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MULTIPLIERS FOR HARDY SPACES OF DIRICHLET
SERIES

by Tomas FERNANDEZ VIDAL,
Daniel GALICER & Pablo SEVILLA-PERIS (*)

Abstract. — We characterise the space of multipliers from the Hardy space of
Dirichlet series Hp into Hq for every 1 ⩽ p, q ⩽∞. For a fixed Dirichlet series, we
also analyse some structural properties of its associated multiplication operator.
In particular, we study the norm, the essential norm, and the spectrum for an
operator of this kind. We exploit the existing natural identification of spaces of
Dirichlet series with spaces of holomorphic functions in infinitely many variables
and apply several methods from complex and harmonic analysis to obtain our
results. As a byproduct we get analogous statements on such Hardy spaces of
holomorphic functions.

Résumé. — On charaterise l’espace de multiplicateurs de l’espace de Hardy de
séries de Dirichlet Hp en Hq por tout 1 ⩽ p, q ⩽ ∞. Pour une série de Dirichlet
fixée on analyse quelques proprietés estructurales de l’operateur de multiplication
associé. Particularement on étude la norme, la norme essentielle et l’espectre d’un
tell operateur. On utilise la identification naturell existant entre éspaces de séries
de Dirichlet avec espaces de fonctions holomorphes en infinites variables, et on
applique des méthodes de l’analyse complex et harmonique pur obtindre nous re-
sultats. Comme consequence on trouve des resultats analogues pour telles espaces
de fonctions holomorphes.

1. Introduction

A Dirichlet series is a formal expression of the type D =
∑

ann−s with
(an) complex values and s a complex variable. These are one of the basic
tools of analytic number theory (see e.g., [3, 27]) but, over the last two
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decades, as a result of the work initiated in [17] and [19], they have been
analyzed with techniques coming from harmonic and functional analysis
(see e.g. [22] or [11] and the references therein). One of the key point in
this analytic insight on Dirichlet series is the deep connection with power
series in infinitely many variables. We will use this fruitful perspective to
study multipliers for Hardy spaces of Dirichlet series. We begin by recalling
some standard definitions of these spaces.

The natural regions of convergence of Dirichlet series are half-planes, and
there they define holomorphic functions. To settle some notation, we con-
sider the set Cσ = {s ∈ C : Re s > σ}, for σ ∈ R. With this, Queffélec [21]
defined the space H∞ as that consisting of Dirichlet series that define a
bounded, holomorphic function on the half-plane C0. Endowed with the
norm ∥D∥H∞ := sups∈C0 |

∑ an

ns | < ∞ it becomes a Banach space, which
together with the product

(∑
ann−s

)
·
(∑

bnb−s
)

=
∞∑

n=1

 ∑
k·j=n

ak · bj

n−s

results a Banach algebra.
The Hardy spaces of Dirichlet series Hp were introduced by Hedenmalm,

Lindqvist and Seip [17] for p = 2, and by Bayart [5] for the remaining cases
in the range 1 ⩽ p < ∞. A way to define these spaces is to consider first the
following norm in the space of Dirichlet polynomials (i.e., all finite sums of
the form

∑N
n=1 ann−s, with N ∈ N),∥∥∥∥∥
N∑

n=1
ann−s

∥∥∥∥∥
Hp

:= lim
R→∞

(
1

2R

∫ R

−R

∣∣∣∣∣
N∑

n=1
ann−it

∣∣∣∣∣
p

dt

) 1
p

,

and define Hp as the completion of the Dirichlet polynomials under this
norm. Each Dirichlet series in some Hp (with 1 ⩽ p < ∞) converges on
C1/2, and there it defines a holomorphic function.

The Hardy space Hp with the function product is not an algebra for
p < ∞. Namely, given two Dirichlet series D, E ∈ Hp, it is not true,
in general, that the product function D · E belongs to Hp. Nevertheless,
there are certain series D that verify that D · E ∈ Hp for every E ∈ Hp.
Such a Dirichlet series D is called a multiplier of Hp and the mapping
MD : Hp → Hp, given by MD(E) = D · E, is referred as its associated
multiplication operator.

In [5] (see also [11, 17, 22]) it is proved that the multipliers of Hp are pre-
cisely those Dirichlet series that belong to the Banach space H∞. Moreover,
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for a multiplier D we have the following equality:

∥MD∥Hp→Hp
= ∥D∥H∞ .

Given 1 ⩽ p, q ⩽ ∞, we propose to study the multipliers of Hp to Hq;
that is, we want to understand those Dirichlet series D which verify that
D · E ∈ Hq for every E ∈ Hp.

For this we use the relation that exists between the Hardy spaces of
Dirichlet series and the Hardy spaces of functions. The mentioned connec-
tion is given by the so-called Bohr lift L, which identifies each Dirichlet
series with a function (both in the polytorus and in the polydisc; see below
for more details).

This identification allows us to relate the multipliers in spaces of Dirichlet
series with those of function spaces. As consequence of our results, we obtain
a complete characterization of M(p, q), the space of multipliers of Hp into
Hq. It turns out that this set coincides with the Hardy space Hpq/(p−q)
when 1 ⩽ q < p ⩽∞ and with the null space if 1 ⩽ p < q ⩽∞. Precisely,
for a multiplier D ∈ M(p, q) where 1 ⩽ q < p ⩽ ∞ we have the isometric
correspondence

∥MD∥Hp→Hq
= ∥D∥Hpq/(p−q) .

Moreover, for certain values of p and q we study some structural prop-
erties of these multiplication operators. Inspired by some of the results
obtained by Vukotić [28] and Demazeux [13] for spaces of holomorphic
functions in one variable, we get the corresponding version in the Dirichlet
space context. In particular, when considering endomorphisms (i.e., p = q),
the essential norm and the operator norm of a given multiplication oper-
ator coincides if p > 1. In the remaining cases, that is p = q = 1 or
1 ⩽ q < p ⩽ ∞, we compare the essential norm with the norm of the
multiplier in different Hardy spaces.

We continue by studying the structure of the spectrum of the multiplica-
tion operators over Hp. Specifically, we consider the continuous spectrum,
the residual spectrum and the approximate spectrum. For the latter, we
use some necessary and sufficient conditions regarding the associated Bohr
lifted function L(D) (see definition below) for which the multiplication
operator MD : Hp → Hp has closed range.
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2. Preliminaries on Hardy spaces

2.1. Of holomorphic functions

We note by DN = D × D × · · · the cartesian product of N copies of the
open unit disc D with N ∈ N ∪ {∞} and D∞

2 the domain in ℓ2 defined
as ℓ2 ∩ D∞ (for coherence in the notation we will sometimes write DN

2 for
DN also in the case N ∈ N). We define N(N)

0 as consisting of all sequences
α = (αn)n with αn ∈ N0 = N ∪ {0} which are eventually null. In this case
we denote α! := α1! · · · αM ! whenever α = (α1, . . . , αM , 0, 0, 0, . . . ).

A function f : D∞
2 → C is holomorphic if it is Fréchet differentiable at

every z ∈ D∞
2 , that is, if there exists a continuous linear functional x∗ on

ℓ2 such that

lim
h→0

f(z + h) − f(z) − x∗(h)
∥h∥

= 0.

For 1 ⩽ p < ∞ we consider the Hardy spaces of holomorphic functions
on the domain D∞

2 defined by

Hp(D∞
2 ) :=

{
f : D∞

2 −→ C : f is holomorphic and

∥f∥Hp(D∞
2 ) := sup

M∈N
sup

0<r<1

(∫
TM

|f(rω, 0)|p dω

)1/p

< ∞

}
.

For p = ∞, the space H∞(D∞
2 ) denotes (as usual) the space of bounded

holomorphic functions f : D∞
2 → C (endowed with the uniform norm). We

point out that, according to [7, Theorem 11.2], this space is isometrically
isomorphic to H∞(Bc0), the space of bounded holomorphic functions on
Bc0 (the open unit ball of the space of null sequences).

The definitions of the spaces Hp(DN ) for finite N and 1 ⩽ p ⩽ ∞ are
analogous (see [11, Chapters 13 and 15]).

For N ∈ N ∪ {∞}, each function f ∈ Hp(DN
2 ) defines a unique family of

coefficients cα(f) = (∂αf)(0)
α! (the Cauchy coefficients) with α ∈ NN

0 having
always only finitely many non-null coordinates. For z ∈ DN

2 one has the
following monomial expansion [11, Theorem 13.2]

f(z) =
∑

α∈N(N)
0

cα(f) · zα,

with zα = zα1
1 · · · zαM

M whenever α = (α1, . . . , αM , 0, 0, 0, . . . ).

ANNALES DE L’INSTITUT FOURIER
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Let us note that for each fixed N ∈ N and 1 ⩽ p ⩽∞ we have Hp(DN ) ↪→
Hp(D∞

2 ) by doing f ⇝ [z = (zn)n ∈ D∞
2 ⇝ f(z1, . . . zN )]. Conversely,

given a function f ∈ Hp(D∞
2 ), for each N ∈ N we define fN (z1, . . . , zN ) =

f(z1, . . . , zN , 0, 0, . . .) for (z1, . . . , zN ) ∈ DN . It is well known that fN ∈
Hp(DN ).

An important property for our purposes is the so-called Cole–Gamelin
inequality (see [11, Remark 13.14 and Theorem 13.15]), which states that
for every f ∈ Hp(DN

2 ) and z ∈ DN
2 (for N ∈ N ∪ {∞}) we have

(2.1) |f(z)| ⩽

 N∏
j=1

1
1 − |zj |2

1/p

∥f∥Hp(DN
2 ).

For functions of finitely many variable this inequality is optimal in the sense
that if N ∈ N and z ∈ DN , then there is a function fz ∈ Hp(DN

2 ) given by

(2.2) fz(u) =

 N∏
j=1

1 − |zj |2

(1 − zjuj)2

1/p

,

such that ∥fz∥Hp(DN
2 ) = 1 and |fz(z)| =

(∏N
j=1

1
1−|zj |2

)1/p

.

2.2. On the polytorus

On T∞ = {ω = (ωn)n : |ωn| = 1, for every n} consider the product of
the normalized Lebesgue measure on T (note that this is the Haar measure).
For each F ∈ L1(T∞) and α ∈ Z(N), the α−th Fourier coefficient of F is
defined as

F̂ (α) =
∫
TN

f(ω) · ω−α dω

where again ωα = ωα1
1 · · · ωαM

M if α = (α1, . . . , αM , 0, 0, 0, . . .). The Hardy
space on the polytorus Hp(T∞) is the subspace of Lp(T∞) given by all the
functions F such that F̂ (α) = 0 for every α ∈ Z(N) −N(N)

0 . The definition of
Hp(TN ) for finite N is analogous (note that these are the classical Hardy
spaces, see [23]). We have the canonical inclusion Hp(TN ) ↪→ Hp(T∞) by
doing F ⇝ [ω = (ωn)n ∈ T∞ ⇝ F (ω1, . . . ωN )].

Given N1 < N2 ⩽ ∞ and F ∈ Hp(TN2), then the function FN1 , defined
by FN1(ω) =

∫
TN2−N1 F (ω, u) du for every ω ∈ TN1 , belongs to Hp(TN1). In

this case, the Fourier coefficients of both functions coincide: that is, given
α ∈ NN1

0 then

F̂N1(α) = F̂ (α1, α2, . . . , αN1 , 0, 0, . . . ).

TOME 0 (0), FASCICULE 0
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Moreover,
∥F∥Hp(TN2 ) ⩾ ∥FN1∥Hp(TN1 ).

Let N ∈ N ∪ {∞}, there is an isometric isomorphism between the spaces
Hp(DN

2 ) and Hp(TN ). More precisely, given a function f ∈ Hp(DN
2 ) there

is a unique function F ∈ Hp(TN ) such that cα(f) = F̂ (α) for every α in
the corresponding indexing set and ∥f∥Hp(DN

2 ) = ∥F∥Hp(TN ). If this is the
case, we say that the functions f and F are associated. In particular, by
the uniqueness of the coefficients, fM and FM are associated to each other
for every 1 ⩽M ⩽ N . Even more, if N ∈ N, then

F (ω) = lim
r→1−

f(rω),

for almost all ω ∈ TN .
We isolate the following important property which will be useful later.

Remark 2.1. — Let F ∈ Hp(T∞). If 1 ⩽ p < ∞, then FN → F in
Hp(T∞) (see e.g [11, Remark 5.8]). If p = ∞, the convergence is given
in the w(L∞, L1)-topology. In particular, for any 1 ⩽ p ⩽ ∞, there is a
subsequence so that limk FNk

(ω) = F (ω) for almost all ω ∈ T∞ (note that
the case p = ∞ follows directly from the inclusion H∞(T∞) ⊂ H2(T∞)).

2.3. Bohr transform

We previously mentioned the Hardy spaces of functions both on the poly-
torus and on the polydisc and the relationship between them based on their
coefficients. This relation also exists with the Hardy spaces of Dirichlet se-
ries and the isometric isomorphism that identifies them is the so-called Bohr
transform. To define it, let us first consider p = (p1, p2, . . .) the sequence
of prime numbers. Then, given a natural number n, by the prime number
decomposition, there are unique non-negative integer numbers α1, . . . , αM

such that n = pα1
1 · · · pαM

M . Therefore, with the notation that we already
defined, we have that n = pα with α = (α1, . . . , αM , 0, 0, . . . ). Then, given
1 ⩽ p ⩽∞, the Bohr transform BD∞

2
on Hp(D∞

2 ) is defined as follows:

BD∞
2

(f) =
∑

n

ann−s,

where an = cα(f) if and only if n = pα. The Bohr transform is an isometric
isomorphism between the spaces Hp(D∞

2 ) and Hp (see [11, Theorem 13.2]).
We denote by H(N) the set of all Dirichlet series

∑
ann−s that involve

only the first N prime numbers; that is an = 0 if pi divides n for some

ANNALES DE L’INSTITUT FOURIER
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i > N . We write H(N)
p for the space H(N) ∩ Hp (endowed with the norm in

Hp). Note that the image of Hp(DN ) (seen as a subspace of Hp(D∞
2 ) with

the natural identification) through BD∞
2

is exactly H(N)
p .

The inverse of the Bohr transform, which sends the space Hp into the
space Hp(D∞

2 ), is called the Bohr lift, which we denote by LD∞
2

.
With the same idea, the Bohr transform BT∞ on the polytorus for Hp(T∞)

is defined; that is,
BT∞(F ) =

∑
n

ann−s,

where an = F̂ (α) if and only if n = pα. It is an isometric ismorphism
between the spaces Hp(T∞) and Hp. Its inverse is denoted by LT∞ .

In order to keep the notation as clear as possible we will carefully use
the following convention: we will use capital letters (e.g., F , G, or H) to
denote functions defined on the polytorus T∞ and lowercase letters (e.g.,
f , g or h) to represent functions defined on the polydisc D∞

2 . If f and F

are associated to each other (meaning that cα(f) = F̂ (α) for every α), we
will sometimes write f ∼ F . With the same idea, if a function f or F is
associated through the Bohr transform to a Dirichlet series D, we will write
f ∼ D or F ∼ D.

3. The space of multipliers

As we mentioned above, our main interest is to describe the multipliers of
the Hardy spaces of Dirichlet series. Let us recall again that a holomorphic
function φ, defined on C1/2 is a (p, q)-multiplier of Hp if φ · D ∈ Hq for
every D ∈ Hp. We denote the set of all such functions by M(p, q). Since
the constant 1 function belongs to Hp we have that, if φ ∈ M(p, q), then
necessarily φ belongs to Hq and it can be represented by a Dirichlet series.
So, we will use that the multipliers of Hp are precisely Dirichlet series. The
set M(N)(p, q) is defined in the obvious way, replacing Hp and Hq by H(N)

p

and H(N)
q . The same argument as above shows that M(N)(p, q) ⊆ H(N)

q .
The set M(p, q) is clearly a vector space. Each Dirichlet series D ∈

M(p, q) induces a multiplication operator MD from Hp to Hq, defined by
MD(E) = D · E. By the continuity of the evaluation on each s ∈ C1/2 (see
e.g. [11, Corollary 13.3]), and the Closed Graph Theorem, MD is continu-
ous. Then, the expression

(3.1) ∥D∥M(p,q) := ∥MD∥Hp→Hq ,

TOME 0 (0), FASCICULE 0
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defines a norm on M(p, q). Note that

(3.2) ∥D∥Hq
= ∥MD(1)∥Hq

⩽ ∥MD∥Hp→Hq
· ∥1∥Hq

= ∥D∥M(p,q) ,

and the inclusions that we presented above are continuous. A norm on
M(N)(p, q) is defined analogously.

Clearly, if p1 < p2 or q1 < q2, then

(3.3) M(p1, q) ⊆ M(p2, q) and M(p, q2) ⊆ M(p, q1) ,

for fixed p and q.
Given a Dirichlet series D =

∑
ann−s, we denote by DN the “restric-

tion” to the first N primes (i.e., we consider those n’s that involve, in its
factorization, only the first N primes). Let us be more precise. If n ∈ N, we
write gpd(n) for the greatest prime divisor of n. That is, if n = pα1

1 · · · pαN

N

(with αN ̸= 0) is the prime decomposition of n, then gpd(n) = pN . With
this notation, DN :=

∑
gpd(n)⩽pN

ann−s.

Proposition 3.1. — Let D =
∑

ann−s be a Dirichlet series and 1 ⩽
p, q ⩽ ∞. Then D ∈ M(p, q) if and only if DN ∈ M(N)(p, q) for every
N ∈ N and supN ∥DN ∥M(N)(p,q) < ∞.

Proof. — Let us begin by noting that, if n = jk, then clearly gpd(n) ⩽
pN if and only if gpd(j) ⩽ pN and gpd(k) ⩽ pN . From this we deduce
that, given any two Dirichlet series D and E, we have (DE)N = DN EN

for every N ∈ N.
Take some Dirichlet series D and suppose that D ∈ M(p, q). Then, given

E ∈ H(N)
p we have DE ∈ Hq, and (DE)N ∈ H(N)

q . But (DE)N = DN EN =
DN E and, since E was arbitrary, DN ∈ M(N)(p, q) for every N . On the
other hand, if E ∈ Hq, then EN ∈ H(N)

q and ∥EN ∥Hq
⩽ ∥E∥Hq

(see [11,
Corollary 13.9]). This gives ∥DN ∥M(N)(p,q) ⩽ ∥D∥M(p,q) for every N .

Suppose now that D is such that DN ∈ M(N)(p, q) for every N and
supN ∥DN ∥M(N)(p,q) < ∞ (let us call it C). Then, for each E ∈ Hp we
have, by [11, Corollary 13.9],

∥(DE)N ∥Hp
= ∥DN EN ∥Hp

⩽ ∥DN ∥M(N)(p,q)∥EN ∥Hp
⩽ C∥E∥Hp

.

Since this holds for every N , it shows (again by [11, Corollary 13.9]) that
DE ∈ Hp and completes the proof. □

We are going to exploit the connection between Dirichlet series and
power series in infinitely many variables. This leads us to consider spaces
of multipliers on Hardy spaces of functions. If U is either TN or DN

2 (with
N ∈ N ∪ {∞}) we consider the corresponding Hardy spaces Hp(U) (for
1 ⩽ p ⩽ ∞), and say that a function f defined on U is a (p, q)-multiplier

ANNALES DE L’INSTITUT FOURIER
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of Hp(U) if f · g ∈ Hq(U) for every f ∈ Hp(U). We denote the space of all
such fuctions by MU (p, q). The same argument as before with the constant
1 function shows that MU (p, q) ⊆ Hq(U). Also, each multiplier defines a
multiplication operator M : Hp(U) → Hq(U) which, by the Closed Graph
Theorem, is continuous, and the norm of the operator defines a norm on
the space of multipliers, as in (3.1).

Our first step is to see that the identifications that we have just shown
behave “well” with the multiplication, in the sense that whenever two pairs
of functions are identified to each other, then so also are the products. Let
us make a precise statement.

Theorem 3.2. — Let D, E ∈ H1, f, g ∈ H1(D∞
2 ) and F, G ∈ H1(T∞)

so that f ∼ F ∼ D and g ∼ G ∼ E. Then, the following are equivalent
(1) DE ∈ H1
(2) fg ∈ H1(D∞

2 )
(3) FG ∈ H1(T∞)

and, in this case DE ∼ fg ∼ FG.

The equivalence between (2) and (3) is based in the case for finitely many
variables.

Proposition 3.3. — Fix N ∈ N and let f, g ∈ H1(DN ) and F, G ∈
H1(TN ) so that f ∼ F and g ∼ G. Then, the following are equivalent

(1) fg ∈ H1(DN )
(2) FG ∈ H1(TN )

and, in this case, fg ∼ FG.

Proof. — Let us suppose first that fg ∈ H1(DN ) and denote by H ∈
H1(TN ) the associated function. Then, since

F (ω) = lim
r→1−

f(rω), and G(ω) = lim
r→1−

g(rω)

for almost all ω ∈ TN , we have

H(ω) = lim
r→1−

(fg)(rω) = F (ω)G(ω)

for almost all ω ∈ TN . Therefore FG = H ∈ H1(TN ), and this yields (2).
Let us conversely assume that FG ∈ H1(TN ), and take the associated

function h ∈ H1(DN ). The product fg : DN → C is a holomorphic function
and fg − h belongs to the Nevanlinna class N (DN ), that is

sup
0<r<1

∫
TN

log+ |f(rω)g(rω) − h(rω)| dω < ∞

TOME 0 (0), FASCICULE 0



10 Tomas FERNANDEZ VIDAL, Daniel GALICER & Pablo SEVILLA-PERIS

where log+(x) := max{0, log x} (see [24, Section 3.3] for a complete account
on this space). Consider H(ω) defined for almost all ω ∈ TN as the radial
limit of fg − h. Then by [24, Theorem 3.3.5] there are two possibilities:
either log |H| ∈ L1(TN ) or fg − h = 0 on DN . But, just as before, we have

lim
r→1−

f(rω)g(rω) = F (ω)G(ω) = lim
r→1−

h(rω)

for almost all ω ∈ TN , and then necessarily H = 0. Thus fg = h on
DN , and fg ∈ H1(DN ). This shows that (2) implies (1) and completes the
proof. □

For the general case we need the notion of the Nevanlinna class in the
infinite dimensional framework. Given D∞

1 := ℓ1∩D∞, a function u : D∞
1 →

C and 0 < r < 1, the mapping u[r] : T∞ → C is defined by

u[r](ω) = (rω1, r2ω2, r3ω3, . . .).

The Nevanlinna class on infinitely many variables, introduced recently
in [16] and denoted by N (D∞

1 ), consists on those holomorphic functions
u : D∞

1 → C such that

sup
0<r<1

∫
T∞

log+ |u[r](ω)| dω < ∞.

We can now prove the general case.
Proof of Theorem 3.2. — Let us show first that (1) implies (2). Suppose

that D =
∑

ann−s, E =
∑

bnn−s ∈ H1 are so that(∑
ann−s

)(∑
bnn−s

)
=
∑

cnn−s ∈ H1.

Let h ∈ H1(D∞
2 ) be the holomorphic function associated to the product.

Recall that, if α ∈ N(N)
0 and n = pα ∈ N, then

(3.4) cα(f) = an, cα(g) = bn and cα(h) = cn =
∑

jk=n

ajbk .

On the other hand, the function f · g : D∞
2 → C is holomorphic and a

straightforward computation shows that

(3.5) cα(fg) =
∑

β+γ=α

cβ(f)cγ(g) .

for every α. Now, if jk = n = pα for some α ∈ N(N)
0 , then there are

β, γ ∈ N(N)
0 so that j = pβ , k = pγ and β + γ = α. This, together with (3.4)

and (3.5) shows that cα(h) = cα(fg) for every α and, therefore fg = h ∈
H1(D∞

2 ). This yields our claim.
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Suppose now that fg ∈ H1(D∞
2 ) and take the corresponding Dirichlet

series
∑

ann−s,
∑

bnn−s,
∑

cnn−s ∈ H1 (associated to f , g and fg re-
spectively). The same argument as above shows that

cn = cα(fg) =
∑

β+γ=α

cβ(f)cγ(g) =
∑

jk=n

ajbk ,

hence
(∑

ann−s
)(∑

bnn−s
)

=
∑

cnn−s ∈ H1, showing that (2) im-
plies (1).

Suppose now that fg ∈ H1(D∞
2 ) and let us see that (3) holds. Let

H ∈ H1(T∞) be the function associated to fg. Note first that fN ∼ FN ,
gN ∼ GN and (fg)N ∼ HN for every N . A straightforward computation
shows that (fg)N = fN gN , and then this product is in H1(DN ). Then
Proposition 3.3 yields fN gN ∼ FN GN , therefore

ĤN (α) = ̂(FN GN )(α)

for every α ∈ N(N)
0 and, then, HN = FN GN for every N ∈ N. We can find

a subsequence in such a way that

lim
k

FNk
(ω) = F (ω), lim

k
GNk

(ω) = G(ω), and lim
k

HNk
(ω) = H(ω)

for almost all ω ∈ T∞ (recall Remark 2.1). All this gives that F (ω)G(ω) =
H(ω) for almost all ω ∈ T∞. Hence FG = H ∈ H1(T∞), and our claim is
proved.

Finally, if FG ∈ H1(T∞), we denote by h its associated function in
H1(D∞

2 ). By [16, Propostions 2.8 and 2.14] we know that H1(D∞
2 ) is con-

tained in the Nevanlinna class N (D∞
1 ), therefore f, g, h ∈ N (D∞

1 ) and
hence, by definition, f · g − h ∈ N (D∞

1 ). On the other hand, [16, Theo-
rem 2.4 and Corollary 2.11] tell us that, if u ∈ N (D∞

1 ), then the radial limit
u∗(ω) = limr→1− u[r](ω) exists for almost all ω ∈ T∞. Even more, u = 0
if and only if u∗ vanishes on some subset of T∞ with positive measure.
The radial limit of f, g and h coincide a.e. with F, G and F · G respectively
(see [1, Theorem 1]). Since

(f · g − h)∗(ω) = lim
r→1−

f[r](ω) · g[r](ω) − h[r](ω) = 0,

for almost all ω ∈ T∞, then f · g = h on D∞
1 . Finally, since the set D∞

1
is dense in D∞

2 , by the continuity of the functions we have that f · g ∈
H1(D∞

2 ). □

As an immediate consequence of Theorem 3.2 we obtain the following.

Proposition 3.4. — For every 1 ⩽ p, q ⩽∞ we have

M(p, q) = MD∞
2

(p, q) = MT∞(p, q) ,
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and
M(N)(p, q) = MDN (p, q) = MTN (p, q) ,

for every N ∈ N, by means of the Bohr transform.

Again (as in Proposition 3.1), being a multiplier can be characterized
in terms of the restrictions (this follows immediately from Proposition 3.1
and Proposition 3.4).

Proposition 3.5.
(1) f ∈ MD∞

2
(p, q) if and only if fN ∈ MDN

2
(p, q) for every N ∈ N and

supN ∥MfN
∥ < ∞.

(2) F ∈ MT∞(p, q), then, FN ∈ MTN (p, q) for every N ∈ N and
supN ∥MFN

∥ < ∞.

The following statement describes the spaces of multipliers, viewing them
as Hardy spaces of Dirichlet series. A result of similar flavour for holomor-
phic functions in one variable appears in [26].

Theorem 3.6. — The following assertions hold true
(1) M(∞, q) = Hq isometrically.
(2) If 1 ⩽ q < p < ∞ then M(p, q) = Hpq/(p−q) isometrically.
(3) If 1 ⩽ p ⩽∞ then M(p, p) = H∞ isometrically.
(4) If 1 ⩽ p < q ⩽∞ then M(p, q) = {0}.

The same equalities hold if we replace in each case M and H by M(N) and
H(N) (with N ∈ N) respectively.

Proof. — To get the result we use again the isometric identifications be-
tween the Hardy spaces of Dirichlet series and both Hardy spaces of func-
tions, and also between their multipliers given in Proposition 3.4. Depend-
ing on each case we will use the most convenient identification, jumping
from one to the other without further notification.

(1). — We already noted that MTN (∞, q) ⊂ Hq(TN ) with continuous
inclusion (recall (3.2)). On the other hand, if D ∈ Hq and E ∈ H∞ then
D · E a Dirichlet series in Hq. Moreover,

∥MD(E)∥Hq
⩽ ∥D∥Hq

∥E∥H∞ .

This shows that ∥MD∥M(∞,q) ⩽ ∥D∥Hq
, providing the isometric identifica-

tion.
(2). — Suppose 1 ⩽ q < p < ∞ and take some f ∈ Hpq/(p−q)(D∞

2 ) and
g ∈ Hp(D∞

2 ), then f · g is holomorphic on D∞
2 . Consider t = p

p−q and note
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that t is the conjugate exponent of p
q in the sense that q

p + 1
t = 1. Therefore

given M ∈ N and 0 < r < 1, by Hölder’s inequality(∫
TM

|f · g(rω, 0)|q dω

)1/q

⩽

(∫
TM

|f(rω, 0)|qt dω

)1/qt(∫
TM

|g(rω, 0)|qp/q dω

)q/qp

=
(∫

TM

|f(rω, 0)|qp/(p−q) dω

)(p−q)/qp(∫
TM

|g(rω, 0)|p dω

)1/p

⩽ ∥f∥Hpq/(p−q)(D∞
2 )∥g∥Hp(D∞

2 ).

Since this holds for every M ∈ N and 0 < r < 1, then f ∈ MD∞
2

(p, q) and
furthermore ∥Mf ∥MD∞

2
(p,q) ⩽ ∥f∥Hpq/(p−q)(D∞

2 ). Thus Hpq/(p−q)(D∞
2 ) ⊆

MD∞
2

(p, q). The case for DN with N ∈ N follows with the same idea.
To check that the converse inclusion holds, take some F ∈ MTN (p, q)

(where N ∈ N ∪ {∞}) and consider the associated multiplication operator
MF : Hp(TN ) → Hq(TN ) which, as we know, is continuous. Let us see that
it can be extended to a continuous operator on Lp(TN ). To see this, take
a trigonometric polynomial Q, that is a finite sum of the form

Q(z) =
∑

|αi|⩽k

aαzα ,

and note that

(3.6) Q =

 M∏
j=1

z−k
j

 · P,

where P is the polynomial defined as P :=
∑

0⩽βi⩽2k bβzβ and bβ = aα

whenever β = α + (k, . . . , k, 0). Then,(∫
TN

|F · Q(ω)|q dω

)1/q

=

∫
TN

|F · P (ω)|q
M∏

j=1
|ωj |−kq dω

1/q

=
(∫

TN

|F · P (ω)|q dω

)1/q

⩽ C∥P∥Hp(TN )

= C

∫
TN

|P (ω)|p
M∏

j=1
|ωj |−kp dω

1/p

= C∥Q∥Hp(TN ).
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Consider now an arbitrary H ∈ Lp(TN ) and, using [11, Theorem 5.17]
find a sequence of trigonometric polynomials (Qn)n such that Qn → H in
Lp(T∞) and also a.e. on TN (taking a subsequence if necessary). We have

∥F ·Qn−F ·Qm∥Hq(TN ) = ∥F ·(Qn−Qm)∥Hq(TN ) ⩽ C∥Qn−Qm∥Hp(TN ) −→ 0

which shows that (F ·Qn)n is a Cauchy sequence in Lq(TN ). Since F ·Qn →
F ·H a.e. on TN , then this proves that F ·H ∈ Lq(TN ) and F ·Qn → F ·H
in Lq(TN ). Moreover,

∥F · H∥Hq(TN ) = lim ∥F · Qn∥Hq(TN ) ⩽ C lim ∥Qn∥Hp(TN ) = C∥H∥Hp(TN ),

and therefore the operator MF : Lp(TN ) → Lq(TN ) is well defined and
bounded. In particular, |F |q · |H|q ∈ L1(TN ) for every H ∈ Lp(TN ).

Now, consider H ∈ Lp/q(TN ) then |H|1/q ∈ Lp(TN ) and |F |q · |H| ∈
L1(TN ) or, equivalently, |F |q · H ∈ L1(TN ). Hence

|F |q ∈ Lp/q(TN )∗ = Lp/(p−q)(TN ),

and therefore F ∈ Lpq/(p−q)(TN ). To finish the argument, since F̂ (α) = 0
whenever α ∈ ZN \ NN

0 then F ∈ Hpq/(p−q)(TN ). We then conclude that

Hpq/(p−q)(TN ) ⊆ MTN (p, q) .

In order to see the isometry, given F ∈ Hpq/(p−q)(TN ) and let G = |F |r ∈
Lp(TN ) with r = q/(p−q) and then F ·G ∈ Lq(TN ). Let Qn be a sequence
of trigonometric polynomials such that Qn → G in Lp(TN ), since MF :
Lp(TN ) → Lq(TN ) is continuous then F · Qn = MF (Qn) → F · G. On the
other hand, writing Qn as (3.6) we have for each n ∈ N a polynomial Pn

such that ∥F · Qn∥Lq(TN ) = ∥F · Pn∥Lq(TN ) and ∥Qn∥Lp(TN ) = ∥Pn∥Lp(TN ).
Then we have that

∥F · G∥Lq(TN ) = lim
n

∥F · Qn∥Lq(TN ) = lim
n

∥F · Pn∥Lq(TN )

⩽ lim
n

∥MF ∥MTN (p,q)∥Pn∥Lp(TN )

= lim
n

∥MF ∥MTN (p,q)∥Qn∥Lp(TN )

= ∥MF ∥MTN (p,q)∥G∥Lp(TN ).

Now, since

∥F∥p/(p−q)
Lpq/(p−q)(TN ) = ∥F r+1∥Lq(TN ) = ∥F · G∥Lq(TN )

and
∥F∥q/(p−q)

Lpq/(p−q)(TN ) = ∥F r∥Lp(TN ) = ∥G∥Lp(TN )
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then
∥MF ∥MTN (p,q) ⩾ ∥F∥Lpq/(p−q) = ∥F∥Hpq/(p−q)(TN ),

as we wanted to show.
(3). — It was proved in [5, Theorem 7].
We finish the proof by seeing that (4) holds. On one hand, the previous

case and (3.3) immediately give the inclusion

{0} ⊆ MTN (p, q) ⊆ H∞(TN ).

We now show that MDN
2

(p, q) = {0} for any N ∈ N∪ {∞}. We consider in
first place the case N ∈ N. For 1 ⩽ p < q < ∞, we fix f ∈ MDN

2
(p, q) and

Mf the associated multiplication operator from Hp(DN ) to Hq(DN ). Now,
given g ∈ Hp(DN

2 ), by (2.1) we have

(3.7)

|f · g(z)| ⩽

 N∏
j=1

1
1 − |zj |2

1/q

∥f · g∥Hq(DN
2 )

⩽

 N∏
j=1

1
1 − |zj |2

1/q

C∥g∥Hp(DN
2 ).

Now since f ∈ H∞(DN
2 ) and

∥f∥H∞(DN ) = lim
r→1

sup
z∈rDN

2

|f(z)| = lim
r→1

sup
z∈rTN

|f(z)|,

then there is a sequence (un)n ⊆ DN such that ∥un∥∞ → 1 and

(3.8) |f(un)| −→ ∥f∥H∞(DN
2 ).

For each un there is a non-zero function gn ∈ Hp(DN ) (recall (2.2)) such
that

|gn(un)| =

 N∏
j=1

1
1 − |uj

n|2

1/p

∥gn∥Hp(DN ).

From this and (3.7) we get

|f(un)|

 N∏
j=1

1
1 − |uj

n|2

1/p

∥gn∥Hp(DN ) ⩽

 N∏
j=1

1
1 − |uj

n|2

1/q

C∥gn∥Hp(DN ).

Then,

|f(un)|

 N∏
j=1

1
1 − |uj

n|2

1/p−1/q

⩽ C.
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Since 1/p−1/q > 0 we have that
(∏N

j=1
1

1−|uj
n|2

)1/p−1/q

→ ∞, and then, by
the previous inequality, |f(un)| → 0. By (3.8) this shows that ∥f∥H∞(DN ) =
0 and this gives the claim for q < ∞. Now if q = ∞, by noticing that
H∞(DN ) is contained in Ht(DN ) for every 1 ⩽ p < t < ∞ the result
follows from the previous case. This concludes the proof for N ∈ N.

To prove that MD∞
2

(p, q) = {0}, fix again f ∈ MD∞
2

(p, q). By Propo-
sition 3.5, for every N ∈ N the truncated function fN ∈ MDN

2
(p, q) and

therefore, by what we have shown before, is the zero function. Now the
proof follows using that (fN )N converges pointwise to f . □

4. Multiplication operator

Given a multiplier D ∈ M(p, q), we study in this section several prop-
erties of its associated multiplication operator MD : Hp → Hq. In [28]
Vukotić provides a very complete description of certain Toeplitz operators
for Hardy spaces of holomorphic functions of one variable. In particular
he studies the spectrum, the range and the essential norm of these opera-
tors. Bearing in mind the relation between the sets of multipliers that we
proved above (Proposition 3.4), it is natural to ask whether similar proper-
ties hold when we look at the multiplication operators on the Hardy spaces
of Dirichlet series.

In our first result we characterize which operators are indeed multiplica-
tion operators. These happen to be exactly those that commute with the
monomials given by the prime numbers.

Theorem 4.1. — Let 1 ⩽ p, q ⩽∞. A bounded operator T : Hp → Hq

is a multiplication operator if and only if T commutes with the multiplica-
tion operators Mp−s

i
for every i ∈ N.

The same holds if we replace in each case H by H(N) (with N ∈ N), and
considering Mp−s

i
with 1 ⩽ i ⩽ N .

Proof. — Suppose first that T : Hp → Hq is a multiplication operator
(that is, T = MD for some Dirichlet series D) and for i ∈ N, let p−s

i be a
monomial, then

T ◦ Mp−s
i

(E) = D · p−s
i · E = p−s

i · D · E = Mp−s
i

◦ T (E).

That is, T commutes with Mp−s
i

.
For the converse, suppose now that T : Hp → Hq is a bounded operator

that commutes with the multiplication operators Mp−s
i

for every i ∈ N. Let
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us see that T = MD with D = T (1). Indeed, for each p−s
i and k ∈ N we

have that

T ((pk
i )−s) = T ((p−s

i )k) = T (Mk
p−s

i

(1)) = Mk
p−s

i

(T (1))

= (p−s
i )k · D = (pk

i )−s · D,

and then given n ∈ N and α ∈ N(N)
0 such that n = pα1

1 · · · pαk

k

T (n−s) = T

 k∏
j=1

(pαi
i )−s

 = T (Mα1
p−s

1
◦ · · · ◦ Mαk

p−s
k

(1))

= Mα1
p−s

1
◦ · · · ◦ Mαk

p−s
k

(T (1)) = (n−s) · D.

This implies that T (P ) = P · D for every Dirichlet polynomial P . Take
now some E ∈ Hp and choose a sequence of polynomials Pn that converges
in norm to E if 1 ⩽ p < ∞ or weakly if p = ∞ (see [11, Theorems 5.18
and 11.10]). In any case, if s ∈ C1/2, the continuity of the evaluation at s

(see again [11, Corollary 13.3]) yields Pn(s) → E(s). Since T is continuous,
we have that

T (E) = lim
n

T (Pn) = lim
n

Pn · D

(where the limit is in the weak topology if p = ∞). Then for each s ∈ C
such that Re s > 1/2, we have

T (E)(s) = lim
n

Pn · D(s) = E(s)D(s).

Therefore, T (E) = D · E for every Dirichlet series E. In other words, T is
equal to MD, which concludes the proof. □

Given a bounded operator T : E → F the essential norm is defined as

∥T∥ess = inf{∥T − K∥ : K : E −→ F compact}.

This norm tells us how far from being compact T is.
The following result shows a series of comparisons between essential norm

of MD : Hp → Hq and the norm of D, depending on p and q. In all cases,
as a consequence, the operator is compact if and only if D = 0.

Theorem 4.2.

(1) Let 1 ⩽ q < p < ∞, D ∈ Hpq/(p−q) and MD its associated multipli-
cation operator from Hp to Hq. Then

∥D∥Hq
⩽ ∥MD∥ess ⩽ ∥MD∥ = ∥D∥Hpq/(p−q) .
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(2) Let 1 ⩽ q < ∞, D ∈ Hq and MD : H∞ → Hq the multiplication
operator. Then

1
2∥D∥Hq

⩽ ∥MD∥ess ⩽ ∥MD∥ = ∥D∥Hq
.

In particular, MD is compact if and only if D = 0. The same equalities
hold if we replace H by H(N) (with N ∈ N).

We start with a lemma based on [6, Proposition 2] for Hardy spaces of
holomorphic functions. We prove that weak-star convergence and uniformly
convergence on half-planes are equivalent on Hardy spaces of Dirichlet se-
ries. We are going to use that Hp is a dual space for every 1 ⩽ p < ∞.
For 1 < p < ∞ this is obvious because the space is reflexive. For p = 1
in [12, Theorem 7.3] it is shown, for Hardy spaces of vector valued Dirichlet
series, that H1(X) is a dual space if and only if X has the Analytic Radon–
Nikodym property. Since C has the ARNP, this gives what we need. We
include here an alternative proof in more elementary terms.

Proposition 4.3. — The space H1 is a dual space.

Proof. — Denote by (BH1 , τ0) the closed unit ball of H1(D∞
2 ), endowed

with the topology τ0 given by the uniform convergence on compact sets. Let
us show that (BH1 , τ0) is a compact set. Note first that, given a compact
K ⊆ ℓ2 and ε > 0, there exists j0 ∈ N such that

∑∞
j⩾j0

|zj |2 < ε for all
z ∈ K [14, Page 6]. Then, from the Cole–Gamelin inequality (2.1), the set

{f(K) : f ∈ BH1} ⊂ C

is bounded for each compact set K. By Montel’s theorem (see e.g. [11, The-
orem 15.50]), (BH1 , τ0) is relatively compact. We now show that (BH1 , τ0)
is closed. Indeed, suppose now that (fα) ⊂ BH1 is a net that converges to
BH1 uniformly on compact sets, then we obviously have∫

TN

|f(rω, 0, 0, . . .)| dω

⩽
∫
TN

|f(rω, 0, 0, . . .) − fα(rω, 0, 0, . . .)| dω +
∫
TN

|fα(rω, 0, 0, . . .)| dω.

Since the first term tends to 0 and the second term is less than or equal to
1 for every N ∈ N and every 0 < r < 1, then the limit function f belongs
to BH1 . Thus, (BH1 , τ0) is compact.

We consider now the set of functionals

{evz : H1(D∞
2 ) −→ C : z ∈ D∞

2 }.
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Note that the weak topology w(H1, E) is exactly the topology given by the
pointwise convergence. Thus, since a priori τ0 is clearly a stronger topology
than w(H1, E) we have that (BH1 , w(H1, E)) is also compact. Since E

separates points, by [18, Theorem 1], H1(D∞
2 ) is a dual space and hence,

using the Bohr transform, H1 also is a dual space. □

Lemma 4.4. — Let 1 ⩽ p < ∞ and (Dn) ⊆ Hp then the following
statements are equivalent

(1) Dn → 0 in the weak-star topology.
(2) Dn(s) → 0 for each s ∈ C1/2 and ∥Dn∥Hp ⩽ C for some C > 0.
(3) Dn → 0 uniformly on each half-plane Cσ with σ > 1/2 and ∥Dn∥Hp

⩽
C for some C > 0.

Proof. — The implication (1) then (2) is verified by the continuity of the
evaluations in the weak-star topology, and because the convergence in this
topology implies that the sequence is bounded.

Let us see that (2) implies (3). Suppose not, then there exists ε >

0, a subsequence (Dnj
)j and a half-plane Cσ with σ > 1/2 such that

sups∈Cσ
|Dnj

(s)| ⩾ ε. Since Dnj
=
∑

m a
nj
m m−s is uniformly bounded,

by Montel’s theorem for Hp (see [10, Theorem 3.2]), there exists D =∑
m amm−s ∈ Hp such that∑

m

a
nj
m

mδ
m−s −→

∑
m

am

mδ
m−s in Hp

for every δ > 0. Given s ∈ C1/2, we write s = s0 + δ with δ > 0 and
s0 ∈ C1/2, to have

Dnj
(s) =

∑
m

anj
m m−(s0+δ) =

∑
m

a
nj
m

mδ
m−s0

−→
∑
m

am

mδ
m−s0 = D(s0 + δ) = D(s).

We conclude that D = 0 and by the Cole–Gamelin inequality for Dirichlet
series (see [11, Corollary 13.3]) we have

ε ⩽ sup
Re s>1/2+σ

|Dnj
(s)| = sup

Re s>1/2+σ/2
|Dnj

(s + σ/2)|

= sup
Re s>1/2+σ/2

∣∣∣∣∣∑
m

a
nj
m

mσ/2 m−s

∣∣∣∣∣ ⩽ ζ(2 Re s)1/p

∥∥∥∥∥∑
m

a
nj
m

mσ/2 m−s

∥∥∥∥∥
Hp

⩽ ζ(1 + σ)1/p

∥∥∥∥∥∑
m

a
nj
m

mσ/2 m−s

∥∥∥∥∥
Hp

−→ 0,

for every σ > 0, which is a contradiction.
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To see that (3) implies (1), let BHp
denote the closed unit ball of Hp.

Since for each 1 ⩽ p < ∞ the space Hp is a dual space, by Alaouglu’s
theorem, (BHp

, w∗) (i.e. endowed with the weak-star topology) is compact.
On the other hand (BHp

, τ0) (that is, endowed with the topology of uni-
form convergence on compact sets) is a Hausdorff topological space. If we
show that the identity Id : (BHp

, w∗) → (BHp
, τ0) is continuous, then it is

a homeomorphism and the proof is completed. To see this let us note first
that Hp is separable (note that the set of Dirichlet polynomials with ra-
tional coefficients is dense in Hp) and then (BHp , w∗) is metrizable (see [9,
Theorem 5.1]). Hence it suffices to work with sequences. If a sequence (Dn)n

converges in w∗ to some D, then in particular (Dn − D)n w∗-converges to
0 and, by what we just have seen, it converges uniformly on compact sets.
This shows that Id is continuous, as we wanted. □

Now we prove Theorem 4.2. The arguments should be compared with [13,
Propositions 4.3 and 5.5] where similar statements have been obtained for
weighted composition operators for holomorphic functions of one complex
variable.

Proof of Theorem 4.2.

(1). — By definition ∥MD∥ess ⩽ ∥MD∥ = ∥D∥Hpq/(p−q) . In order to see
the lower bound, for each n ∈ N consider the monomial En = (2n)−s ∈ Hp.
Clearly ∥En∥Hp

= 1 for every n, and En(s) → 0 for each s ∈ C1/2. Then,
by Lemma 4.4, En → 0 in the weak-star topology.

Take now some compact operator K : Hp → Hq and note that, since Hp

is reflexive, we have K(En) → 0, and hence

∥MD − K∥ ⩾ lim sup
n→∞

∥MD(En) − K(En)∥Hq

⩾ lim sup
n→∞

∥D · En∥Hq − ∥K(En)∥Hq = ∥D∥Hq .

(2). — Let K : H∞ → Hq be a compact operator, and take again
En = (2n)−s ∈ H∞ for each n ∈ N. Since ∥En∥H∞ = 1, there exists a
subsequence (Enj

)j such that (K(Enj
))j converges in Hq. Given ε > 0

there exists m ∈ N such that if j, l ⩾ m then

∥K(Enj ) − K(Enl
)∥Hq < ε.

On the other hand, if D =
∑

akk−s then D · Enl
=
∑

ak(k · 2nl)−s and
by [11, Proposition 11.20] the norm in Hq of

(D · Enl
)δ =

∑ ak

(k · 2nl)δ
(k · 2nl)−s
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tends increasingly to ∥D · Enl
∥Hq

= ∥D∥Hq
when δ → 0. Fixed j ⩾ m,

there exists δ > 0 such that

∥(D · Enj
)δ∥Hq

⩾ ∥D∥Hq
− ε.

Given that ∥ Enj
−Enl

2 ∥H∞ = 1 for every j ̸= l then

∥MD − K∥ ⩾

∥∥∥∥∥(MD − K)
Enj

− Enl

2

∥∥∥∥∥
Hq

⩾
1
2∥(D · Enj − D · Enl

)δ∥Hq − 1
2∥K(Enj ) − K(Enl

)∥Hq

>
1
2(∥(D · Enj

)δ∥Hq
− ∥(D · Enl

)δ∥Hq
) − ε/2

⩾
1
2∥D∥Hq − 1

2∥(D · Enl
)δ∥Hq − ε.

Finally, since

∥(D · Enl
)δ∥Hq

⩽ ∥Dδ∥Hq
∥(Enl

)δ∥H∞

⩽ ∥Dδ∥Hq

∥∥∥∥ (2nl)−s

2nlδ

∥∥∥∥
H∞

= ∥Dδ∥Hq
· 1

2nlδ
,

and the latter tends to 0 as l → ∞, we finally have

∥MD − K∥ ⩾ 1
2∥D∥Hq

. □

In the case of endomorphism, that is p = q, we give the following bounds
for the essential norms.

Theorem 4.5. — Let D ∈ H∞ and MD : Hp → Hp the associated
multiplication operator.

(1) If 1 < p < ∞, then

∥MD∥ess = ∥MD∥ = ∥D∥H∞ .

(2) If p = 1, then

∥D∥H∞ = ∥MD∥ ⩾ ∥MD∥ess ⩾ max
{

1
2∥D∥H∞ , ∥D∥H1

}
.

In particular, MD is compact if and only if D = 0. The same equalities
hold if we replace H by H(N), with N ∈ N.

The previous theorem will be a consequence of the Proposition 4.7 which
we feel is independently interesting. For the proof we need the following
technical lemma in the spirit of [6, Proposition 2]. Is relates weak-star
convergence and uniform convergence on compact sets for Hardy spaces of
holomorphic functions. It is a sort of “holomorphic version” of Lemma 4.4.

TOME 0 (0), FASCICULE 0



22 Tomas FERNANDEZ VIDAL, Daniel GALICER & Pablo SEVILLA-PERIS

Lemma 4.6. — Let 1 ⩽ p < ∞, N ∈ N∪ {∞} and (fn) ⊆ Hp(DN
2 ) then

the following statements are equivalent
(1) fn → 0 in the weak-star topology,
(2) fn(z) → 0 for each z ∈ DN

2 and ∥fn∥Hp(DN
2 ) ⩽ C for some C > 0

(3) fn → 0 uniformly on compact sets of DN
2 and ∥fn∥Hp(DN

2 ) ⩽ C for
some C > 0.

Proof. — (1) ⇒ (2) and (3) ⇒ (1) are proved with the same arguments
used in Lemma 4.4. Let us see (2) ⇒ (3). Suppose not, then there ex-
ists ε > 0, a subsequence fnj

and a compact set K ⊆ D∞
2 such that

∥fnj
∥H∞(K) ⩾ ε. Since fnj

is bounded, by Montel’s theorem for Hp(DN
2 )

(see [15, Theorem 2]), we can take a subsequence fnjl
and f ∈ Hp(DN

2 )
such that fnjl

→ f uniformly on compact sets. But since it tends pointwise
to zero, then f = 0 which is a contradiction. □

Proposition 4.7. — Let 1 ⩽ p < ∞, f ∈ H∞(D∞
2 ) and Mf :

Hp(D∞
2 ) → Hp(D∞

2 ) the multiplication operator. If p > 1 then
∥Mf ∥ess = ∥Mf ∥ = ∥f∥H∞(D∞

2 ).

If p = 1 then

∥Mf ∥ ⩾ ∥Mf ∥ess ⩾ max
{

1
2∥f∥H∞(D∞

2 ) , ∥f∥H1(D∞
2 )

}
In particular Mf : Hp(D∞

2 ) → Hp(D∞
2 ) is compact if and only if f = 0.

The same equalities hold if we replace D∞
2 by DN , with N ∈ N.

Proof. — The inequality ∥Mf ∥ess⩽ ∥Mf ∥ = ∥f∥H∞(DN
2 ) is already known

for every N ∈ N ∪ {∞}. It is only left, then, to see that
(4.1) ∥Mf ∥ ⩽ ∥Mf ∥ess .

We begin with the case N ∈ N. Assume in first place that p > 1, and
take a sequence (z(n))n ⊆ DN , with ∥z(n)∥∞ → 1, such that |f(z(n))| →
∥f∥H∞(DN ). Consider now the function given by

hz(n)(u) =

 N∏
j=1

1 − |z(n)
j |2

(1 − z
(n)
j uj)2

1/p

,

for u ∈ DN . Now, by the Cole–Gamelin inequality (2.1)

|f(z(n))| = |f(z(n)) · hz(n)(z(n))|

 N∏
j=1

1
1 − |z(n)

j |2

−1/p

⩽ ∥f · hz(n)∥Hp(DN
2 ) ⩽ ∥f∥H∞(DN

2 ),

and then ∥f · hz(n)∥Hp(DN
2 ) → ∥f∥H∞(DN

2 ).
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Observe that ∥hz(n)∥Hp(DN ) = 1 and that hz(n)(u) → 0 as n → ∞ for
every u ∈ DN . Then, by Lemma 4.6, hz(n) tends to zero in the weak-star
topology and then, since Hp(DN

2 ) is reflexive (recall that 1 < p < ∞),
also in the weak topology. So, if K is a compact operator on Hp(DN

2 ) then
K(hz(n)) → 0 and therefore

∥Mf − K∥ ⩾ lim sup
n→∞

∥f · hz(n) − K(hz(n))∥Hp(DN
2 )

⩾ lim sup
n→∞

∥f · hz(n)∥Hp(DN
2 ) − ∥K(hz(n))∥Hp(DN

2 ) = ∥f∥H∞(DN
2 ).

Thus, ∥Mf − K∥ ⩾ ∥f∥H∞(DN
2 ) for each compact operator K and hence

∥Mf ∥ess ⩾ ∥Mf ∥ as we wanted to see.
The proof of the case p = 1 follows some ideas of Demazeux in [13,

Theorem 2.2]. First of all, recall that the N -dimensional Féjer’s Kernel is
defined as

KN
n (u) =

∑
|α1|,...,|αN |⩽n

N∏
j=1

(
1 − |αj |

n + 1

)
uα ,

for u ∈ DN
2 . With this, the n-th Féjer polynomial with N variables of a

function g ∈ Hp(DN
2 ) is obtained by convoluting g with the N−dimensional

Féjer’s Kernel, in other words

(4.2) σN
n g(u) = 1

(n + 1)N

n∑
l1,...,lN =1

∑
|αj |⩽lj

ĝ(α)uα.

It is well known (see e.g. [11, Lemmas 5.21 and 5.23]) that σN
n : H1(DN

2 ) →
H1(DN

2 ) is a contraction and σN
n g → g on H1(DN

2 ) when n → ∞ for all
g ∈ H1(DN

2 ). Let us see how RN
n = I − σN

n , gives a first lower bound for
the essential norm.

Let K : H1(DN
2 ) → H1(DN

2 ) be a compact operator, since ∥σN
n ∥ ⩽ 1 then

∥RN
n ∥ ⩽ 2 and hence

∥Mf − K∥ ⩾ 1
2∥RN

n ◦ (Mf − K)∥ ⩾ 1
2∥RN

n ◦ Mf ∥ − 1
2∥RN

n ◦ K∥.

On the other side, since RN
n → 0 pointwise, RN

n tends to zero uniformly
on compact sets of H1(DN ). In particular on the compact set K(BH1(DN )),
and therefore ∥RN

n ◦ K∥ → 0. We conclude then that

∥Mf ∥ess ⩾
1
2 lim sup

n→∞
∥RN

n ◦ Mf ∥.

Our aim now is to obtain a lower bound for the right-hand-side of the
inequality. To get this, we are going to see that

(4.3) ∥σN
n ◦ Mf (hz)∥H1(DN ) −→ 0 when ∥z∥∞ −→ 1,
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where hz is again defined, for each fixed z ∈ DN , by

hz(u) =
N∏

j=1

1 − |zj |2

(1 − zjuj)2 .

To see this, let us consider first, for each z ∈ DN , the function gz(u) =∏N
j=1

1
(1−z̄juj)2 . This is clearly holomorphic and, hence, has a development

as a Taylor series

gz(u) =
∑

α∈NN
0

cα(gz)uα

for u ∈ DN . Our first step is to see that the Taylor coefficients up to a
fixed degree are bounded uniformly on z. Recall that cα(gz) = 1

α!
∂αg(0)

∂uα

and, since

∂αgz(u)
∂uα

=
N∏

j=1

(αj + 1)!
(1 − zjuj)2+αj

(zj)αj ,

we have

cα(gz) = 1
α!

∂αgz(0)
∂uα

= 1
α!

N∏
j=1

(αj + 1)!(zj)αj =

 N∏
j=1

(αj + 1)

 zα .

Thus |cα(gz)| ⩽ (M + 1)N whenever |α| ⩽M .
On the other hand, for each α ∈ NN

0 (note that hz(u) = gz(u)
∏N

j=1(1 −
|zj |) for every u) we have

cα(f · hz) =

 N∏
j=1

(1 − |zj |2)

 ∑
β+γ=α

f̂(β)ĝz(γ) .

Taking all these into account we finally have (recall (4.2)), for each fixed
n ∈ N

∥σN
n ◦ Mf (hz)∥H1(DN )

⩽

 N∏
j=1

1−|zj |2
 1

(n+1)N

N∑
l1,...,lN =1

∑
|αj |⩽lj

|
∑

β+γ=α

f̂(β)ĝz(γ)|∥uα∥H1(DN )

⩽

 N∏
j=1

1−|zj |2
 1

(n+1)N

N∑
l1,...,lN =1

∑
|αj |⩽lj

∑
β+γ=α

∥f∥H∞(DN )(N + 1)N ,
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which immediately yields (4.3). Once we have this we can easily conclude
the argument. For each n ∈ N we have

∥RN
n ◦ Mf ∥ = ∥Mf − σN

n ◦ Mf ∥

⩾ ∥Mf (hz) − σN
n ◦ Mf (hz)∥H1(DN )

⩾ ∥Mf (hz)∥H1(DN
2 ) − ∥σN

n ◦ Mf (hz)∥H1(DN ),

and since the last term tends to zero if ∥z∥∞ → 1, then

∥RN
n ◦ Mf ∥ ⩾ lim sup

∥z∥→1
∥Mf (hz)∥H1(DN ) ⩾ ∥f∥H∞(DN ) ,

which finally gives

∥Mf ∥ess ⩾
1
2∥f∥H∞(DN

2 ) = 1
2∥Mf ∥ ,

as we wanted.
To complete the proof we consider the case N = ∞. So, let us see that

(4.4) ∥Mf ∥ ⩾ ∥Mf ∥ess ⩾ C∥Mf ∥ ,

where C = 1 if p > 1 and C = 1/2 if p = 1. Let K : Hp(D∞
2 ) → Hp(D∞

2 ) be
a compact operator, and consider for each N ∈ N the continuous operators
IN : Hp(DN ) → Hp(D∞

2 ) given by the inclusion and JN : Hp(D∞
2 ) →

Hp(DN ) defined by J (g)(u) = g(u1, . . . , uN , 0) = gN (u) then KN = JN ◦
K ◦ IN : Hp(DN ) → Hp(DN ) is compact. On the other side we have that
JN ◦ Mf ◦ IN (g) = fn · g = MfN

(g) for every g, furthermore given any
operator T : Hp(D∞

2 ) → Hp(D∞
2 ) and defining TN as before we have that

∥T∥ = sup
∥g∥Hp(D∞

2 )⩽1
∥T (g)∥Hp(D∞

2 ) ⩾ sup
∥g∥Hp(DN )⩽1

∥T (g)∥Hp(D∞
2 )

⩾ sup
∥g∥Hp(DN )⩽1

∥TM (g)∥Hp(DN
2 ) = ∥TN ∥,

and therefore

∥Mf − K∥ ⩾ ∥MfN
− KN ∥ ⩾ ∥MfN

∥ess ⩾ C∥fN ∥H∞(DN
2 ) .

Since ∥fN ∥H∞(DN
2 ) → ∥f∥H∞(D∞

2 ) when N → ∞ we have (4.4).
We deal now with the case p = 1 and N ∈ N ∪ {∞}. Fix 1 < q < ∞

and consider Mq
f : Hq(DN

2 ) → H1(DN
2 ) the restriction. If K : H1(DN

2 ) →
H1(DN

2 ) is compact then its restriction Kq : Hq(DN
2 ) → H1(DN

2 ) is also
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compact and then

∥Mf − K∥H1(DN
2 )→H1(DN

2 ) = sup
∥g∥

H1(DN
2 )⩽1

∥Mf (g) − K(g)∥H1(DN
2 )

⩾ sup
∥g∥

Hq(DN
2 )⩽1

∥Mf (g) − K(g)∥H1(DN
2 )

= ∥Mq
f − Kq∥Hq(DN

2 )→H1(DN )

⩾ ∥Mq
f ∥ess ⩾ ∥f∥H1(DN

2 ),

where the last inequality follows from a function version of Theorem 4.2(1)
(via the Bohr transform). This completes the proof. □

We can now prove Theorem 4.5.
Proof of Theorem 4.5. — Since for every 1 ⩽ p < ∞ the Bohr lift

LDN
2

: H(N)
p → Hp(DN

2 ) and the Bohr transform BDN
2

: Hp(DN
2 ) → H(N)

p

are isometries, then an operator K : H(N)
p → H(N)

p is compact if and only
if Kh = LDN

2
◦ K ◦ BDN

2
: Hp(DN

2 ) → Hp(DN
2 ) is a compact operator. On

the other side f = LDN
2

(D) hence Mf = LDN
2

◦ MD ◦ BDN
2

and therefore

∥MD − K∥ = ∥BDN
2

◦ (Mf − Kh) ◦ LDN
2

∥ = ∥Mf − Kh∥.

Now, Proposition 4.7 and the isometry of the Bohr transform completes
the proof. □

To finish this section, we emphasize that Lefèvre [20, Corollary 2,4]
proved that, if D ∈ H∞ and MD : H∞ → H∞ is the associated multi-
plication operator, then

∥MD∥ess = ∥D∥H∞ .

Again, using the isometries of the Bohr transform and the Bohr lift, we
get that if f ∈ H∞(D∞

2 ) and Mf : H∞(D∞
2 ) → H∞(D∞

2 ) is the associated
multiplication operator, then

∥Mf ∥ess = ∥f∥H∞(D∞
2 ).

This extends Proposition 4.7 for the case p = ∞.

Remark 4.8. — It is now natural to ask, for p = 1 and p = ∞, when
is a multiplication operator weakly compact. On the one hand, by [20,
Theorem 1.2], the operator MD : H∞ → H∞ is weakly compact if and
only if it is compact. Then, as a consequence of Theorem 4.5 with p = ∞
we have that there is no weakly compact multiplication operator on H∞
other than the trivial one.
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The case p = 1 follows a different path. To begin with, we know from [8,
Theorem 3.4] that a multiplication operator Mf on H1(D) is weakly com-
pact if and only if it is compact. This and [28, Theorem 5] show that this
happens if and only if f = 0. Suppose now that f ∈ H∞(D2) defines a
weakly compact multiplication operator on H1(D2) and f(z1, z2) ̸= 0 for
some (z1, z2) ∈ D2. If we consider the inclusion i : H1(D) → H1(D2) given
by (ih)(z, w) = h(z) and the operator δz2 : H1(D2) → H1(D) given by
(δz2g)(z) = g(z, z2), it is straightforward to see that Mδz2 f , the multipli-
cation operator defined by δz2f (which is not 0), is δz2 ◦ Mf ◦ i and, then,
is weakly compact. This is a contradiction and shows that the trivial one
is the only weakly compact multiplication operator on H1(D2). With the
same argument we get that a multiplication operator Mf on H1(DN ) is
weakly compact if and only if f = 0. Finally if f defines a weakly com-
pact multiplication operator on H1(D∞

2 ), then for each N the function
fN (z1, . . . , zN ) = f(z1, . . . , zN , 0, 0, . . .) defines a weakly compact multi-
plication operator on H1(DN ), and this forces f to be 0. The isometries
between the spaces again show that MD on H1 is weakly compact if and
only if D = 0.

5. Spectrum of Multiplication operators

In this section, we provide a characterization of the spectrum of the
multiplication operator MD, with respect to the image of its associated
Dirichlet series in some specific half-planes. Let us first recall some defini-
tions of the spectrum of an operator. We say that λ belongs to the spectrum
of MD, that we note σ(MD), if the operator MD − λI : Hp → Hp is not
invertible. Now, a number λ can be in the spectrum for different reasons
and according to these we can group them into the following subsets:

• If MD − λI is not injective then λ ∈ σp(MD), the point spectrum.
• If MD −λI is injective and Ran(MD −λI) is dense (but not closed)

in Hp then λ ∈ σc(MD), the continuous spectrum of MD.
• If MD − λI is injective and does not have dense range, then λ

belongs to σr(MD), the residual spectrum.
We are also interested in the approximate spectrum, noted by σap(MD),

given by those values λ ∈ σ(MD) for which there exist a unit sequence
(En)n ⊆ Hp such that ∥MD(En) − λEn∥Hp → 0.

Vukotić, in [28, Theorem 7], proved that the spectrum of a multiplication
operator, induced by the function f in the one dimensional disc, coincides
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with f(D). In the case of the continuous spectrum, the description is given
from the outer functions in H∞(D). The notion of outer function can be
extended to higher dimensions. If N ∈ N∪ {∞}, a function f ∈ Hp(DN

2 ) is
said to be outer if it satisfies

log |f(0)| =
∫
TN

log |F (ω)| dω,

with f ∼ F . A closed subspace S of Hp(DN
2 ) is said to be invariant, if

for every g ∈ S it is verified that zi · g ∈ S for every monomial. Finally, a
function f is said to be cyclic, if the invariant subspace generated by f is ex-
actly Hp(DN

2 ). The mentioned characterization comes from the generalized
Beurling’s Theorem, which asserts that f is a cyclic vector if and only if f

is an outer function. In several variables, there exist outer functions which
fail to be cyclic (see [24, Theorem 4.4.8]). We give now the aforementioned
characterization of the spectrum of a multiplication operator.

Theorem 5.1. — Given 1 ⩽ p < ∞ and D ∈ H∞ a non-zero Dirichlet
series with associated multiplication operator MD : Hp → Hp. Then

(1) MD is onto if and only if there is some c > 0 such that |D(s)| ⩾ c

for every s ∈ C0.
(2) σ(MD) = D(C0).
(3) If 1 ⩽ p < ∞, then

(5.1) σc(MD) ⊆ D(C0) \ D(C 1
2
).

Even more, if λ ∈ σc(MD) then f−λ = LD∞
2

(D)−λ is an outer func-
tion in H∞(D∞

2 ). In particular, if D is not constant, then D(C 1
2
) ⊆

σr(MD).
(4) If p = ∞, then σc(MD) = ∅. In particular, if D is not constant,

then σr(MD) = D(C0).
The same holds if we replace in each case H by H(N) (with N ∈ N).

Proof.

(1). — Because of the injectivity of MD, and the Closed Graph The-
orem, the mapping MD is surjective if and only if MD is invertible and
this happens if and only if MD−1 is well defined and continuous, but then
D−1 ∈ H∞ and [22, Theorem 6.2.1] gives the conclusion.

(2). — Note that MD − λI = MD−λ; this and the previous result give
that λ ̸∈ σ(MD) if and only if |D(s)−λ| > ε for some ε > 0 and all s ∈ C0,
and this happens if and only if λ ̸∈ D(C0).
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(3). — Take λ ∈ D(C 1
2
) and let s0 ∈ C 1

2
be such that D(s0) = λ. Given

E ∈ Hp, we have

(MD − λI)(E)(s0) = MD−λ(E)(s0) = (D(s0) − λ)E(s0) = 0 .

Then the range of MD−λI is contained in the subspace {E ∈ Hp : E(s0) = 0}.
By the continuity of the evaluation at s0 ∈ C1/2, this subspace is closed
and also proper (because 1 does not belong to it). Hence the range cannot
be dense in Hp and we have (5.1).

Now, since σc(MD) = σc(Mf ) then, if λ ∈ σc(MD), we have that
Mf−λ(Hp(D∞

2 )) is dense in Hp(D∞
2 ). Consider S(f −λ) the smallest closed

subspace of Hp(D∞
2 ) such that zi · (f − λ) ∈ S(f − λ) for every i ∈ N. Take

λ ∈ σc(Mf ) and note that

{(f − λ) · P : P polynomial} ⊆ S(f − λ) ⊆ Hp(D∞
2 ) .

Since the polynomials are dense in Hp(D∞
2 ), and S(f − λ) is closed, we

obtain that S(f − λ) = Hp(D∞
2 ). Then f − λ is a cyclic vector in H∞(D∞

2 )
and therefore the function f − λ ∈ H∞(D∞

2 ) is an outer function (see [16,
Corollary 5.5]).

Finally, let us see that the last statement holds. If D is not constant
then MD − λI is injective (i.e. σp(MD) = ∅), and therefore, σr(MD) =
σ(MD)\σc(MD). As a consequence, σr(MD) must contain the set D(C1/2).

(4). — To see that σc(MD) = ∅, take λ ∈ σ(MD) = D(C0) and some
sequence in D(C0) such that sn → λ. Now, given E ∈ H∞ we have that
(E(sn))n is bounded and, then,

∥1 − (MD − λI)(E)∥H∞ ⩾ lim sup
n→∞

|1 − (D(sn) − λ)E(sn)| = 1.

Hence the range of MD − λ is not dense and therefore λ ̸∈ σc(MD). Again,
if D is not constant then σp(MD) = ∅ and so σr(MD) = D(C0). □

Note that a value λ belongs to the approximate spectrum of a multi-
plication operator MD if and only if MD − λI = MD−λ is not bounded
from below. If D is not constant and equal to λ then, MD−λ is injective.
Therefore, being bounded from below is equivalent to having closed ranged.
Thus, we need to understand when does this operator have closed range.
We therefore devote some lines to discuss this property.

The range of the multiplication operators behaves very differently de-
pending on whether or not it is an endomorphism. We see now that if
p ̸= q then multiplication operators never have closed range.
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Proposition 5.2. — Given 1 ⩽ q < p ⩽ ∞ and D ∈ Ht, with t =
pq/(p − q) if p < ∞ and t = q if p = ∞, then MD : Hp → Hq does not have
a closed range. The same holds if we replace H by H(N) (with N ∈ N).

Proof. — Since MD : Hp → Hq is injective, the range of MD is closed if
and only if there exists C > 0 such that C∥E∥Hp

⩽ ∥D · E∥Hq
for every

E ∈ Hp. Suppose that this is the case and choose some Dirichlet polynomial
P ∈ Ht such that ∥D − P∥Ht

< C
2 . Given E ∈ Hp we have

∥P · E∥Hq = ∥D · E − (D − P ) · E∥Hq

⩾ ∥D · E∥Hq
− ∥(D − P ) · E∥Hq

⩾ C∥E∥Hp
− ∥D − P∥Ht

∥E∥Hp
⩾

C

2 ∥E∥Hp
.

Then MP : Hp → Hq has closed range. Let now (Qn)n be a sequence of
polynomials converging in Hq but not in Hp, then

C

2 ∥Qn − Qm∥Hp
⩽ ∥P · (Qn − Qm)∥Hq

⩽ ∥P∥H∞∥Qn − Qm∥Hq
,

which is a contradiction. □

As we mentioned before, the behaviour of the range is very different
when the operator is an endomorphism, that is, when p = q. Recently,
in [2, Theorem 4.4], Antezana, Carando and Scotti have established a se-
ries of equivalences for certain Riesz systems in L2(0, 1). Within the proof
of this result, they also characterized those Dirichlet series D ∈ H∞, for
which their associated multiplication operator MD : H2 → H2 have closed
range. The proof also works for Hp. In our aim to be as clear and com-
plete as possible, we develop below the arguments giving all the necessary
definitions.

A character is a function γ : N → C that satisfies
• γ(mn) = γ(m)γ(n) for all m, n ∈ N,
• |γ(n)| = 1 for all n ∈ N.

The set of all characters is denoted by Ξ. Given a Dirichlet series D =∑
ann−s, each character γ ∈ Ξ defines a new Dirichlet series by

(5.2) Dγ(s) =
∑

anγ(n)n−s.

Each character γ ∈ Ξ can be identified with an element ω ∈ T∞, taking
ω = (γ(p1), γ(p2), . . .), and then we can rewrite (5.2) as

Dω(s) =
∑

anω(n)α(n)n−s,

being α(n) such that n = pα(n).
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Note that if LT∞(D)(u) = F (u) ∈ H∞(T∞), then by comparing coeffi-
cients we have that

LT∞(Dω)(u) = F (ω · u) ∈ H∞(T∞).

By [11, Lemma 11.22], for all ω ∈ T∞ the limit

lim
σ→0

Dω(σ + it), exists for almost all t ∈ R.

Using [25, Theorem 2], we can choose a representative F̃ ∈ H∞(T∞) of F

which satisfies

F̃ (ω) =
{

limσ→0+ Dω(σ) if the limit exists;
0 otherwise.

To see this, consider

A :=
{

ω ∈ T∞ : lim
σ→0

Dω(σ) exists.
}

,

and let us see that |A| = 1. To that, take Tt : T∞ → T∞ the Kronecker
flow defined by Tt(ω) = (p−itω), and notice that Tt(ω) ∈ A if and only if
limσ→0 DTt(ω)(σ) exists. Since

DTt(ω)(σ) =
∑

an(p−itω)α(n)n−σ =
∑

anωα(n)n−(σ+it) = Dω(σ + it),

then for all ω ∈ T∞ we have that Tt(ω) ∈ A for almost all t ∈ R. Finally,
since χA ∈ L1(T∞), applying the Birkhoff Theorem for the Kronecker
flow [22, Theorem 2.2.5], for ω0 = (1, 1, 1, . . . ) we have

|A| =
∫
T∞

χA(ω) dω = lim
R→∞

1
2R

∫ R

−R

χA(Tt(ω0)) dt = 1.

Then F̃ ∈ H∞(T∞), and to see that F̃ is a representative of F it is
enough to compare their Fourier coefficients (see again [25, Theorem 2]).
From now to the end F is always F̃ .

Fixing the notation

Dω(it0) = lim
σ→0

Dω(σ + it0),

then taking t0 = 0, we get

F (ω) = Dω(0)

for almost all ω ∈ T∞. Moreover, given t0 ∈ R we have

(5.3) Dω(it0) = lim
σ→0+

Dω(σ + it0) = lim
σ→0+

DTt0 (ω)(σ) = F (Tt0(ω)).

From this identity one has the following.
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Proposition 5.3. — The followings conditions are equivalent.
(1) There exists t̃0 such that |Dω(it̃0)| ⩾ ε for almost all ω ∈ T∞.
(2) For all t0 there exists Bt0 ⊂ T∞ with total measure such that

|Dω(it0)| ⩾ ε for all ω ∈ Bt0 .

Proof. — If (1) holds, let us define Bt̃0 as the set of total measure given
by

Bt̃0 = {ω ∈ T∞ : |Dω(it̃0)| ⩾ ε} .

Now, take t0 and consider

Bt0 =
{
p−i(−t0+t̃0) · ω : ω ∈ Bt̃0

}
,

which is clearly a total measure set. Take ω′ ∈ Bt0 and choose ω ∈ Bt̃0

such that ω′ = p−i(−t0+t̃0) · ω, then by (5.3) we have that

|Dω′
(it0)| = |F (Tt̃0(ω))| ⩾ ε ,

and this gives (2). The converse implications holds trivially. □

We now give an Hp-version of [2, Theorem 4.4].

Theorem 5.4. — Let 1 ⩽ p < ∞, and D ∈ H∞. Then the following
statements are equivalent.

(1) There exists m > 0 such that |F (ω)| ⩾ m for almost all ω ∈ T∞;
(2) The operator MD : Hp → Hp has closed range;
(3) There exists m > 0 such that for almost all (γ, t) ∈ Ξ × R we have

|Dγ(it)| ⩾ m.

Even more, in that case,

inf
{

∥MD(E)∥Hp
: E ∈ Hp, ∥E∥Hp

= 1
}

= essinf {|F (ω)| : ω ∈ T∞} = essinf {|Dγ(it)| : (γ, t) ∈ Ξ × R} .

Proof.
(1) ⇒ (2). — MD has closed range if and only if the range of MF

is closed. Because of the injectivity of MF we have, by Open Mapping
Theorem, that MF has closed range if and only if there exists a positive
constant m > 0 such that

∥MF (G)∥Hp(T∞) ⩾ m∥G∥Hp(T∞),

for every G ∈ Hp(T∞). If |F (ω)| ⩾ m a.e. ω ∈ T∞, then for G ∈ Hp(T∞)
we have that

∥MF (G)∥Hp(T∞) = ∥F · G∥Hp(T∞) =
(∫

T∞
|FG(ω)|p dω

)1/p

⩾m∥G∥Hp(T∞).
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(2) ⇒ (1). — Let m > 0 be such that ∥MF (G)∥Hp(T∞) ⩾ m∥G∥Hp(T∞)
for all G ∈ Hp(T∞). Let us consider

A = {ω ∈ T∞ : |F (ω)| < m}.

Since χA ∈ Lp(T∞), by the density of the trigonometric polynomials in
Lp(T∞) (see [11, Proposition 5.5]) there exist a sequence (Pk)k of degree
nk in Nk variables (in z and z) such that

lim
k

Pk = χA in Lp(T∞).

Therefore

mp|A| = mp∥χA∥p
Lp(T∞) = mp lim

k
∥Pk∥p

Lp(T∞)

= mp lim
k

∥znk
1 · · · znk

Nk
Pk∥p

Lp(T∞)

⩽ lim inf
k

∥MF (znk
1 · · · znk

Nk
Pk)∥p

Lp(T∞)

= ∥F · χA∥p
Lp(T∞) =

∫
A

|F (ω)|p dω.

Since |F (ω)| < m for all ω ∈ A, this implies that |A| = 0.
(2) ⇒ (3). — By the definition of F we have

m ⩽ |F (ω)| = lim
σ→0+

|Dω(σ)|

for almost all ω ∈ T∞. Combining this with Proposition 5.3 we get that
the t−sections of the set

C = {(ω, t) ∈ T∞ × R : |Dω(it)| < ε},

have zero measure. As a corollary of Fubini’s Theorem we get that C has
measure zero. The converse (3) ⇒ (2) also follows from Fubini’s Theorem.
The last equality follows from the proven equivalences. □

In the case of polynomials, using the continuity of the polynomials and
Kronecker’s Theorem (see e.g. [11, Proposition 3.4]), the condition of The-
orem 5.4 is restricted to the image of the polynomial on the line of complex
with zero real part. As a consequence, one can extend this characteriza-
tion to the Dirichlet series belonging to A(C0), that is the closed subspace
of H∞ given by the Dirichlet series that are uniformly continuous on C0
(see [4, Definition 2.1]).

Corollary 5.5. — Let 1 ⩽ p < ∞ then
(1) Let P ∈ H∞ be a Dirichlet polynomial. Then MP : Hp → Hp has

closed range if and only if there exists a constant m > 0 such that
|P (it)| ⩾ m for all t ∈ R.
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(2) Let D ∈ A(C0), then MD : Hp → Hp has closed range if and only
if there exists a constant m > 0 such that |D(it)| ⩾ m for all t ∈ R.

Even more, in each case

inf{∥MD(E)∥Hp
: E ∈ Hp, ∥E∥Hp

= 1} = inf{|D(it)| : t ∈ R}.

Proof.

(1). — Let F = LT∞(P ) then, by Theorem 5.4, MP has close range
if and only if there exists a constant m > 0 such that |F (ω)| ⩾ m a.e.
ω ∈ T∞. Since F (ω) =

∑
aαωα is continuous and by Kronecker’s Theorem

{(p−it
1 , . . . , p−it

N , ω) : t ∈ R, ω ∈ T∞}

is dense in T∞, then MP has closed range if and only if

|F (p−it
1 , . . . , p−it

N , ω)| ⩾ m for every t ∈ R and ω ∈ T∞.

The result is concluded from the fact that

F (p−it
1 , . . . , p−it

N , ω) =
∑

aαp
−itα1
1 · · · p−itαN

N =
∑

ann−it = P (it).

(2). — Since D is uniformly continuous on C0 then D admits a uni-
formly continuous extension to the half-plane {s ∈ C : Re s ⩾ 0}. By [4,
Theorem 2.3], D is the uniform limit on C0 of a sequence of Dirichlet poly-
nomials Pn. Let A(T∞) be the closed subspace of H∞(T∞) given by the
Bohr transform of A(C0). If LT∞(D) = F ∈ A(T∞), since it is the uniform
limit of polynomials, then F is continuous. Then, given t ∈ R we have that

|F (p−it)| = lim
n

|LT∞(Pn)(p−it)| = lim
n

|Pn(it)| = |D(it)|.

Again, this together with Theorem 5.4, Kronecker’s Theorem and the con-
tinuity of F give the conclusion. □

For what was said above, in the non trivial case, a value λ belongs to
the approximate spectrum of MD if and only if the range of MD−λ is not
closed. Then, Theorem 5.4 and Proposition 5.5 give us a characterization of
the approximate spectrum. For this, we need the definition of the essential
range of the function [(γ, t)⇝ Dγ(it)]. That is,{

λ ∈ C : for all ε > 0, µ
{

(γ, t) : |Dγ(it) − λ| < ε
}

> 0
}

,

where µ stands for the Haar measure in Ξ × R.
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Theorem 5.6. — Let 1 ⩽ p < ∞
(1) If D ∈ H∞, then σap(MD) = essran[(γ, t)⇝ Dγ(it)].
(2) If D ∈ A(C0), then σap(MD) = {D(it) : t ∈ R}.

Proof.
(1). — A value λ belongs to σap(MD) if and only if the range of MD−λ

is not closed; and by Theorem 5.4, if and only if

essinf{|Dγ(it)−λ| : (γ, t) ∈ Ξ×R} = essinf{|(D−λ)γ(it)| : (γ, t) ∈ Ξ×R}
= 0,

but that is equivalent to say that the measure of {|Dγ(it)−λ| < ε : (γ, t) ∈
Ξ ×R} is bigger than zero for every ε > 0. In other words, λ belongs to the
essential range of [(γ, t)⇝ Dγ(it)].

(2). — Following the same arguments used in 1 and using Corollary 5.5
we have that λ ∈ σap(MD) if and only if inf{|D(it) − λ| : t ∈ R} = 0, if
and only if λ ∈ {D(it) : t ∈ R}. □
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