For any holomorphic mapping between a complex manifold and a complex Hermitian manifold we extend the pullback from smooth forms to a class of currents. We provide a basic calculus for this pullback and show under quite mild assumptions that it is cohomologically sound. The class of currents we consider contains in particular the Lelong current of any analytic cycle. Our pullback depends in general on the Hermitian structure of but coincides with the usual pullback of currents in case is a submersion. The construction is based on the Gysin mapping in algebraic geometry.
Pour toute application holomorphe entre une variété complexe et une variété hermitienne complexe nous étendons le tiré en arrière des formes lisses à une classe de courants. Nous fournissons un calcul de base pour ce tiré en arrière et montrons sous des hypothéses assez faibles qu’il est cohomologiquement correct. La classe de courants que nous considérons contient en particulier le courant de Lelong de tout cycle analytique. Notre tiré en arrière dépend en général de la structure hermitienne de mais coïncide avec le tiré en arrière habituel des courants a cas où est une submersion. La construction est basée sur le morphisme de Gysin dans le géométrie algébrique.
Revised:
Accepted:
Online First:
Published online:
Keywords: Pullback, current, holomorphic mapping.
Mot clés : Tiré en arrière, courant, application holomorphe.
@article{AIF_2024__74_3_1109_0, author = {Samuelsson Kalm, H\r{a}kan}, title = {A pullback operation on a class of currents}, journal = {Annales de l'Institut Fourier}, pages = {1109--1151}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {3}, year = {2024}, doi = {10.5802/aif.3628}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3628/} }
TY - JOUR AU - Samuelsson Kalm, Håkan TI - A pullback operation on a class of currents JO - Annales de l'Institut Fourier PY - 2024 SP - 1109 EP - 1151 VL - 74 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3628/ DO - 10.5802/aif.3628 LA - en ID - AIF_2024__74_3_1109_0 ER -
%0 Journal Article %A Samuelsson Kalm, Håkan %T A pullback operation on a class of currents %J Annales de l'Institut Fourier %D 2024 %P 1109-1151 %V 74 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3628/ %R 10.5802/aif.3628 %G en %F AIF_2024__74_3_1109_0
Samuelsson Kalm, Håkan. A pullback operation on a class of currents. Annales de l'Institut Fourier, Volume 74 (2024) no. 3, pp. 1109-1151. doi : 10.5802/aif.3628. https://aif.centre-mersenne.org/articles/10.5802/aif.3628/
[1] Residues of holomorphic sections and Lelong currents, Ark. Mat., Volume 43 (2005) no. 2, pp. 201-219 | DOI | MR | Zbl
[2] Global representation of Segre numbers by Monge–Ampère products, Math. Ann., Volume 380 (2021) no. 1-2, pp. 349-391 | DOI | MR | Zbl
[3] Nonproper intersection products and generalized cycles, Eur. J. Math., Volume 7 (2021) no. 4, pp. 1337-1381 | DOI | MR | Zbl
[4] A Dolbeault–Grothendieck lemma on complex spaces via Koppelman formulas, Invent. Math., Volume 190 (2012) no. 2, pp. 261-297 | DOI | MR | Zbl
[5] A note on smooth forms on analytic spaces, Math. Scand., Volume 127 (2021) no. 3, pp. 521-526 | DOI | MR | Zbl
[6] On proper intersections on a singular analytic space (2021) (https://arxiv.org/abs/2112.11247)
[7] Decomposition of residue currents, J. Reine Angew. Math., Volume 638 (2010), pp. 103-118 | DOI | MR | Zbl
[8] Direct images of semi-meromorphic currents, Ann. Inst. Fourier, Volume 68 (2018) no. 2, pp. 875-900 | DOI | Numdam | MR | Zbl
[9] New singularity invariants: the sheaf , J. Singul., Volume 23 (2021), pp. 19-32 | DOI | MR | Zbl
[10] Complex analytic cycles. I—basic results on complex geometry and foundations for the study of cycles, Grundlehren der Mathematischen Wissenschaften, 356, Springer, 2019, xi+533 pages (Translated from the 2014 French original [3307241] by Alan Huckleberry) | DOI | MR | Zbl
[11] Pull-back of currents by holomorphic maps, Manuscr. Math., Volume 123 (2007) no. 3, pp. 357-371 | DOI | MR | Zbl
[12] Super-potentials of positive closed currents, intersection theory and dynamics, Acta Math., Volume 203 (2009) no. 1, pp. 1-82 | DOI | MR | Zbl
[13] Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms, J. Algebr. Geom., Volume 19 (2010) no. 3, pp. 473-529 | DOI | MR | Zbl
[14] Density of positive closed currents, a theory of non-generic intersections, J. Algebr. Geom., Volume 27 (2018) no. 3, pp. 497-551 | DOI | MR | Zbl
[15] Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 2, Springer, 1998, xiv+470 pages | DOI | MR | Zbl
[16] Arithmetic intersection theory, Publ. Math., Inst. Hautes Étud. Sci. (1990) no. 72, pp. 93-174 | DOI | Numdam | MR | Zbl
[17] Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, 1994, xiv+813 pages | DOI | MR | Zbl
[18] Residues and principal values on complex spaces, Math. Ann., Volume 194 (1971), pp. 259-294 | DOI | MR | Zbl
[19] Density and intersection of -currents, J. Funct. Anal., Volume 277 (2019) no. 2, pp. 392-417 | DOI | MR | Zbl
[20] Various approaches to products of residue currents, J. Funct. Anal., Volume 264 (2013) no. 1, pp. 118-138 | DOI | MR | Zbl
[21] Image inverse d’un courant positif fermé par une application analytique surjective, C. R. Acad. Sci. Paris Sér. I Math., Volume 322 (1996) no. 12, pp. 1141-1144 | MR | Zbl
[22] Computations of Bott–Chern classes on , Duke Math. J., Volume 124 (2004) no. 2, pp. 389-420 | DOI | MR | Zbl
[23] Pull-back of currents by meromorphic maps, Bull. Soc. Math. Fr., Volume 141 (2013) no. 4, pp. 517-555 | DOI | Numdam | MR | Zbl
Cited by Sources: