex et harmonique pur obtindre nous resultats. Comme consequence on trouve des resultats analogues pour telles espaces de fonctions holomorphes.

We characterise the space of multipliers from the Hardy space of Dirichlet series p into q for every 1p,q. For a fixed Dirichlet series, we also analyse some structural properties of its associated multiplication operator. In particular, we study the norm, the essential norm, and the spectrum for an operator of this kind. We exploit the existing natural identification of spaces of Dirichlet series with spaces of holomorphic functions in infinitely many variables and apply several methods from complex and harmonic analysis to obtain our results. As a byproduct we get analogous statements on such Hardy spaces of holomorphic functions.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3658
Classification : 30H10, 46G20, 30B50, 47A10
Keywords: Multipliers, Spaces of Dirichlet series, Hardy spaces, Infinite dimensional analysis.
Mot clés : Multiplicateur, espace de séries de Dirichlet, espace de Hardy, Analyse infini-dimensional.

Fernandez Vidal, Tomas 1 ; Galicer, Daniel 1 ; Sevilla-Peris, Pablo 2

1 Departamento de Matemática, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires and IMAS-CONICET, Ciudad Universitaria, Pabellón I (C1428EGA) C.A.B.A. (Argentina)
2 Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, Cmno Vera s/n 46022 València (Spain)
@unpublished{AIF_0__0_0_A109_0,
     author = {Fernandez Vidal, Tomas and Galicer, Daniel and Sevilla-Peris, Pablo},
     title = {Multipliers for {Hardy} spaces of {Dirichlet} series},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2024},
     doi = {10.5802/aif.3658},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Fernandez Vidal, Tomas
AU  - Galicer, Daniel
AU  - Sevilla-Peris, Pablo
TI  - Multipliers for Hardy spaces of Dirichlet series
JO  - Annales de l'Institut Fourier
PY  - 2024
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3658
LA  - en
ID  - AIF_0__0_0_A109_0
ER  - 
%0 Unpublished Work
%A Fernandez Vidal, Tomas
%A Galicer, Daniel
%A Sevilla-Peris, Pablo
%T Multipliers for Hardy spaces of Dirichlet series
%J Annales de l'Institut Fourier
%D 2024
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3658
%G en
%F AIF_0__0_0_A109_0
Fernandez Vidal, Tomas; Galicer, Daniel; Sevilla-Peris, Pablo. Multipliers for Hardy spaces of Dirichlet series. Annales de l'Institut Fourier, Online first, 37 p.

[1] Aleman, Alexandru; Olsen, Jan-Fredrik; Saksman, Eero Fatou and brothers Riesz theorems in the infinite-dimensional polydisc, J. Anal. Math., Volume 137 (2019) no. 1, pp. 429-447 | DOI | MR | Zbl

[2] Antezana, Jorge; Carando, Daniel; Scotti, Melisa Splitting the Riesz basis condition for systems of dilated functions through Dirichlet series, J. Math. Anal. Appl., Volume 507 (2022) no. 1, 125733, 20 pages | DOI | MR | Zbl

[3] Apostol, Tom M. Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer, 1976, xii+338 pages | MR | Zbl

[4] Aron, Richard M.; Bayart, Frédéric; Gauthier, Paul M.; Maestre, Manuel; Nestoridis, Vassili Dirichlet approximation and universal Dirichlet series, Proc. Am. Math. Soc., Volume 145 (2017) no. 10, pp. 4449-4464 | DOI | MR | Zbl

[5] Bayart, Frédéric Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math., Volume 136 (2002) no. 3, pp. 203-236 | DOI | MR | Zbl

[6] Brown, Leon; Shields, Allen L. Cyclic vectors in the Dirichlet space, Trans. Am. Math. Soc., Volume 285 (1984) no. 1, pp. 269-303 | DOI | MR | Zbl

[7] Cole, Brian J.; Gamelin, Theodore W. Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. Lond. Math. Soc., Volume 53 (1986) no. 1, pp. 112-142 | DOI | MR | Zbl

[8] Contreras, Manuel D.; Hernández-Díaz, Alfredo G. Weighted composition operators on Hardy spaces, J. Math. Anal. Appl., Volume 263 (2001) no. 1, pp. 224-233 | DOI | MR | Zbl

[9] Conway, John B. A course in functional analysis, Graduate Texts in Mathematics, 96, Springer, 1990, xvi+399 pages | MR | Zbl

[10] Defant, Andreas; Fernández Vidal, Tomás; Schoolmann, Ingo; Sevilla-Peris, Pablo Fréchet spaces of general Dirichlet series, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, Volume 115 (2021) no. 3, 138, 34 pages | DOI | MR | Zbl

[11] Defant, Andreas; García, Domingo; Maestre, Manuel; Sevilla-Peris, Pablo Dirichlet Series and Holomorphic Functions in High Dimensions, New Mathematical Monographs, 37, Cambridge University Press, 2019, xxvii+680 pages | DOI | MR | Zbl

[12] Defant, Andreas; Pérez, Antonio Hardy spaces of vector-valued Dirichlet series, Stud. Math., Volume 243 (2018) no. 1, pp. 53-78 | DOI | MR | Zbl

[13] Demazeux, R. Essential norms of weighted composition operators between Hardy spaces H p and H q for 1p,q, Stud. Math., Volume 206 (2011) no. 3, pp. 191-209 | DOI | MR | Zbl

[14] Diestel, Joseph Sequences and series in Banach spaces, Graduate Texts in Mathematics, 92, Springer, 1984, xii+261 pages | DOI | MR | Zbl

[15] Fernández Vidal, Tomás; Galicer, Daniel; Sevilla-Peris, Pablo A Montel-type theorem for Hardy spaces of holomorphic functions, Mediterr. J. Math., Volume 19 (2022) no. 5, 209, 13 pages | DOI | MR | Zbl

[16] Guo, Kunyu; Ni, Jiaqi Dirichlet series and the Nevanlinna class in infinitely many variables (2022) (https://arxiv.org/abs/2201.01993)

[17] Hedenmalm, Håkan; Lindqvist, Peter; Seip, Kristian A Hilbert space of Dirichlet series and systems of dilated functions in L 2 (0,1), Duke Math. J., Volume 86 (1997) no. 1, pp. 1-37 | DOI | MR | Zbl

[18] Kaijser, Sten A note on dual Banach spaces, Math. Scand., Volume 41 (1977) no. 2, pp. 325-330 | DOI | MR | Zbl

[19] Konyagin, Sergey V.; Queffélec, Hervé The translation 1 2 in the theory of Dirichlet series, Real Anal. Exch., Volume 27 (2001) no. 1, pp. 155-175 | DOI | MR | Zbl

[20] Lefèvre, Pascal Essential norms of weighted composition operators on the space of Dirichlet series, Stud. Math., Volume 191 (2009) no. 1, pp. 57-66 | DOI | MR | Zbl

[21] Queffélec, Hervé H. Bohr’s vision of ordinary Dirichlet series; old and new results, J. Anal., Volume 3 (1995), pp. 43-60 | MR | Zbl

[22] Queffélec, Hervé; Queffélec, Martine Diophantine approximation and Dirichlet series, Texts and Readings in Mathematics, 80, Hindustan Book Agency; Springer, 2020, xvii+287 pages | DOI | MR | Zbl

[23] Rudin, Walter Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, 12, Interscience Publishers, 1962, ix+285 pages | MR | Zbl

[24] Rudin, Walter Function theory in polydiscs, W. A. Benjamin, Inc., 1969, vii+188 pages | MR | Zbl

[25] Saksman, Eero; Seip, Kristian Integral means and boundary limits of Dirichlet series, Bull. Lond. Math. Soc., Volume 41 (2009) no. 3, pp. 411-422 | DOI | MR | Zbl

[26] Stessin, Michael; Zhu, Kehe Generalized factorization in Hardy spaces and the commutant of Toeplitz operators, Can. J. Math., Volume 55 (2003) no. 2, pp. 379-400 | DOI | MR | Zbl

[27] Tenenbaum, Gérald Introduction to analytic and probabilistic number theory. Translated from the second French edition (1995) by C. B. Thomas, Cambridge Studies in Advanced Mathematics, 46, Cambridge University Press, 1995, xvi+448 pages translated from the second French edition (1995) by C. B. Thomas | MR | Zbl

[28] Vukotić, Dragan Analytic Toeplitz operators on the Hardy space H p : a survey, Bull. Belg. Math. Soc. Simon Stevin, Volume 10 (2003) no. 1, pp. 101-113 | DOI | MR | Zbl

Cité par Sources :