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A PULLBACK OPERATION ON A CLASS OF
CURRENTS

by Håkan SAMUELSSON KALM

Abstract. — For any holomorphic mapping f : X → Y between a complex
manifold X and a complex Hermitian manifold Y we extend the pullback f∗ from
smooth forms to a class of currents. We provide a basic calculus for this pullback
and show under quite mild assumptions that it is cohomologically sound. The class
of currents we consider contains in particular the Lelong current of any analytic cy-
cle. Our pullback depends in general on the Hermitian structure of Y but coincides
with the usual pullback of currents in case f is a submersion. The construction is
based on the Gysin mapping in algebraic geometry.

Résumé. — Pour toute application holomorphe f : X → Y entre une variété
complexe X et une variété hermitienne complexe Y nous étendons le tiré en ar-
rière f∗ des formes lisses à une classe de courants. Nous fournissons un calcul de
base pour ce tiré en arrière et montrons sous des hypothéses assez faibles qu’il est
cohomologiquement correct. La classe de courants que nous considérons contient
en particulier le courant de Lelong de tout cycle analytique. Notre tiré en arrière
dépend en général de la structure hermitienne de Y mais coïncide avec le tiré en
arrière habituel des courants a cas où f est une submersion. La construction est
basée sur le morphisme de Gysin dans le géométrie algébrique.

1. Introduction

Calculus of currents is central in complex geometry. One example is the
celebrated Monge–Ampère product. Closely related to current products is
pullback of currents. The purpose of this paper is to introduce a pullback
operation on a class of currents and establish basic properties.

We say that a current µ on a complex manifold Y is a PS-current (a
pseudosmooth current), µ ∈ PS(Y ), if it locally is a finite sum of direct
images g∗α where α is a smooth compactly supported form and g is a
holomorphic mapping. For instance, Lelong currents of analytic cycles are
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2 Håkan SAMUELSSON KALM

PS-currents since if i : V → Y is a subvariety, then [V ] = i∗1, where [V ]
is the Lelong current of integration over Vreg, and by a partition of unity
on V it follows that [V ] is a PS-current. The class of PS-currents is closed
under exterior products with smooth forms and under d, ∂, and ∂.

Theorem 1.1. — Let X be a complex manifold and let Y be a complex
Hermitian manifold. For any holomorphic mapping f : X → Y there is a
linear mapping f∗ : PS(Y ) → PS(X) with the following properties: If φ

is a smooth form on Y , then f∗φ is the usual pullback. If additionally
µ ∈ PS(Y ), then

f∗(φ ∧ µ) = f∗φ ∧ f∗µ,(1.1)

f∗dµ = df∗µ, f∗∂µ = ∂f∗µ, f∗∂µ = ∂f∗µ.(1.2)

Let U ⊂ X be an open set. Then (f∗µ)|U = f |∗U µ. Assume that f(U)
is a complex manifold and that the mapping f̃ : U → f(U) induced by f

is a submersion. Let ι : f(U) → Y be the inclusion so that f |U = ι ◦ f̃ .
Then f |∗U µ = f̃∗ι∗µ, where f̃∗ is the usual pullback of currents under a
submersion.

Notice in view of (1.1) that supp f∗µ ⊂ f−1(supp µ). Notice also that if
f is a submersion, then by the last part of Theorem 1.1, our f∗ coincides
with the usual pullback of currents under a submersion.

For our second main result we will assume that Y has an additional
property. We say that a complex manifold Y is good if there is a holomor-
phic section Φ of a holomorphic vector bundle F → Y × Y such that Φ
defines the diagonal in Y ×Y , i.e., Φ vanishes to first order precisely on the
diagonal. Many complex manifolds are good. For instance, all projective
manifold are good, and any submanifold of a good manifold is good.

Theorem 1.2. — Let Y be a good compact complex Hermitian mani-
fold, X a compact complex manifold, and f : X → Y a holomorphic map-
ping. If µ ∈ PS(Y ) is closed, then for any Hermitian metric on Y ,

(1.3) [f∗µ]dR = f∗[µ]dR,

where [·]dR means de Rham cohomology class and f∗ in the right-hand
side is the usual pullback of cohomology classes. In particular, [f∗µ]dR is
independent of the Hermitian structure on Y .

The assumption that Y is good is for proof-technical reasons and we
believe that it is not essential for the conclusion of Theorem 1.2 to hold.

Theorem 1.2 implies that our pullback on closed PS-currents is functo-
rial on cohomology level. By this we mean that if f in Theorem 1.2 can be
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A PULLBACK OPERATION ON A CLASS OF CURRENTS 3

factorized as f = f2 ◦ f1, where f1 : X → X ′ and f2 : X ′ → Y are holo-
morphic mappings and X ′ is a good compact complex Hermitian manifold,
then

[f∗µ]dR = [f∗
1 f∗

2 µ]dR.

This follows indeed by Theorem 1.2 since f∗[µ]dR = f∗
1 f∗

2 [µ]dR. However,
in general f∗

1 f∗
2 µ depends on a choice of Hermitian structure on X ′ and

therefore one cannot expect f∗µ = f∗
1 f∗

2 µ to hold in general. Example 7.1
below shows that in general f∗µ ̸= f∗

1 f∗
2 µ.

A standard approach to pullback of currents is the following. Let X, Y ,
and f be as in Theorem 1.1, let π1 : X × Y → X and π2 : X × Y → Y be
the standard projections, and let i : X → X × Y be the graph embedding
defined by i(x) = (x, f(x)). If µ is a current in Y , then π∗

2µ is well-defined
since π2 is a projection; in fact, π∗

2µ = 1 ⊗ µ. The main step is to give a
reasonable meaning to the current product

(1.4) [i(X)] ∧ π∗
2µ,

where [i(X)] is the current of integration over i(X). Then the pullback of
µ under f is defined as

(1.5) (π1)∗([i(X)] ∧ π∗
2µ).

If µ is a smooth form, then (1.4) is canonically defined and (1.5) is the
usual pullback.

We follow this approach and the novelty is our definition of (1.4). The
definition is modeled on the Gysin mapping introduced in [2]. If π∗

2µ is a
(generalized) cycle and i(X) can be defined by a global holomorphic section
of some vector bundle over X × Y , then (1.4) indeed is the image of π∗

2µ

under the Gysin mapping in [2] associated to the embedding i.
In case Y is good (1.4) can be defined as follows. Let Φ be a global holo-

morphic section of F → Y ×Y defining the diagonal. Then Ψ := (f×idY )∗Φ
is a holomorphic section of E := (f × idY )∗Φ over X × Y defining i(X).
Let NX → i(X) be the normal bundle of i(X) in X × Y . It is well-known
that there is a canonical isomorphism NX ≃ π∗

2TY |i(X). This isomorphism
induces a Hermitian metric on NX since TY is equipped with a Hermitian
metric; by Y being Hermitian, or having a Hermitian structure, we mean
that TY is equipped with a Hermitian metric. Moreover, Ψ induces an em-
bedding NX ↪→ E|i(X) (see, e.g., [2, Lemma 7.3] or Section 2.1 below) and
we equip E with a Hermitian metric so that this embedding is Hermitian,
i.e., is an embedding of Hermitian vector bundles. It then follows from [2,
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4 Håkan SAMUELSSON KALM

Proposition 1.5], see Example 2.8 and (2.11) below, that we have

(1.6) [i(X)] = ĉ(NX) ∧ MΨ,

where ĉ(NX) is the full Chern form of NX and MΨ is a certain current
introduced by Andersson in [1]. The current MΨ is the sum of currents
MΨ

k that can be defined as(1)

MΨ
k = lim

ϵ→0
∂χ(|Ψ|2/ϵ) ∧ ∂ log |Ψ|2

2πi
∧ (ddc log |Ψ|2)k−1

if χ is a smooth regularization of the characteristic function of [1, ∞) ⊂ R.
These currents are in fact the restriction to i(X) of Monge–Ampère prod-
ucts (ddc log |Ψ|2)k, where (ddc log |Ψ|2)k are the Monge–Ampère products
of Bedford–Taylor and Demailly if k ⩽ codim i(X) = dim Y , and were
introduced in [1] if k > codim i(X).

A basic observation now is that if µ ∈ PS(Y ), then one can give a natural
meaning to the products MΨ

k ∧ π∗
2µ. Indeed, if χ is as above, then it turns

out that the limits

(1.7) MΨ
k ∧ π∗

2µ := lim
ϵ→0

∂χ(|Ψ|2/ϵ) ∧ ∂ log |Ψ|2

2πi
∧ (ddc log |Ψ|2)k−1 ∧ π∗

2µ,

k = 1, 2, . . .

exist, are independent of the choice of χ, and are in PS(X × Y ). Clearly,
MΨ

k ∧ π∗
2µ have support in i(X). The limit

(1.8) MΨ
0 ∧ π∗

2µ := lim
ϵ→0

(1 − χ(|Ψ|2/ϵ))π∗
2µ

also turns out to exist and to have the properties just mentioned for the
limit (1.7). We then define (1.4) to be the component of ĉ(NX) ∧ MΨ ∧
π∗

2µ of the “expected bidegree” (dim Y, dim Y ) + bidegree(µ). In general,
ĉ(NX) ∧ MΨ ∧ π∗

2µ has components of various different bidegrees, but if µ

is a smooth form, then in view of (1.6), ĉ(NX) ∧ MΨ ∧ π∗
2µ is the canonical

product [i(X)] ∧ π∗
2µ, which has bidegree (dim Y, dim Y ) + bidegree(µ). We

can now define f∗µ by (1.5). Since we are taking the component of the
expected bidegree in the definition of (1.4), it follows that f∗µ has the
same bidegree as µ. After a simplification (using (5.6) below) we get the
formula

(1.9) f∗µ =
n∑

k=0
f∗ĉn−k(TY ) ∧ (π1)∗(MΨ

k ∧ π∗
2µ).

(1) In this paper dc = (∂ − ∂)/4πi so that if z is the complex coordinate in C then
ddc log |z|2 = [0].

ANNALES DE L’INSTITUT FOURIER



A PULLBACK OPERATION ON A CLASS OF CURRENTS 5

As an illustration, let f : Bl0 C2 → C2 be the blowup of the origin in C2

and let µ be the Dirac measure at 0 ∈ C2. With the standard Hermitian
structure on C2 we have f∗µ = ω ∧ [D], where D ≃ P1 is the exceptional
divisor and ω is the standard Fubini–Study metric form on that P1, see
Example 5.3 below.

In this example so-called dimensional excess occurs; π∗
2µ and the graph

of f do not intersect properly. In such situations it is reasonable that f∗µ

has to depend on some additional structure, e.g., a Hermitian metric as in
our case. This can be compared to the intersection theory in [15] where the
intersection of two cycles, which do not intersect properly, is determined
only up to rational equivalence.

As already mentioned, Lelong currents of analytic cycles are PS-currents
but PS-currents also appear naturally in the study of Monge–Ampère prod-
ucts associated to holomorphic sections of Hermitian vector bundles. For
instance, in that setting the so-called non-pluripolar part is a PS-current.
Moreover, the pullback of a smooth form under a meromorphic mapping is
usually not smooth but only a PS-current. Therefore our class of currents
may have relevance in the study of the dynamics of such mappings. We
believe that the complete generality of the mapping f : X → Y and the
properties of our f∗ described in Theorems 1.1 and 1.2 can complement
and provide a new viewpoint on existing works on pullback of currents. Let
us mention a few such works.

The intersection theory in [15] contains in particular a quite general
theory of pullback of cycles such that if Z is a cycle in Y then f∗(Z) is
a rational equivalence class in X. This is extended to pullback of Green
currents in the context of arithmetic intersection theory by Gillet–Soulé
in [16]. In complex geometry mainly pullback of positive closed currents has
been considered. A positive closed (1, 1)-current locally has a ddc-potential,
which is a plurisubharmonic function. By using (quasi-)plurisubharmonic
ddc-potentials one can define the pullback of such currents under surjec-
tive mappings, see Méo [21]. Dinh and Sibony have considered pullback
of positive closed (p, p)-currents in several papers. In [11] is defined an es-
sentially canonical pullback, with good continuity and cohomological prop-
erties, of such currents under holomorphic mappings with constant fiber
dimension, cf. Example 5.7 below. In [12] and [13] a general theory of
super-potentials is developed on compact Kähler manifolds generalizing
the case of (1, 1)-currents. Building on some works by Dinh and Sibony,
Truong defines a pullback under dominant meromorphic mappings [23].
Rather recently, in [14], on Kähler manifolds was introduced the notions
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of density currents and tangent currents to a positive closed current along
a submanifold. We believe that the tangent currents to π∗

2µ, where as be-
fore π2 : X × Y → Y is the natural projection, along the graph of f is
closely connected to our approach; cf. [19] where Kaufmann and Vu com-
pare density currents to Monge–Ampère-type products. We also mention
the recent paper [9] by Barlet; on any reduced pure-dimensional analytic
space is introduced a sheaf of ∂-closed (p, 0)-currents, closed under wedge
products and the de Rham differential, so that the pullback under a holo-
morphic mapping, whose image is not contained in the singular locus, is
well-defined and functorial.

The plan of the paper is as follows. Preliminaries and some basic facts
about PS-currents are collected in Section 2. Even though we are primarily
interested in currents on complex manifolds, it is convenient and natural
in our context to recall some basic facts about differential forms and cur-
rents on (reduced) analytic spaces. In Section 3 we consider the operator
µ 7→ MΨ ∧ µ on PS-currents. This operator is used in Section 4 to adapt
the Gysin mapping in [2] to our setting. Using this Gysin mapping the
pullback operation is introduced in Section 5 and Theorem 1.1 is proved.
In Section 5.2 we give an alternative definition of our pullback that can be
generalized to give a definition of a pullback under meromorphic mappings
and meromorphic correspondences. Theorem 1.2 is proved in Section 6 and
functoriality is discussed in Section 7.

Acknowledgment

I would like to thank Mats Andersson and Nessim Sibony for valuable
comments. I would also like to thank the anonymous referee for careful
reading and important comments and suggestions.

2. Preliminaries and PS-currents

Let Z be a (reduced) analytic space of pure dimension. Locally Z can be
embedded as an analytic subset of an open set Ω of some CN . A smooth
differential form φ in Zreg is smooth in Z, φ ∈ E(Z), if there is a local
embedding ι : Z → Ω and a smooth form φ̃ in Ω such that φ = ι∗φ̃ on Zreg.
It is well-known that this notion of smooth forms in Z is independent of
the choice of local embedding. It follows that d, ∂, and ∂ are well-defined
on E(Z).

ANNALES DE L’INSTITUT FOURIER



A PULLBACK OPERATION ON A CLASS OF CURRENTS 7

The space of currents, C(Z), in Z is the dual of the space of test forms,
i.e., compactly supported smooth forms in Z. More concretely, if ι : Z → Ω
is a local embedding, then the currents in Z can be identified with the
currents in Ω vanishing on test forms ξ with i∗ξ = 0 in Zreg. By duality, d,
∂, and ∂ are well-defined on C(Z). As usual we also have E(Z) ⊂ C(Z) and
that C(Z) is a module over E(Z).

Let V be an analytic space and g : V → Z a holomorphic mapping.
By [10, Corollary 3.2.21] there is a natural pullback mapping
g∗ : E(Z) → E(V ). If g is proper it follows that there is a pushforward
mapping g∗ : C(V ) → C(Z) defined by ⟨g∗µ, ξ⟩ = ⟨µ, g∗ξ⟩. If µ ∈ C(V ) and
φ ∈ E(Z), then we have the following projection formula

(2.1) φ ∧ g∗µ = g∗(g∗φ ∧ µ).

If µ ∈ C(V ) has compact support, then g∗µ is defined (in the same way)
also if g is not proper, and (2.1) holds.

If π : V → Z is a submersion, so that π∗ of test forms in V are test
forms in Z, and µ ∈ C(Z), then π∗µ is defined by ⟨π∗µ, ξ⟩ := ⟨µ, π∗ξ⟩. In
particular, π∗µ is defined if π : W × Z → Z is the standard projection. In
this case we have

(2.2) π∗µ = 1 ⊗ µ.

Definition 2.1. — A current µ in Z is in PS(Z) if in a neighborhood
of each point, µ is a finite sum of currents g∗α, where g : V → Z is a
holomorphic mapping from a connected complex manifold V and α is a
smooth form with compact support in V .

It is clear from the definition that PS-currents have order 0, and by (2.1)
it is clear that PS(Z) is an E(Z)-module. Since α is smooth if α is smooth,
and g∗α = g∗α it follows that

(2.3) PS(Z ) = PS(Z).

Moreover, it is clear that if Z̃ is a pure dimensional analytic space and
h : Z̃ → Z is a proper holomorphic mapping, then

(2.4) h∗ : PS(Z̃) → PS(Z).

One can let V in Definition 2.1 be an analytic space without changing
PS(Z). In fact, if V is an analytic space and α is a smooth form in V ,
then one can first assume that V is irreducible by restricting α to each
irreducible component. By Hironaka’s theorem then there is a modification
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8 Håkan SAMUELSSON KALM

π : Ṽ → V such that Ṽ is a connected manifold. Since π is a modification,

(2.5) α = π∗π∗α

as currents, and so g∗α = g∗π∗π∗α. Hence, one can replace V by Ṽ and α

by g∗α. By this observation we get

Example 2.2. — Let V ⊂ Z be an analytic subset and i : V → Z the
inclusion. By Lelong’s theorem there is a closed current [V ] in Z defined as
integration over Vreg. The function 1 on V is smooth and i∗1 = [V ]. Thus,
by a smooth partition of unity on V , we see that [V ] ∈ PS(Z).

It follows that if ν =
∑

j ajVj is an analytic cycle in Z, then the Lelong
current [ν] =

∑
j aj [Vj ] is in PS(Z). Notice also that there is a µ ∈ PS(|ν|)

such that [ν] = j∗µ, where j : |ν| → Z is the inclusion of the support of ν.
Generalized cycles, as introduced in [2], are in PS(Z) as well.

We are primarily interested in PS-currents on manifolds. We will see that
on a manifold, PS-currents are pseudomeromorphic, so we recall the defi-
nition and some properties that we will use. Pseudomeromorphic currents
were introduced in [7] and further developed in [4].

In C we have the principal value currents 1/zℓ and the associated residue
currents ∂(1/zℓ). An elementary pseudomeromorphic current is a current
in an open set U ⊂ CN of the form

α ∧ 1
zℓ1

1
· · · 1

zℓr
r

∂
1

z
ℓr+1
r+1

∧ · · · ∧ ∂
1

zℓs
s

,

where α is a smooth form with compact support in U , (z1, . . . , zN ) are
coordinates in U , and the current products are tensor products. A germ of
a current τ at a point in Z is pseudomeromorphic if it is a finite sum of
currents of the form

π1
∗π2

∗ · · · πk
∗ν,

where each πj : Vj → Vj−1 is either a modification, a simple projection
Vj × W → Vj , or the inclusion of an open subset, and ν is an elementary
pseudomeromorphic current in Vk ⊂ CN . The set of such germs turns out
to be a sheaf, the sheaf PMZ of pseudomeromorphic currents in Z. We
refer to [8] for properties of pseudomeromorphic currents.

The sheaf PMZ is closed under ∂, ∂, and under multiplication by smooth
forms. Moreover, we have the

Dimension principle. — If τ ∈ PM(Z) has bidegree (∗, q) and support
in an analytic subset with codimension > q, then τ = 0.

ANNALES DE L’INSTITUT FOURIER
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Example 2.3. — Let σ be a holomorphic section of a line bundle L and
let α be a smooth form with values in L. Then the semi-meromorphic form
α/σ has a canonical extension across {σ = 0} as a pseudomeromorphic
current; it can be obtained for instance as a principal value.

If τ ∈ PM(Z) and V ⊂ Z is a subvariety, then the restriction of τ to the
open set Z \ V has an extension to a pseudomeromorphic current 1Z\V τ

in Z such that

(2.6) 1Z\V τ = lim
ϵ→0

χ(|h|2v/ϵ)τ

if χ is a smooth approximation of the characteristic function of [1, ∞) ⊂ R,
h is a holomorphic tuple with {h = 0} = V , and v is a smooth positive
function. It follows that

(2.7) 1V τ := τ − 1Z\V τ

is pseudomeromorphic with support in V . If α is a smooth form, then
1V (α∧τ) = α∧1V τ . If g : Z̃ → Z proper, ν ∈ PM(Z̃), and g∗ν ∈ PM(Z),
then

(2.8) 1V g∗ν = g∗(1g−1V ν).

If ν has compact support, then the same holds for any holomorphic map-
ping g.

A current a on Z is almost semi-meromorphic, a ∈ ASM(Z), if a =
π∗(α/σ), where π : Z̃ → Z is a modification, σ is a holomorphic section of
a line bundle L → Z̃, and α is a smooth form with values in L; see, e.g., [8,
Section 4]. We have that ASM(Z) ⊂ PM(Z). If a ∈ ASM(Z), then the
smallest Zariski closed set outside which a is smooth is called the Zariski
singular support of a.

Lemma 2.4 ([8, Theorem 4.8]). — If a ∈ ASM(Z) has Zariski singular
support V and τ ∈ PM(Z), then there is a unique T ∈ PM(Z) such that
T = a ∧ τ in Z \ V and 1V T = 0.

We will denote the current T by a ∧ τ . In view of (2.6) and (2.7), since
1V (a ∧ τ) = 0 we have

(2.9) a ∧ τ = lim
ϵ→0

χ(|h|2v/ϵ)a ∧ τ

if χ, h, and v are as above.

Lemma 2.5 ([8, Theorem 2.25]). — If Z is a complex manifold, then a
germ of a current µ at a point in Z is pseudomeromorphic if and only if it is
a finite sum of currents of the form h∗τ , where h : U → Z is a holomorphic
mapping and τ is elementary.

TOME 0 (0), FASCICULE 0



10 Håkan SAMUELSSON KALM

In view of this lemma and Definition 2.1 it is clear that if Z is a man-
ifold, then PS(Z) ⊂ PM(Z). On a manifold thus PS-currents have the
properties of pseudomeromorphic currents. In particular, restrictions as
in (2.6) and (2.7) are defined on PS-currents. Let us check that such re-
strictions preserve PS(Z). It suffices to see that if V ⊂ Z is a subvariety and
µ ∈ PS(Z), then 1V µ ∈ PS(Z). To see this we can assume that µ = g∗α,
where g and α are as in Definition 2.1. By (2.8) thus 1V µ = g∗(1g−1V α).
Since α is smooth we have 1g−1V α = 0 if g−1V is a proper subvariety, and
1g−1V α = α otherwise. Hence, if µ = g∗α, then either 1V µ is 0 or µ, both
of which are in PS(Z).

2.1. Segre forms, Chern forms, and normal bundles

We first give a brief presentation of Segre forms and Chern forms based
on the presentation in [2, Section 2].

Recall that if L → Z is a Hermitian line bundle, then there is the as-
sociated first Chern form ĉ1(L), which is a smooth closed (1, 1)-form. The
first Chern class, c1(L), of L is the de Rham cohomology class of ĉ1(L) and
is independent of the Hermitian metric on L. Let E → Z be a Hermitian
vector bundle. Over the projectivization π : P(E) → Z of E (the projective
bundle of lines through the zero section of E) we have the tautological line
bundle L = OE(−1) ⊂ π∗E and we equip it with the induced Hermitian
metric. The total Segre form, ŝ(E) = 1 + ŝ1(E) + ŝ2(E) + · · · , is defined by

ŝ(E) = π∗(1/(1 + ĉ1(L))) = π∗(1/(1 − ĉ1(L∗))).

If rank E = n it follows that

(2.10) ŝℓ(E) = π∗ĉ1(L∗)ℓ+n−1.

If n = 1, then P(E) = Z so that π = idX , and hence (1+ ĉ1(L))∧ ŝ(E) = 1.
In the general case we define the total Chern form, ĉ(E) = 1 + ĉ1(E) +
ĉ2(E) + · · · , of E by

(2.11) ĉ(E) ∧ ŝ(E) = 1.

It is proved in [22] that this definition coincides with the differential geomet-
ric definition. It is well-known that ĉℓ(E) = 0 if ℓ > n, and that if h : Z̃ → Z

is a holomorphic mapping, then h∗ĉ(E) = ĉ(h∗E) and h∗ŝ(E) = ŝ(h∗E).
The Chern classes cj(E) are the de Rham cohomology classes of ĉj(E) and
they are independent of the Hermitian metric on E.

We will primarily consider Chern and Segre forms of normal bundles of
submanifolds, and some times also of locally complete intersections, so we

ANNALES DE L’INSTITUT FOURIER



A PULLBACK OPERATION ON A CLASS OF CURRENTS 11

recall a few things that we need about normal bundles. Let J ⊂ OZ be a
locally complete intersection ideal sheaf of codimension n and zero set X.
We will use the following ad hoc definition of the normal bundle NJ → X,
cf. [2, Section 7]. A section ϕ of NJ is a choice of holomorphic n-tuple ϕ(s)
locally in X for each local minimal set s = (s1, . . . , sn) of generators for J
such that Aϕ(s) = ϕ(As) on X for any locally defined holomorphic matrix
A that is invertible in a neighborhood of X. Thus, each local minimal set
of generators for J gives a local trivialization of NJ .

Assume now that J is generated by a holomorphic section Ψ of a vector
bundle E → Z. Then we have an induced embedding

(2.12) NJ ↪→ E|X

defined as follows, see, e.g., [2, Section 7]. Let s be a local minimal set of
generators for J . Since Ψ generates J there is a local holomorphic section
B of Hom(Cn, E) such that Ψ = Bs and B|X is unique and pointwise
injective; here Cn is the trivial vector bundle of rank n over Z. The em-
bedding (2.12) then is given by

(2.13) ϕ 7→ B|Xϕ(s).

If J is principal, then J defines a divisor, D, and Ψ = Ψ0Ψ′, where
Ψ0 is a holomorphic section of the line bundle L corresponding to D such
that div Ψ0 = D and Ψ′ is a holomorphic section of L∗ ⊗ E. In this case
NJ = L||D| and the embedding (2.12) extends to an embedding

(2.14) L ↪→ E, σ 7→ σΨ′.

For the induced metric | · |L on L thus |Ψ0|L = |Ψ| and so, by the Poincaré–
Lelong formula,

(2.15) ddc log |Ψ|2 = [D] − ĉ1(L).

If Z is a complex manifold and X ⊂ Z is a submanifold we let JX ⊂ OZ

be the sheaf of holomorphic functions vanishing on X and we write NX

instead of NJX
.

If h : Z̃ → Z is a holomorphic mapping and J ⊂ OZ , then we let h∗J ⊂
O

Z̃
be the sheaf generated by h∗ of the generators of J . The following

functorial property should be well-known but for the reader’s convenience
we supply a proof.

Lemma 2.6. — Let Z and Z̃ be complex manifolds and X ⊂ Z a com-
plex submanifold. Assume that h : Z̃ → Z is a holomorphic mapping such
that J̃ := h∗JX is a locally complete intersection with zero set X̃ ⊂ Z̃.
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(a) There is a natural embedding NJ̃ ↪→ h|∗
X̃

NX ; it is an equality if
codim X̃ = codim X.

(b) Assume that JX is generated by a holomorphic section Ψ of a vector
bundle E → Z, so that we have an induced embedding NX ↪→ E|X .
Then the composition of the embeddings

(2.16) NJ̃ ↪→ h|∗
X̃

NX ↪→ h|∗
X̃

E|X ,

where the first one is the embedding in (a) and the second one is the
pullback of NX ↪→ E|X , is the embedding NJ̃ ↪→ (h∗E)|

X̃
induced

by h∗Ψ.
(c) Assume that JX is generated by a holomorphic section Ψ of E as

in (b). If E, NX , and NJ̃ are equipped with Hermitian metrics
such that the embeddings NX ↪→ E|X and NJ̃ ↪→ (h∗E)|

X̃
are

Hermitian, then the embeddings in (2.16) are Hermitian.

Proof. — Let s̃ = (s̃1, . . . , s̃κ) be a local minimal set of generators of J̃
and s = (s1, . . . , sn) a local minimal set of generators of JX .

(a). — Since by assumption h∗s generates J̃ it follows that κ ⩽ n

and that there is a local holomorphic matrix A such that h∗s = As̃ and
rank A|

X̃
= κ. We define the embedding NJ̃ ↪→ h|∗

X̃
NX by the local em-

beddings

(2.17) ϕ 7→ A|
X̃

ϕ(s̃),

where ϕ is a local section of NJ̃ . The right-hand side is independent of
the local trivialization of NJ̃ given by s̃ and transforms as a section of
h|∗

X̃
NX . Thus, the local embeddings (2.17) indeed give a global embedding

NJ̃ ↪→ h|∗
X̃

NX .
Since n = codim X and κ = codim X̃ it follows that if codim X =

codim X̃, then (2.17) is an isomorphism.
(b). — We have that s gives a local trivialization of NX and hence of

h|∗
X̃

NX . Moreover, Ψ = Bs for a local holomorphic section B of Hom(Cn, E).
In view of (2.13), the second embedding in (2.16) is defined by

(2.18) ξ(s) 7→ h∗B|
X̃

ξ(s),

where ξ(s) is a local section of h|∗
X̃

NX in the trivialization given by s.
We also have that h∗Ψ = Cs̃ for a local holomorphic section C of

Hom(Cκ, h∗E) such that C|
X̃

is unique. The embedding NJ̃ ↪→ (h∗E)|
X̃

is given by

(2.19) ϕ 7→ C|
X̃

ϕ(s̃).
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Since Ψ = Bs and h∗s = As̃ we have h∗Ψ = h∗Bh∗s = h∗BAs̃. By
uniqueness thus

(2.20) C|
X̃

= h∗B|
X̃

A|
X̃

and it follows that (2.19) is the composition of (2.17) and (2.18).
(c). — If the embedding NX ↪→ E|X is Hermitian, then it is clear that

the second embedding in (2.16), which is given by (2.18), is Hermitian. If
the embedding NJ̃ ↪→ (h∗E)|

X̃
is Hermitian it thus follows from (2.19),

(2.20), and (2.18) that

|ϕ|2N
J̃

=
∣∣C|

X̃
ϕ(s̃)

∣∣2
h∗E

=
∣∣h∗B|

X̃
A|

X̃
ϕ(s̃)

∣∣2
h∗E

=
∣∣A|

X̃
ϕ(s̃)

∣∣2
h∗NX

.

By (2.17) thus the first embedding in (2.16) is Hermitian. □

2.2. The M-operator on pseudomeromorphic currents

Let Ψ be a holomorphic section of a Hermitian vector bundle E → Z

with zero set X. We recall the following lemma from [6, Section 2].

Lemma 2.7. — There are unique almost semi-meromorphic currents
mΨ

k , k = 1, 2, . . ., in Z that coincide with (2πi)−1∂ log |Ψ|2∧(ddc log |Ψ|2)k−1

in Z \ X and such that 1XmΨ
k = 0.

In view of Lemma 2.4, for τ ∈ PM(Z) we have mΨ
k ∧ τ ∈ PM(Z) and

we let

(2.21) MΨ
0 ∧ τ := 1Xτ, MΨ

k ∧ τ := 1X∂(mΨ
k ∧ τ), k = 1, 2, . . . .

Since restriction and ∂ preserve PM we have MΨ
k ∧ τ ∈ PM(Z). Let

χϵ = χ(|Ψ|2/ϵ), where χ is as in (2.6). In view of (2.6), (2.7), and (2.9),

1X∂(mΨ
k ∧ τ) = lim

ϵ→0
(1 − χϵ)∂(mΨ

k ∧ τ)

= lim
ϵ→0

∂((1 − χϵ)mΨ
k ∧ τ) + ∂χϵ ∧ (mΨ

k ∧ τ)

= ∂(1XmΨ
k ∧ τ) + lim

ϵ→0
∂χϵ ∧ (mΨ

k ∧ τ).

By Lemmas 2.4 and 2.7 we have 1XmΨ
k ∧ τ = 0 and so we get, cf. (1.7)

and (1.8),

(2.22) MΨ
0 ∧τ = lim

ϵ→0
(1−χ(|Ψ|2/ϵ))τ, MΨ

k ∧τ = lim
ϵ→0

∂χ(|Ψ|2/ϵ)∧mΨ
k ∧τ.

Let MΨ ∧ τ = MΨ
0 ∧ τ + MΨ

1 ∧ τ + · · · . If φ is a smooth form in Z it
follows by (2.22) that

(2.23) MΨ ∧ (φ ∧ τ) = φ ∧ MΨ ∧ τ.
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If g : Z̃ → Z is a holomorphic mapping and µ ∈ PM(Z̃) are such that g∗µ

is defined and in PM(Z), then by (2.22) and (2.1),

(2.24) MΨ ∧ g∗µ = g∗(Mg∗Ψ ∧ µ).

We will write MΨ instead of MΨ ∧ 1. Notice that if Ψ is generically
non-vanishing, then MΨ

0 = 0.

Example 2.8. — Assume that Ψ defines a locally complete intersection
ideal sheaf J . Then by (2.12) there is an embedding NJ ↪→ E|X and we
equip NJ with the induced metric. By [2, Proposition 1.5],

MΨ = ŝ(NJ ) ∧ [ZJ ],

where ZJ is the fundamental cycle of the locally complete intersection J ;
see, e.g., [15, Chapter 1.5]. We note two special cases:

(1) If J is the ideal sheaf of a submanifold X, then ZJ = X and so
MΨ = ŝ(NJ ) ∧ [X].

(2) If J is principal so that it defines a divisor D, then ZJ = D. In
view of (2.10) thus MΨ

k = ĉ1(L∗)k−1 ∧ [D] if L is the line bundle
associated with D equipped with the metric induced by (2.14).

In the following, if Ψ generates the ideal sheaf of a submanifold X, then
we will usually simply say that Ψ defines X. Similarly, if Ψ generates the
principal ideal sheaf of a divisor D we say that Ψ defines D.

3. The M-operator on PS-currents

Let Z be a complex manifold. Then PS(Z) ⊂ PM(Z) by Lemma 2.5.
Hence, if µ ∈ PS(Z) and Ψ is a holomorphic section of a Hermitian vector
bundle, then MΨ ∧ µ is defined and has the properties in Section 2.2. In
this section we will see that MΨ ∧ µ has some additional properties when
µ ∈ PS(Z). Lemmas 3.1 and 3.2 below are straightforward adaptions of
parts of [2, Theorem 5.2] to PS-currents.

Lemma 3.1. — Let Ψ be a holomorphic section of a Hermitian vector
bundle E → Z. Let X = {Ψ = 0}, let i : X → Z be the inclusion, and let
codim X = n. If µ ∈ PS(Z), then there are unique ŝk−n(Ψ, µ) ∈ PS(X)
such that

MΨ
k ∧ µ = i∗ŝk−n(Ψ, µ), k = 0, 1, 2, . . . .
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Proof. — The uniqueness is clear since i∗ is injective. It therefore suffices
to show the lemma locally in Z. We can thus assume that µ = g∗α, where
α and g : V → Z are as in Definition 2.1. By Hironaka’s theorem, after
a modification we can assume that the ideal sheaf generated by g∗Ψ is
principal, cf. (2.5). Let D be the divisor defined by g∗Ψ and let L be the
associated line bundle equipped with the metric induced by the embedding
L ↪→ g∗E, cf. (2.14). Then by (2.24), (2.23), and Example 2.8,

(3.1) MΨ
k ∧ µ = MΨ

k ∧ g∗α = g∗(Mg∗Ψ
k ∧ α) = g∗(α ∧ Mg∗Ψ

k )

= g∗
(
α ∧ ĉ1(L∗)k−1 ∧ [D]

)
.

Let W = |D|, let j : W → V be the inclusion, and consider the fiber
diagram

(3.2) W

h
��

j // V

g

��
X

i // Z.

By Example 2.2 there is a µD ∈ PS(W ) such that [D] = j∗µD. Hence,
by (3.1), (2.1), and commutativity of (3.2),

(3.3) MΨ
k ∧ µ = g∗j∗

(
j∗α ∧ j∗ĉ1(L∗)k−1 ∧ µD

)
= i∗h∗

(
j∗α ∧ j∗ĉ1(L∗)k−1 ∧ µD

)
.

Since the class of PS-currents is closed under multiplication by smooth
forms and under direct images of proper holomorphic mappings it follows
that

ŝk−n(Ψ, µ) := h∗
(
j∗α ∧ j∗ĉ1(L∗)k−1 ∧ µD

)
is in PS(X). The lemma thus follows by (3.3). □

It follows from Lemma 3.1 and (2.4) that MΨ ∧µ ∈ PS(Z) if µ ∈ PS(Z).

Lemma 3.2. — Let Ψ be a holomorphic section of a Hermitian vector
bundle E → Z. If µ ∈ PS(Z), then d(MΨ ∧µ) = MΨ ∧dµ. The same holds
with d replaced by ∂ or ∂.

Proof. — This is a local statement so we can assume that µ = g∗α, where
α and g : V → Z are as in Definition 2.1. By Hironaka’s theorem, in view
of (2.5), we can also assume that g∗Ψ defines a principal ideal sheaf. By
Example 2.8 thus Mg∗Ψ is d-, ∂-, and ∂-closed. In view of (2.24) and (2.23),
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using that d and g∗ commute and that Mg∗Ψ is closed, we get

d(MΨ ∧ µ) = d(MΨ ∧ g∗α) = g∗d(Mg∗Ψ ∧ α) = g∗(Mg∗Ψ ∧ dα)

= MΨ ∧ g∗dα = MΨ ∧ dµ.

The same calculation can be done with d replaced by ∂ or ∂. □

In general, if X ⊂ Z is a complex submanifold one cannot expect there
to be a global holomorphic section Ψ of a vector bundle E → Z defining
X. However, for any complex submanifold X ⊂ Z the next result allows us
to define global PS-currents ŝj(NX , µ) in X for µ ∈ PS(Z) generalizing
ŝj(Ψ, µ) in Lemma 3.1 as soon as the normal bundle NX of X is equipped
with a Hermitian metric. This generalizes [2, Definition 5.5] to the setting
of PS-currents and when there is no global holomorphic section defining X.

Proposition 3.3. — Let Z be a complex manifold, X ⊂ Z a complex
submanifold of codimension n, and i : X → Z the inclusion. Assume that
the normal bundle NX → X of X is equipped with a Hermitian metric. If
µ ∈ PS(Z), then there are unique ŝk−n(NX , µ) ∈ PS(X) with the following
property: If there is a holomorphic section Ψ of a Hermitian vector bundle E

in an open U ⊂ Z such that Ψ defines X in U , and the induced embedding
NX ↪→ E|X is Hermitian, then in U

(3.4) i∗ŝk−n(NX , µ) = MΨ
k ∧ µ, k = 0, 1, 2 . . . .

Proof. — Locally in Z there are Ψ and E such that Ψ defines X and
NX ↪→ E|X is Hermitian. For instance, take local coordinates z such that
X = {z1 = · · · = zn = 0}, let E be the trivial rank n-bundle, let Ψ =
(z1, . . . , zn), and choose a Hermitian metric on E appropriately. Since i∗ is
injective on currents it follows that ŝk−n(NX , µ) must be unique.

To show the existence of ŝk−n(NX , µ) it thus suffices to show it locally.
Locally in Z we can assume that µ = g∗α, where α and g : V → Z are as in
Definition 2.1. We can also assume, by Hironaka’s theorem and (2.5), that
g∗JX is principal. Let D be the divisor defined by g∗JX and let L be the
associated line bundle. Recall that L||D| is the normal bundle of g∗JX . By
Lemma 2.6(a) we have an embedding

(3.5) L||D| ↪→ g∗NX

and we equip L with a Hermitian metric so that (3.5) is Hermitian. Consider
the fiber diagram (3.2) with W = |D|. By Example 2.2 there is a µD ∈
PS(|D|) such that j∗µD = [D], and we let

(3.6) ŝk−n(NX , µ) := h∗(µD ∧ j∗ĉ1(L∗)k−1 ∧ j∗α).
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Since µD ∈ PS(|D|), j∗ĉ1(L∗)k−1 ∧ j∗α is smooth, and h : |D| → X is a
proper holomorphic mapping it follows that ŝk−n(NX , µ) ∈ PS(X).

It remains to check that ŝk−n(NX , µ), as defined in (3.6), have the
claimed property. Assume therefore that Ψ is a holomorphic section of
a Hermitian vector bundle E that defines X in U and such that the in-
duced embedding NX ↪→ E|X is Hermitian. In view of (2.24), (2.23), and
Example 2.8,

(3.7) MΨ
k ∧ µ = g∗(Mg∗Ψ

k ∧ α) = g∗([D] ∧ ĉ1(L∗)k−1 ∧ α),

where ĉ1(L∗) here is with respect to the metric on L induced by the em-
bedding L ↪→ g∗E given by g∗Ψ; cf. (2.14). By Lemma 2.6, on W this
metric is the same as the one induced by (3.5). Since [D] = j∗µD, by (3.7),
commutativity of (3.2), and (3.6), thus

MΨ
k ∧ µ = g∗j∗(µD ∧ j∗ĉ1(L∗)k−1 ∧ j∗α) = i∗g∗(µD ∧ j∗ĉ1(L∗)k−1 ∧ j∗α)

= i∗ŝk−n(NX , µ).

This concludes the proof. □

Example 3.4. — In the situation of Proposition 3.3, if µ is a smooth form,
then

(3.8) ŝk−n(NX , µ) = ŝk−n(NX) ∧ i∗µ.

In particular, if X is a hypersurface with associated line bundle L, then

ŝk−1(NX , µ) = ĉ1(L|∗X)k−1 ∧ i∗µ

since then NX = L|X . The equality (3.8) follows from (3.4), (2.23), and
Example 2.8 since locally there always are Ψ and E as in Proposition 3.3.

Proposition 3.5. — Let Z be a complex manifold and Ψ a holomor-
phic section of a Hermitian vector bundle E → Z. Assume that Ψ defines
a divisor D and let L be the associated line bundle equipped with the Her-
mitian metric induced by (2.14). If µ ∈ PS(Z) is closed and of positive
degree, then for k ⩾ 1, there are currents νk in Z such that

MΨ
k ∧ µ = −ĉ1(L∗)k ∧ 1Z\|D|µ + dνk.
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Proof. — Let χϵ = χ(|Ψ|2/ϵ). By (2.22), a straightforward calculation,
and using that dµ = 0, we get

MΨ
k ∧ µ = lim

ϵ→0
∂χϵ ∧ ∂ log |Ψ|2

2πi
∧ (ddc log |Ψ|2)k−1 ∧ µ

= lim
ϵ→0

dχϵ ∧ dc log |Ψ|2 ∧ (ddc log |Ψ|2)k−1 ∧ µ

= lim
ϵ→0

−χϵ(ddc log |Ψ|2)k ∧ µ

+ d
(
χϵdc log |Ψ|2 ∧ (ddc log |Ψ|2)k−1 ∧ µ

)
.

Using (2.15) and (2.6) thus

MΨ
k ∧ µ = lim

ϵ→0
−χϵ(−ĉ1(L))k ∧ µ + d

(
χϵdc log |Ψ|2 ∧ (−ĉ1(L))k−1 ∧ µ

)
= −ĉ1(L∗)k ∧ 1Z\|D|µ + lim

ϵ→0
d
(
χϵdc log |Ψ|2 ∧ ĉ1(L∗)k−1 ∧ µ

)
.

We claim that there are current νk in Z such that

χϵdc log |Ψ|2 ∧ ĉ1(L∗)k−1 ∧ µ → νk, ϵ → 0.

Taking the claim for granted the proposition immediately follows. To show
the claim, since ĉ1(L∗) is smooth it suffices to see that limϵ→0 χϵdc log |Ψ|2∧
µ exists. By Lemma 2.5, since Z is a manifold, µ is pseudomeromorphic. It
therefore follows by Lemma 2.7, Lemma 2.4, and (2.9) that

lim
ϵ→0

χϵ∂ log |Ψ|2 ∧ µ

exists and is a pseudomeromorphic current. By (2.3) and Lemma 2.5 also
µ is pseudomeromorphic, and so

lim
ϵ→0

χϵ∂ log |Ψ|2 ∧ µ = lim
ϵ→0

χϵ∂ log |Ψ|2 ∧ µ

exists and is the conjugate of a pseudomeromorphic current. Since dc =
(∂ − ∂)/4πi it follows that limϵ→0 χϵdc log |Ψ|2 ∧ µ exists, which shows the
claim. □

4. Gysin mappings

Let i : X → Z be an embedding of a complex m-dimensional manifold X

into an m + n-dimensional complex manifold Z. Suppose that the normal
bundle NX → i(X) of the submanifold i(X) is equipped with a Hermitian
metric. Notice that rank NX = codim i(X) = n.

Associated with the embedding i : X → Z there is a Gysin mapping
Ak(Z) → Ak−n(X), where Ak is the Chow group of k-cycles modulo ratio-
nal equivalence; see, e.g., [15, Section 6]. In [2] are introduced generalized
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cycles, GZ, which are PS-currents, and a certain quotient group B of GZ,
which can be thought of as an analogue of the Chow group. If i(X) can be
defined by a global holomorphic section of some vector bundle, then there
are also Gysin mappings GZk(Z) → GZk−n(X) and Bk(Z) → Bk−n(X)
analogous to the one in [15].

Let µ ∈ PS(Z). Recall from Proposition 3.3 that there are ŝk−n(NX , µ) ∈
PS(X) since NX is equipped with a Hermitian metric. We define Gysin
mappings i! : PS(Z) → PS(X) and i!! : PS(Z) → PS(X) by

i!µ =
n∑

k=0
i∗ĉn−k(NX) ∧ ŝk−n(NX , µ),(4.1)

i!!µ = i∗ĉ(NX) ∧ ŝ(NX , µ).(4.2)

The mapping (4.1) preserves bidegree and is the basis of our pullback. It
is straightforward to check that (4.1) is the component of the “full” Gysin
mapping (4.2) of the same bidegree as µ; this makes (4.2) useful in some
calculations.

Example 4.1. — Suppose that there is a global holomorphic section Ψ
of a Hermitian vector bundle E → Z defining i(X) and that the induced
embedding NX ↪→ E|i(X) (cf. (2.12)) is Hermitian. Then in view of Propo-
sition 3.3 and (2.1),

i∗i!µ =
n∑

k=0
ĉn−k(NX) ∧ MΨ

k ∧ µ,(4.3)

i∗i!!µ = ĉ(NX) ∧ MΨ ∧ µ.(4.4)

It follows that the restriction of i! to GZ(Z) is the Gysin mapping in [2,
Equation (1.9)].

Recall from the proof of Proposition 3.3 above that locally in Z there
always are Ψ and E with Ψ defining i(X).

Example 4.2. — Let µ ∈ PS(Z) and assume that supp µ ⊂ i(X). Then

(4.5) µ = i∗ŝ−n(NX , µ) and i!µ = i∗ĉn(NX) ∧ ŝ−n(NX , µ).

These are local statements so we can assume that there are Ψ and E as in
Example 4.1. Since supp µ ⊂ i(X) it follows by (2.21) and (2.22) that

MΨ
0 ∧ µ = 1Xµ = µ, MΨ

k ∧ µ = 0, k ⩾ 1.

Thus (4.5) follows in view of (4.1) and Proposition 3.3.
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Proposition 4.3. — The Gysin mappings i! and i!! are linear mappings
PS(Z) → PS(X) and commute with d, ∂, and ∂. If φ is a smooth form in
Z, then i!φ = i!!φ = i∗φ and if µ ∈ PS(Z), then

(4.6) i!(φ ∧ µ) = i∗φ ∧ i!µ, i!!(φ ∧ µ) = i∗φ ∧ i!!µ.

Proof. — By Proposition 3.3, µ 7→ ŝk−n(NX , µ) are mappings PS(Z) →
PS(X). By (4.1) and (4.2), since PS(X) is closed under multiplication by
smooth forms, i! and i!! are mappings PS(Z) → PS(X) as well.

Locally in Z there are Ψ and E as in Example 4.1; we will use this to show
the rest of the statements of the proposition. Since µ 7→ MΨ

k ∧ µ are linear
it follows from Proposition 3.3 that µ 7→ ŝk−n(NX , µ) are linear. Thus i!

and i!! are linear. Moreover, using (4.4), that Chern forms are closed, and
Lemma 3.2 we have

i∗di!!µ = di∗i!!µ = d(ĉ(NX) ∧ MΨ ∧ µ) = ĉ(NX) ∧ MΨ ∧ dµ = i∗i!!dµ.

Since i∗ is injective it follows that di!!µ = i!!dµ. Then di!µ = i!dµ follows
by taking the component of the right bidegree. The same calculations can
be done with d replaced by ∂ and ∂.

Let φ be a smooth form in Z. Then by (2.23), Example 2.8, and (2.1)

MΨ ∧φ = φ∧MΨ ∧1 = φ∧ ŝ(NX)∧ [X] = φ∧ ŝ(NX)∧i∗1 = ŝ(NX)∧i∗i∗φ.

By (4.4) and (2.11) thus,

i∗i!!φ = ĉ(NX) ∧ MΨ ∧ φ = ĉ(NX) ∧ ŝ(NX) ∧ i∗i∗φ = i∗i∗φ.

Since i∗ is injective it follows that i!!φ = i∗φ and so, by taking the compo-
nent of the right bidegree, i!φ = i∗φ. If µ ∈ PS(Z), by (2.23) and (2.1) we
have

i∗i!!(φ ∧ µ) = ĉ(NX) ∧ MΨ ∧ (φ ∧ µ) = φ ∧ ĉ(NX) ∧ MΨ ∧ µ = φ ∧ i∗i!!µ

= i∗(i∗φ ∧ i!!µ).

It follows that i!!(φ ∧ µ) = i∗φ ∧ i!!µ and so i!(φ ∧ µ) = i∗φ ∧ i!µ as before.
This completes the proof. □

Since by this proposition i!φ = i∗φ if φ is a smooth form in Z, it follows
that i∗i!φ = [i(X)] ∧ φ. For a general µ ∈ PS(Z) we define

(4.7) [i(X)] ∧ µ := i∗i!µ.
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5. The pullback operation

Throughout this section we use the following notation and setup. Let X

be a complex m-dimensional manifold, Y a complex n-dimensional Hermit-
ian manifold, and f : X → Y a holomorphic mapping. We let Z = X × Y

and π1 : Z → X and π2 : Z → Y are the natural projections. Let also
i : X → Z, i(x) = (x, f(x)), be the graph embedding. The normal bundle
NX → i(X) of i(X) in Z is naturally isomorphic with TY via

(5.1) NX = π∗
2TY |i(X).

Since Y is Hermitian, TY has a Hermitian metric and we equip NX with
the metric induced by (5.1).

5.1. Definition and basic properties

Let µ ∈ PS(Y ). Since π2 is a projection, π∗
2µ = 1 ⊗ µ is a well-defined

current in Z; cf. (2.2). Let us check that π∗
2µ ∈ PS(Z). This is a local

statement so we can assume that µ = g∗α, where g : V → Y and α are as
in Definition 2.1. Let {ρj} be a locally finite partition of unity on X with
ρj smooth and compactly supported. Then

(5.2) π∗
2µ = 1 ⊗ µ =

∑
j

ρj ⊗ µ =
∑

j

(idX ×g)∗(ρj ⊗ α),

which shows that π∗
2µ ∈ PS(Z). We thus have the product [i(X)] ∧ π∗

2µ.
Since π1 ◦ i = idX it follows from (4.7) that

(π1)∗([i(X)] ∧ π∗
2µ) = (π1)∗i∗i!π∗

2µ = i!π∗
2µ.

We use the last expression as the definition of f∗, cf. (1.5).

Definition 5.1. — For µ ∈ PS(Y ) we let f∗µ = i!π∗
2µ, where i! is the

Gysin mapping (4.1).

We also introduce a “full” pullback mapping, f⋄, using the full Gysin
mapping (4.2) by

(5.3) f⋄µ = i!!π∗
2µ.

Since i!π∗
2µ is the component of i!!π∗

2µ of the same bidegree as π∗
2µ it follows

that f∗µ is the component of f⋄µ of the same bidegree as µ. This makes
f⋄ convenient to use in some calculations.
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Proposition 5.2. — The operation f∗ is a linear mapping PS(Y ) →
PS(X) and commutes with d, ∂, and ∂. If φ is a smooth form in Y and
µ ∈ PS(Y ), then f∗φ is the usual pullback and

(5.4) f∗(φ ∧ µ) = f∗φ ∧ f∗µ.

Proof. — In view of (2.2), π∗
2 is a linear mapping PS(Y ) → PS(Z) and

so it follows from Proposition 4.3 that f∗ is a linear mapping PS(Y ) →
PS(X). Moreover, π∗

2dµ = dπ∗
2µ and similarly for ∂ and ∂. By Proposi-

tion 4.3 thus f∗ commutes with d, ∂, and ∂.
Let φ be a smooth form in Y . Then π∗

2φ is smooth in Z and so, by
Proposition 4.3,

i!π∗
2φ = i∗π∗

2φ = (π2 ◦ i)∗φ.

Since π2 ◦ i = f thus i!π∗
2φ = f∗φ is the usual pullback. In view of (2.2)

we have π∗
2(φ ∧ µ) = π∗

2φ ∧ π∗
2µ. Hence, (5.4) follows from (4.6). □

We will now see that if Y is good, then (1.9) holds. Recall that Y is good
means that there is a holomorphic section Φ of a holomorphic vector bundle
F → Y × Y defining the diagonal ∆ ⊂ Y × Y . Then Ψ := (f × idY )∗Φ is a
holomorphic section of E := (f × idY )∗F defining i(X) in Z. We choose a
Hermitian metric on E such that the induced embedding NX ↪→ E|i(X), is
a Hermitian. Hence, when Y is good we are in the setting of Example 4.1.
Using that idX = π1 ◦ i it thus follows from (4.3) that

(5.5) f∗µ = i!π∗
2µ = (idX)∗i!π∗

2µ = (π1)∗i∗i!π∗
2µ

= (π1)∗

n∑
k=0

ĉn−k(NX) ∧ MΨ
k ∧ π∗

2µ.

Now, π2|i(X) = f ◦ π1|i(X) so we can replace π∗
2 in (5.1) by π∗

1f∗. Since the
Hermitian metric on NX is induced by (5.1) it follows by functoriality of
Chern forms that

(5.6) ĉ(NX) = π∗
1f∗ĉ(TY )|i(X).

Replacing ĉn−k(NX) in (5.5) by π∗
1f∗ĉn−k(TY ) and using (2.1) thus (1.9)

follows. In the same way one can check that

(5.7) f⋄µ = f∗ĉ(TY ) ∧ (π1)∗
(
MΨ ∧ π∗

2µ).

Example 5.3. — Let Y = C2, with TY equipped with the standard Her-
mitian metric, and let f : X → Y be the blowup of 0. Let us show that if
µ is the Dirac mass at 0 (considered as a (2, 2)-current), then

(5.8) f∗µ = ω ∧ [D], f⋄µ = ω ∧ [D] + [D],
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where D ≃ P1 is the exceptional divisor of the blowup and ω is the standard
Fubini–Study metric form on that P1.

Notice first that π∗
2µ = g∗1, where g : X → X × Y is the mapping

g(x) = (x, 0). We consider the tuple Ψ = f(x)−y as a section of the trivial
rank-2 bundle E → X × Y and equip E with the standard Hermitian
metric. Clearly, Ψ defines the graph of f in X × Y . One can check that the
metric induced on NX by the embedding NX ↪→ E|i(X) is the same as the
one induced by NX = π∗

2TY |i(X). We can thus use (5.7) to calculate f⋄µ.
Notice that ĉ(TY ) = 1 since TY has the standard metric. By (5.7) thus

(5.9) f⋄µ = (π1)∗
(
MΨ ∧ π∗

2µ).

Since π∗
2µ = g∗1, g∗Ψ = f(x), and f defines D it follows from (2.1) and

Example 2.8 that

(5.10) (π1)∗(MΨ ∧ π∗
2µ) = (π1)∗g∗(Mg∗Ψ ∧ 1) = (π1)∗g∗Mf(x)

= (π1)∗g∗
(
[D] + [D] ∧ ĉ1(L∗)

)
,

where L is the line bundle corresponding to D equipped with the metric
induced by L ↪→ g∗E. The embedding L|D ↪→ g∗E|D is the standard
embedding of O(−1) into P1 ×C2 and so ĉ1(L∗)|D = ω. Since π1 ◦ g = idX ,
the second equality in (5.8) thus follows from (5.9) and (5.10). The first
equality in (5.8) then follows by taking the right bidegree.

Remark 5.4. — Let f : X → Y be the blowup of 0 ∈ C2 = Y and µ

the Dirac mass at 0 as in Example 5.3. Then no reasonable pullback of
currents under f can be continuous. To see this, let aj be a sequence in
Y such that aj → 0. If µaj is the Dirac measure at aj , then µaj → µ as
currents. Since f is a biholomorphism outside f−1(0) we have that f∗µaj

is the Dirac mass at f−1(aj) if f∗ is a reasonable pullback. If aj and bj are
sequences going to 0 along different lines in Y , then f−1(aj) and f−1(bj)
have different limits in X. Hence, µaj → µ and µbj → µ, but f∗µaj and
f∗µbj have different limits.

Example 5.5. — Let f : X → Y be the inclusion of an open set X ⊂ Y .
Then, for any µ ∈ PS(Y ) we have f∗µ = f⋄µ = µ|X . To see this, we will
show that

(5.11) i∗f⋄µ = i∗(µ|X);

recall that i : X → Z is the graph embedding, which in this case is i(x) =
(x, x). Since i∗ is injective we get f⋄µ = µ|X from (5.11). Then f∗µ = µ|X
follows by taking the right bidegree.
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It suffices to verify (5.11) in a neighborhood of a point i(x) = (x, x) ∈ Z,
x ∈ X. To this end we can assume that X = Y . We can also assume
that there is a holomorphic section Ψ of a Hermitian vector bundle E → Z

defining i(X) such that the induced embedding NX ↪→ E|i(X) is Hermitian;
cf. Example 4.1. By (5.3) and (4.4) thus

(5.12) i∗f⋄µ = ĉ(NX) ∧ MΨ ∧ π∗
2µ.

Our considerations are local so we can assume that µ = g∗α, where
g : V → Y and α are as in Definition 2.1. Then

(5.13) π∗
2µ = (idX ×g)∗(1 ⊗ α);

cf. (5.2). Recalling that X = Y , let j : V → X × V be the mapping j(v) =
(g(v), v). Since Ψ defines i(X), which is the diagonal in X ×Y , we have that
(idX ×g)∗Ψ defines j(V ). Let NV → j(V ) be the normal bundle of j(V )
equipped with the Hermitian metric induced by the embedding NV ↪→
(idX ×g)∗E|j(V ). Since codim j(V ) = dim X = dim Y = codim i(X), it
follows from Lemma 2.6 that NV = (idX ×g)∗NX as Hermitian bundles.
By functoriality of Chern forms thus ĉ(NV ) = (idX ×g)∗ĉ(NX). Hence, in
view of (5.12), (5.13), and (2.24),

i∗f⋄µ = (idX ×g)∗
(
(idX ×g)∗ĉ(NX) ∧ M (idX ×g)∗Ψ ∧ (1 ⊗ α)

)
= (idX ×g)∗

(
ĉ(NV ) ∧ M (idX ×g)∗Ψ ∧ (1 ⊗ α)

)
.

By (4.4) and Proposition 4.3 thus

i∗f⋄µ = (idX ×g)∗j∗j!!(1 ⊗ α) = (idX ×g)∗j∗j∗(1 ⊗ α)

since 1⊗α is smooth. It is straightforward to check that (idX ×g)◦j = i◦g

and that j∗(1 ⊗ α) = α. Hence, i∗f⋄µ = i∗g∗α = i∗µ, which shows (5.11).

Proposition 5.6. — Let X be a complex manifold, Y a complex Her-
mitian manifold, and f : X → Y a holomorphic mapping.

(a) If U ⊂ X is an open subset and µ ∈ PS(Y ), then (f∗µ)|U = f |∗U µ.
(b) Assume that f(X) is a complex submanifold of Y and that the

induced mapping f̃ : X → f(X) is a submersion. Let ι : f(X) → Y

be the inclusion. If µ ∈ PS(Y ), then f∗µ = f̃∗ι∗µ, where f̃∗ is the
standard pullback of currents under the submersion f̃ .

Proof.
(a). — Recall that NX is the normal bundle of i(X) in Z = X × Y

equipped with the metric induced by (5.1). If NU is the normal bundle of
i(U) in U × Y , then NU = (NX)|i(U), and we equip NU with the induced
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metric. In view of Proposition 3.3, we have ŝj(NX , π∗
2µ)|U = ŝj(NU , π∗

2µ).
It thus follows from Definition 5.1 and (4.1) that (f∗µ)|U = f |∗U µ.

(b). — We can localize in both X and Y ; the statement is local in X

by part (a), and in view of Proposition 5.2, by a partition of unity in Y we
can assume that µ has support in any given open subset of Y . Since f̃ is
a submersion, after localization in X, we can assume that X = X ′ × X ′′,
where X ′ is an open set in some Cm′ and X ′′ is an open subset of f(X),
such that f̃ : X ′ × X ′′ → X ′′ is the projection on the second factor. Thus,
the inclusion ι : f(X) → Y now is X ′′ ↪→ Y .

We will first give an expression for ι⋄µ. Since we can localize in Y we can
assume that Y is good and let Ψ be a holomorphic section of a vector bundle
E → Y × Y such that Ψ defines the diagonal ∆ ⊂ Y × Y . We equip E with
a Hermitian metric so that TY |∆ = N∆ ↪→ E|∆ is Hermitian. Let p1 and
p2 be the natural projections X ′′ ×Y → X ′′ and X ′′ ×Y → Y , respectively,
and let j : X ′′ → X ′′ × Y be the embedding j(x′′) = (x′′, ι(x′′)). We equip
the normal bundle NX′′ → j(X ′′) of j(X ′′) in X ′′ × Y with the metric
induced by NX′′ = p∗

2TY |j(X′′). The section (ι × idY )∗Ψ defines j(X ′′)
and in view of Lemma 2.6, the induced embedding NX′′ ↪→ (ι × idY )∗E is
Hermitian. By (5.7) we now have

(5.14) ι⋄µ = ι∗ĉ(TY ) ∧ (p1)∗(M (ι×idY )∗Ψ ∧ p∗
2µ).

We have a similar expression for f⋄µ: The section (f × idY )∗Ψ defines
i(X) in X × Y , and again in view of Lemma 2.6, the induced embedding
NX ↪→ (f × idY )∗E is Hermitian. By (5.7) thus

(5.15) f⋄µ = f∗ĉ(TY ) ∧ (π1)∗(M (f×idY )∗Ψ ∧ π∗
2µ).

Now, since (f × idY )∗Ψ = 1 ⊗ (ι × idY )∗Ψ and π∗
2µ = 1 ⊗ p∗

2µ we have

(5.16) M (f×idY )∗Ψ ∧ π∗
2µ = 1 ⊗

(
M (ι×idY )∗Ψ ∧ p∗

2µ
)
.

Moreover, since f̃ : X ′ × X ′′ → X ′′ is the standard projection, f∗ĉ(TY ) =
f̃∗ι∗ĉ(TY ) = 1 ⊗ ι∗ĉ(TY ); cf. (2.2). It thus follows by (5.15), (5.16),
and (5.14) that

f⋄µ =
(
1 ⊗ ι∗ĉ(TY )

)
∧ (π1)∗

(
1 ⊗

(
M (ι×idY )∗Ψ ∧ p∗

2µ
))

= 1 ⊗
(
ι∗ĉ(TY ) ∧ (p1)∗(M (ι×idY )∗Ψ ∧ p∗

2µ)
)

= 1 ⊗ ι⋄µ.

Taking the component of the same bidegree as µ we get f∗µ = 1⊗ ι∗µ. The
right-hand side here is the standard pullback of the current ι∗µ under the
projection f̃ : X ′ × X ′′ → X ′′. Part(b) of the proposition thus follows. □
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Proof of Theorem 1.1. — Theorem 1.1 follows from Propositions 5.2
and 5.6. □

Example 5.7. — Let f : X → Y be surjective with constant fiber dimen-
sion m−n; recall that m = dim X and n = dim Y . We claim that f∗ then is
independent of the Hermitian structure on Y and that f∗µ = ŝ0(NX , π∗

2µ)
for any µ ∈ PS(Y ); recall here the currents ŝj(NX , π∗

2µ) from Proposi-
tion 3.3.

To see this, we can localize in both X and Y ; cf. the proof of Proposi-
tion 5.6. We can thus assume that there are Ψ and E as in Example 4.1. We
can also assume that µ = g̃∗α, where g̃ : Ṽ → Y is a holomorphic mapping,
Ṽ a connected complex manifold, and α a smooth compactly supported
form in Ṽ . Consider the fiber diagram (3.2) with V , g, and W defined to
be X × Ṽ , idX ×g̃, and {g∗Ψ = 0}, respectively. Since f is surjective with
constant fiber dimension m − n it follows that codimV W = n. Thus, since
W = {g∗Ψ = 0}, it follows from [2, Theorems 1.1, 1.2] that Mg∗Ψ

k = 0 if
k < n and that Mg∗Ψ

n is independent of the metric. Since π∗
2µ = g∗(1 ⊗ α),

in view of (2.23) and (2.24) we get

MΨ
k ∧ π∗

2µ = g∗
(
Mg∗Ψ

k ∧ (1 ⊗ α)
)

= g∗
(
(1 ⊗ α) ∧ Mg∗Ψ

k

)
.

Hence, MΨ
k ∧ π∗

2µ vanishes if k < n and is independent of the metric if
k = n. It thus follows by (1.9) and Proposition 3.3 that f∗ is independent
of the Hermitian structure on Y and that f∗µ = ŝ0(NX , π∗

2µ).

5.2. An alternative approach

We recall the setup; X is a complex manifold, Y a complex Hermitian
manifold, f : X → Y a holomorphic mapping, Z = X × Y , and π1 : Z → X

and π2 : Z → Y the natural projections. In this subsection we will also as-
sume that X is Hermitian and let Z have the induced Hermitian structure.

Let ι : Z → Z ×Z be the diagonal embedding and NZ → ι(Z) the normal
bundle of ι(Z) in Z × Z. Then NZ is naturally isomorphic with TZ and
thus NZ gets an induced Hermitian metric. The Gysin mappings ι! and ι!!

are thus defined.
Recall from the introduction that the main step when defining f∗µ is

to give a reasonable meaning to the product [i(X)] ∧ π∗
2µ, where i(X) as

before is the graph of f in Z. We have done this by applying the (local)
operator(s) MΨ to π∗

2µ, where Ψ is a (local) holomorphic section of some
Hermitian bundle defining i(X) (locally) in Z, and then multiplying by
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Chern forms. This definition of the product [i(X)] ∧ π∗
2µ is not symmetric

in [i(X)] and π∗
2µ. The objective of this section is to provide an alternative

definition that puts [i(X)] and π∗
2µ on an equal footing. The alternative

definition coincides with the product introduced in [3, Definition 5.3] if π∗
2µ

is a (generalized) cycle and ι(Z) can be defined by a global holomorphic
section of some vector bundle over Z × Z.

Before stating the main result of this subsection we notice that if Γ ⊂
Z is a submanifold, or merely an analytic subset, and µ ∈ PS(Y ), then
[Γ] ⊗ π∗

2µ ∈ PS(Z × Z). In fact, if µ = g∗α, where g : V → Y and α are as
in Definition 2.1, then

(5.17) [Γ] ⊗ π∗
2µ = τ∗(1 ⊗ 1 ⊗ α)

where τ : Γ × X × V → Z × Z, τ(γ, x, v) = (γ, x, g(v)).

Theorem 5.8. — Let X and Y be complex Hermitian manifolds and
let Z = X × Y with the induced Hermitian structure. Let ι : Z → Z × Z

be the diagonal embedding and equip the normal bundle NZ of ι(Z) with
the Hermitian metric induced by NZ ≃ TZ. Assume that Γ ⊂ Z is a
submanifold such that dim Γ = dim X and π1|Γ is proper, where π1 : Z → X

is the natural projection. Then, with π2 : Z → Y the natural projection,

(5.18) (π1)∗ι!([Γ] ⊗ π∗
2µ) = (π1|Γ)∗(π2|Γ)∗µ.

Notice that (π2|Γ)∗ depends on the Hermitian structure on Y but not
on the one on X. The left-hand side of (5.18), which a priori depends on
the Hermitian structures on both X and Y , is thus independent of the
Hermitian structure on X.

Let us see what Theorem 5.8 means if Γ = i(X) is the graph of the
mapping f : X → Y . After identification of i(X) and X we have π2|Γ = f

and π1|Γ = idX , and so (5.18) becomes

(5.19) (π1)∗ι!([i(X)] ⊗ π∗
2µ) = f∗µ.

The left-hand side thus is an alternative definition of f∗µ. The product
[i(X)] ∧ π∗

2µ in this setting is ι!([i(X)] ⊗ π∗
2µ), which clearly puts [i(X)]

and π∗
2µ on an equal footing.

To prove Theorem 5.8 we will use the following technical lemma.

Lemma 5.9. — Let Σ and Ω be complex manifolds and q : Σ → Ω a
holomorphic mapping. Let j : Σ → Σ × Ω be the graph embedding, NΣ
the normal bundle of j(Σ), and p : Σ × Ω → Σ the natural projection.
Let Φ1 be a holomorphic section of a Hermitian vector bundle F1 → Σ
and assume that there is a holomorphic section Φ2 of a Hermitian vector
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bundle F2 → Σ × Ω defining j(Σ) in Σ × Ω. If NΣ is equipped with the
Hermitian metric induced by NΣ ↪→ F2|j(Σ), then for any µ ∈ PS(Σ),

j∗(MΦ1 ∧ µ) = ĉ(NΣ) ∧ Mp∗Φ1+Φ2 ∧ p∗µ.

Proof. — Assume first that µ is a smooth form and that Φ1 defines a
divisor D. Then p∗Φ1 defines the divisor D×Ω. The section Φ2 defines j(Σ),
which is a locally complete intersection of codimension dim Ω. It is clear
that D×Ω and j(Σ) intersect properly and it follows that p∗Φ1 +Φ2 defines
a locally complete intersection of codimension dim Ω + 1. The conditions
in [2, Proposition 7.6] are then satisfied and the conclusion is that

(5.20) Mp∗Φ1+Φ2 = Mp∗Φ1 ∧ MΦ2 .

Since Φ2 defines j(Σ), in view of Example 2.8 we have MΦ2 = ŝ(NΣ) ∧ j∗1.
Hence, by (5.20),

(5.21) Mp∗Φ1+Φ2 = Mp∗Φ1 ∧ ŝ(NΣ) ∧ j∗1.

Multiplying by ĉ(NΣ) ∧ p∗µ and using (2.23), (2.11), and (2.24) we get

ĉ(NΣ) ∧ Mp∗Φ1+Φ2 ∧ p∗µ = ĉ(NΣ) ∧ p∗µ ∧ ŝ(NΣ) ∧ Mp∗Φ1 ∧ j∗1

= p∗µ ∧ Mp∗Φ1 ∧ j∗1 = j∗(j∗p∗µ ∧ M j∗p∗Φ1).

Since j∗p∗ = (p ◦ j)∗ = id∗
Σ the lemma thus follows in the case when µ is

smooth and Φ1 defines a divisor.
We now consider the general case. The statement is local in Σ × Ω so we

can assume that µ = g∗α, where g : V → Σ and α are as in Definition 2.1.
Possibly after a modification of V , by Hironaka’s theorem we can also
assume that g∗Φ1 defines a divisor.

Let j̃ : V ↪→ V × Ω be the embedding j̃(v) = (v, q ◦ g(v)) and let p̃ : V ×
Ω → V be the natural projection. Notice that (g × idΩ)∗Φ2 defines j̃(V ) in
V × Ω. By the first part of the proof thus

(5.22) j̃∗
(
Mg∗Φ1 ∧ α

)
= ĉ(NV ) ∧ M p̃∗g∗Φ1+(g×idΩ)∗Φ2 ∧ (α ⊗ 1),

where NV is the normal bundle of j̃(V ) equipped with the metric induced
by NV ↪→ (g × idΩ)∗F2 |̃

j(V ). The lemma will follow by applying (g × idΩ)∗

to (5.22).
Since (g × idΩ) ◦ j̃ = j ◦ g, in view of (2.24) we have

(5.23) (g × idΩ)∗j̃∗
(
Mg∗Φ1 ∧ α

)
= j∗g∗

(
Mg∗Φ1 ∧ α

)
= j∗

(
MΦ1 ∧ µ

)
.

To calculate (g × idΩ)∗ of the right-hand side of (5.22), notice first that
by Lemma 2.6 we have an isometry NV = (g × idΩ)∗NΣ. We can thus
replace ĉ(NV ) in the right-hand side of (5.22) by (g × idΩ)∗ĉ(NΣ). Since
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g ◦ p̃ = p ◦ (g × idΩ) we can also replace p̃∗g∗Φ1 by (g × idΩ)∗p∗Φ1. After
doing this, using (2.1) and (2.24) we get

(5.24) (g × idΩ)∗

(
ĉ(NV ) ∧ M p̃∗g∗Φ1+(g×idΩ)∗Φ2 ∧ (α ⊗ 1)

)
= ĉ(NΣ) ∧ Mp∗Φ1+Φ2 ∧ (g × idΩ)∗(α ⊗ 1).

Since (g × idΩ)∗(α ⊗ 1) = µ ⊗ 1 = p∗µ the lemma follows by (5.22), (5.23),
and (5.24). □

Proof of Theorem 5.8. — We will show that

(5.25) (π1)∗ι!!([Γ] ⊗ π∗
2µ) = (π1|Γ)∗(π2|Γ)⋄µ.

The theorem then follows by taking the component of the same bidegree
as µ. Let

T := (π2|Γ)⋄µ.

Then (π1|Γ)∗T is the right-hand side of (5.25). On the other hand, we can
factorize π1|Γ as follows

Γ j1−→ Γ × Y
j2−→ Γ × X × Y

j3−→ Z × X × Y
π−→ X,

j1(γ) = (γ, π2(γ)), j2(γ, y) = (γ, π1(γ), y),
j3(γ, x, y) = (π1(γ), π2(γ); x, y), π(z; x, y) = x.

We thus have that (π1|Γ)∗T = π∗(j3)∗(j2)∗(j1)∗T and we claim that

(5.26) π∗(j3)∗(j2)∗(j1)∗T = (π1)∗ι!!([Γ] ⊗ π∗
2µ),

which then proves (5.25).
It remains to show (5.26). The claimed identity (5.26) can be checked

locally in X and by a partition of unity we can assume that µ has compact
support in any given open subset of Y . We can thus assume that both Y and
X are good and let Ψ1 and Ψ2 be holomorphic sections of vector bundles
E1 → Y × Y and E2 → X × X defining the diagonals ∆Y ⊂ Y × Y and
∆X ⊂ X × X, respectively. We equip E1 and E2 with Hermitian metrics
such that TY ≃ N∆Y

↪→ E1|∆Y
and TX ≃ N∆X

↪→ E2|∆X
are Hermitian

embeddings.
Let Φ1 = (π2|Γ × idY )∗Ψ1 and F1 = (π2|Γ × idY )∗E1. Then Φ1 defines

j1(Γ) in Γ × Y and we let NΓ be the normal bundle equipped with the
metric induced by NΓ ↪→ F1|j1(Γ). In view of Lemma 2.6, this is the same
as the metric induced by NΓ ≃ TY . Hence, ĉ(NΓ) = (1 ⊗ ĉ(TY ))|j1(Γ).
Now, in view of (5.3) and (2.2) we have T = (π2|Γ)⋄µ = j!!

1 (1⊗µ). By (4.4)
thus

(5.27) (j1)∗T = (1 ⊗ ĉ(TY )) ∧ MΦ1 ∧ (1 ⊗ µ).
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Let F2 and Φ2 be the pullback of E2 and Ψ2, respectively, under the
mapping Γ × X × Y → X × X, (γ, x, y) 7→ (π1(γ), x). Then Φ2 defines
j2(Γ × Y ), which is the graph of the mapping Γ × Y → X, (γ, y) 7→ π1(γ).
Let p : Γ × X × Y → Γ × Y be the natural projection. Since 1 ⊗ ĉ(TY ) =
j∗

2 (1 ⊗ 1 ⊗ ĉ(TY )) it follows by (5.27), (2.1), and Lemma 5.9 that

(j2)∗(j1)∗T = (1 ⊗ 1 ⊗ ĉ(TY )) ∧ ĉ(NΓ×Y ) ∧ Mp∗Φ1+Φ2 ∧ p∗(1 ⊗ µ),

where the normal bundle NΓ×Y of j2(Γ × Y ) is equipped with the metric
induced by NΓ×Y ↪→ F2|j2(Γ×Y ). In view of Lemma 2.6, ĉ(NΓ×Y ) = (1 ⊗
ĉ(TX) ⊗ 1)|j2(Γ×Y ). Thus, since p∗(1 ⊗ µ) = 1 ⊗ 1 ⊗ µ,

(5.28) (j2)∗(j1)∗T = (1 ⊗ ĉ(TX) ⊗ ĉ(TY )) ∧ Mp∗Φ1+Φ2 ∧ (1 ⊗ 1 ⊗ µ).

From the definitions of Φ1, Φ2, p, and j3 it is straightforward to check
that

(5.29) p∗Φ1 + Φ2 = j∗
3 (Π∗Ψ1 + Π̃∗Ψ2),

where Π: Z×Z → Y ×Y and Π̃ : Z×Z → X×X are the natural projections.
Moreover, since TZ = TX⊕TY we have ĉ(TZ) = ĉ(TX)⊗ĉ(TY ). It follows
that

(5.30) 1 ⊗ ĉ(TX) ⊗ ĉ(TY ) = j∗
3 (1 ⊗ ĉ(TZ)).

Replacing p∗Φ1 + Φ2 and 1 ⊗ ĉ(TX) ⊗ ĉ(TY ) in (5.28) by the right-hand
sides of (5.29) and (5.30), respectively, it follows by (2.1) and (2.24) that

(j3)∗(j2)∗(j1)∗T = (1 ⊗ ĉ(TZ)) ∧ MΠ∗Ψ1+Π̃∗Ψ2 ∧ (j3)∗(1 ⊗ 1 ⊗ µ).

Since (1 ⊗ ĉ(TZ))|ι(Z) = ĉ(NZ) and (j3)∗(1 ⊗ 1 ⊗ µ) = [Γ] ⊗ π∗
2µ we have

(5.31) (j3)∗(j2)∗(j1)∗T = ĉ(NZ) ∧ MΠ∗Ψ1+Π̃∗Ψ2 ∧ ([Γ] ⊗ π∗
2µ).

Now, Π∗Ψ1 + Π̃∗Ψ2 defines ι(Z) in Z × Z and the corresponding embed-
ding NZ ↪→ (Π∗E1 ⊕ Π̃∗E2)|ι(Z) is Hermitian. In view of (5.31) and (4.4)
thus

(j3)∗(j2)∗(j1)∗T = ι∗ι!!([Γ] ⊗ π∗
2µ).

By applying π∗, using that π∗ι∗ = (π2)∗ since π◦ι = π2, thus (5.26) follows.
This completes the proof. □

Remark 5.10. — As mentioned in the introduction, the alternative defini-
tion (5.19) of f∗ can be generalized to define a pullback under meromorphic
mappings and meromorphic correspondences:

If h : X 99K Y is a meromorphic mapping, then the closure of the graph
of h is an analytic subset of Z, and we let Γ be this analytic subset. If
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µ ∈ PS(Y ), then [Γ] ⊗ π∗
2µ ∈ PS(Z × Z) and we can define h∗ : PS(Y ) →

PS(X) by letting

(5.32) h∗µ := (π1)∗ι!([Γ] ⊗ π∗
2µ).

If Γ instead is a meromorphic correspondence, i.e., X and Y have the
same dimension m and Γ is an effective m-cycle such that π1 and π2 re-
stricted to each irreducible component of |Γ| are surjective and proper, then
the right-hand side of (5.32) makes sense and is a reasonable definition of
a pullback of µ under the correspondence Γ.

6. Compatibility with cohomology

The objective of this section is to prove Theorem 1.2. We need a few
preliminary results. For a complex manifold Z we let H∗(Z) be the de
Rham cohomology groups. Recall that H∗(Z) can be defined using either
closed smooth forms or closed currents. If µ is a closed smooth form or
a closed current we let [µ]dR be the corresponding cohomology class. If
µ = [W ] is the current of integration along W ⊂ Z, then we write [W ]dR
instead of [[W ]]dR.

If g : Z → Z̃ is a holomorphic mapping, then the pullback of smooth
forms induces a mapping g∗ : H∗(Z̃) → H∗(Z). If h : W → Z is a proper
holomorphic mapping, then the pushforward of currents induces a mapping
h∗ : H∗(W ) → H∗+2d(Z), where d = dimC Z−dimC W . The wedge product
on smooth forms induces the cup product in H∗(Z); we will write ∧ for
the cup product of cohomology classes. Notice that if ξ is a smooth closed
form and µ is a closed current, then

[ξ ∧ µ]dR = [ξ]dR ∧ [µ]dR.

We will also use that the projection formula (2.1), with φ and µ denoting
cohomology classes, holds.

Lemma 6.1. — Let Z be a complex manifold and let W ⊂ Z be an
analytic subset. If µ ∈ PS(Z), then

(6.1) d1W µ = 1W dµ, d1Z\W µ = 1Z\W dµ.

If 1W µ = 0 and 1Z\W dµ = 0, then dµ = 0.

Proof. — Since Z is a manifold, µ is pseudomeromorphic and so by [8,
Proposition 3.8] we have ∂1W µ = 1W ∂µ. Since PS(Z) is closed under
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conjugation, cf. (2.3), and the operator 1W is real we get ∂1W µ = 1W ∂µ.
The first equality in (6.1) thus follows. We now get

d1Z\W µ = d(µ − 1W µ) = dµ − 1W dµ = 1Z\W dµ,

which proves the second equality in (6.1). Moreover, if 1W µ = 0 = 1Z\W dµ,
then

dµ = 1W dµ + 1Z\W dµ = d1W µ = 0.

The last statement in the lemma is thus also proved. □

Proposition 6.2. — Let X and Z be complex manifolds and i : X ↪→ Z

an embedding. Let π : BlX → Z be the blowup along i(X), let D ⊂ BlX
be the exceptional divisor, and L → BlX the associated line bundle.

(a) If µ ∈ PS(Z) and 1i(X)µ = 0, then there is a unique ν ∈ PS(BlX)
such that π∗ν = µ and 1Dν = 0. If dµ = 0, then dν = 0.

(b) Assume that the normal bundle NX → i(X) is equipped with a
Hermitian metric and equip L with a Hermitian metric such that
L|D ↪→ π|∗DNX (cf. Lemma 2.6) is a Hermitian embedding. If ν ∈
PS(BlX), 1Dν = 0, and n = codim i(X), then

(6.2) i!π∗ν =
n∑

k=1
i∗ĉn−k(NX) ∧ (π|D)∗ŝk−1(L|D, ν).

Recall that L|D is the normal bundle of D in BlX ; see Proposition 3.3
for the currents ŝk−1(L|D, ν).

Proof.
(a). — The uniqueness of such a ν is clear since π is a biholomorphism

outside D and 1Dν = 0. To show the existence it thus suffices to see that
if U ⊂ Z is open, then there is such a ν in π−1(U).

In U we can assume that µ = g∗α, where g : V → U and α are as
in Definition 2.1. Since 1i(X)µ = 0 we can assume that g−1i(X) ̸= V ;
otherwise µ = 0 in view of (2.8). After a modification of V , by Hironaka’s
theorem we can then assume that g−1i(X) is a hypersurface. Thus, by the
defining property of BlX there is a holomorphic mapping g̃ : V → π−1(U)
such that g = π ◦ g̃. Then ν := g̃∗α ∈ PS(π−1(U)) and

µ|U = g∗α = π∗g̃∗α = π∗ν.

Moreover, by (2.8),
1Dν = g̃∗(1

g̃−1(D)α) = 0

since g̃−1(D) = g−1i(X) ̸= V . Thus ν has the required properties in
π−1(U).
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If dµ = 0, then clearly 1BlX \Ddν = 0, and so dν = 0 by Lemma 6.1.
Part (a) is thus proved.

(b). — We have the commutative diagram

(6.3) D

π|D

��

j // BlZ
π

��
X

i // Z.

Locally in Z we can assume that we have a holomorphic section Ψ of a
Hermitian vector bundle E such that Ψ defines i(X) and the embedding
NX ↪→ E|i(X) is Hermitian; cf. Example 4.1. Then π∗Ψ defines D and
since L|D is the normal bundle of D it follows by Lemma 2.6 that the
metric induced on L|D by L|D ↪→ π∗E|D is the same as the one induced
by L|D ↪→ π|∗DNX . By Proposition 3.3, (2.24) and commutativity of (6.3)
thus

(6.4) i∗ŝk−n(NX , π∗ν) = MΨ
k ∧ π∗ν = π∗(Mπ∗Ψ

k ∧ ν)
= π∗j∗ŝk−1(L|D, ν) = i∗(π|D)∗ŝk−1(L|D, ν)

locally in Z. Since ŝk−n(NX , π∗ν) and ŝk−1(L|D, ν) are globally defined in
X and D, respectively, (6.4) holds in Z.

Since 1Dν = 0 it follows by (2.8) and (2.21) that MΨ
0 ∧ π∗ν = 0.

By Proposition 3.3 and injectivity of i∗ thus ŝ−n(NX , π∗ν) = 0. Hence,
(6.2) follows by (4.1), (6.4), and injectivity of i∗. □

In the remaining part of this section we let f : X → Y be a holomorphic
mapping between compact complex manifolds X and Y of dimensions m

and n, respectively. We let Z = X × Y and π1 : Z → X and π2 : Z → Y be
the natural projection. We also let i : X → Z be the embedding defined by
i(x) = (x, f(x)).

Lemma 6.3. — Assume that τ and ν are closed currents in X and Z,
respectively. Then [τ ]dR = i∗[ν]dR if and only if i∗[τ ]dR = [i(X)]dR ∧ [ν]dR.

Proof. — Let φ be a smooth representative of [ν]dR. Then, by definition,
i∗[ν]dR = [i∗φ]dR. Therefore, if [τ ]dR = i∗[ν]dR we have

i∗[τ ]dR = i∗[i∗φ]dR = [i∗i∗φ]dR = [[i(X)] ∧ φ]dR = [i(X)]dR ∧ [φ]dR

= [i(X)]dR ∧ [ν]dR.

Conversely, assume that i∗[τ ]dR = [i(X)]dR ∧ [ν]dR. Since, by the pre-
ceding calculation, [i(X)]dR ∧ [ν]dR = i∗[i∗φ]dR it follows that

i∗[τ − i∗φ]dR = 0.
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This precisely means that for any smooth closed form ξ in Z we have
(τ − i∗φ) · i∗ξ = 0. Let ξ′ be a smooth closed form in X. Since π1 ◦ i = idX

and π∗
1ξ′ is closed in Z we get

(τ − i∗φ) · ξ′ = (τ − i∗φ) · i∗π∗
1ξ′ = 0.

Hence, [τ − i∗φ]dR = 0, and thus [τ ]dR = i∗[φ]dR = i∗[ν]dR. □

Lemma 6.4. — Suppose that Y is good and Hermitian. Equip the nor-
mal bundle NX of i(X) with the Hermitian metric induced by (5.1). Let
π : BlX → Z be the blowup along i(X) and let D ⊂ BlX be the exceptional
divisor. If ν, ν′ ∈ PS(BlX) are closed and such that 1Dν = 1Dν′ = 0 and
[ν]dR = [ν′]dR, then

i∗[i!π∗ν]dR = i∗[i!π∗ν′]dR.

Proof. — Let L be the line bundle associated with D and equip L|D
with the Hermitian metric induced by the embedding L|D ↪→ π|∗DNX ;
cf. Lemma 2.6. We claim that

(6.5) i∗(π|D)∗[ŝk−1(L|D, ν)]dR = i∗(π|D)∗[ŝk−1(L|D, ν′)]dR, k ⩾ 1.

Taking the claim for granted the lemma follows by applying i∗ to (6.2),
use (2.1), and take the cohomology class.

It remains to show the claim. Since Y is good there is a holomorphic
section Φ of a holomorphic vector bundle F defining the diagonal in Y ×Y .
Then Ψ := (f × idY )∗Φ is a holomorphic section of E := (f × idY )∗F

defining i(X). We equip E with a Hermitian metric so that the embedding
NX ↪→ E|i(X) is Hermitian.

Now, π∗Ψ defines D and by (2.14) there is an induced Hermitian metric
on L. By Lemma 2.6, on L|D this metric is the same as the one induced by
the embedding L|D ↪→ π|∗DNX . Let j : D → BlX be the inclusion. In view
of Propositions 3.3 and 3.5, since 1Dν = 1Dν′ = 0, for k ⩾ 1 we have

j∗ŝk−1(L|D, ν) = Mπ∗Ψ
k ∧ν = −ĉ(L∗)k ∧1BlX \Dν+dνk = −ĉ(L∗)k ∧ν+dνk

for some currents νk in BlX . For some currents ν′
k the same formula with

ν and νk replaced by ν′ and ν′
k, respectively, holds. Hence, since [ν]dR =

[ν′]dR,

(6.6) j∗[ŝk−1(L|D, ν)]dR = −c(L∗)k ∧ [ν]dR = j∗[ŝk−1(L|D, ν′)]dR, k ⩾ 1.

By applying π∗ to (6.6) and using that π∗j∗ = i∗(π|D)∗, cf. (6.3), then (6.5)
follows. The claim is thus proved and the lemma follows. □

ANNALES DE L’INSTITUT FOURIER



A PULLBACK OPERATION ON A CLASS OF CURRENTS 35

We will use the following well-known facts about the blowup π : BlX → Z

along i(X), see, e.g., [17, Chapter 4.6]. See (6.3) for the notation we will
use. There is an exact sequence of de Rham cohomology groups

(6.7) 0 → Hk(Z) −→ Hk(BlX) ⊕ Hk(X) −→ Hk(D) → 0;

the mapping Hk(Z) → Hk(BlX) ⊕ Hk(X) is given by a 7→ (π∗a, i∗a) and
the mapping Hk(BlX) ⊕ Hk(X) → Hk(D) is given by (a, b) 7→ j∗a −
(π|D)∗b. Moreover, H∗(D) is an H∗(X)-algebra via (π|D)∗ and as such it
is generated by j∗c1(L∗), where L is the line bundle corresponding to D.
This means that if β is a smooth closed r-form in D, then there are smooth
closed ℓ-forms βℓ on X such that

(6.8) [β]dR =
r∑

ℓ=0
[(π|D)∗βℓ]dR ∧ j∗c1(L∗)r−ℓ.

In the H∗(X)-algebra H∗(D) there is the relation

(6.9)
n∑

k=0
(π|D)∗i∗cn−k(NX) ∧ j∗c1(L∗)k = 0.

Theorem 6.5. — Let X be a compact complex manifold, Y a good
compact complex Hermitian manifold, and f : X → Y a holomorphic map-
ping. Let Z = X ×Y and i : X → Z the embedding i(x) = (x, f(x)). Equip
the normal bundle NX of i(X) with the Hermitian metric induced by (5.1).
If µ ∈ PS(Z) is closed, then

(6.10) [i!µ]dR = i∗[µ]dR, i∗[i!µ]dR = [i(X)]dR ∧ [µ]dR.

Proof. — To begin with, notice that the two identities in (6.10) are equiv-
alent by Lemma 6.3. We have µ = 1i(X)µ + 1Z\i(X)µ and by Lemma 6.1
both 1i(X)µ and 1Z\i(X)µ are closed. Thus, since supp(1i(X)µ) ⊂ i(X) and
1i(X)1Z\i(X)µ = 0, cf. (2.6) and (2.7), it suffices to show the theorem for a
µ such that either supp µ ⊂ i(X) or 1i(X)µ = 0.

We first assume that supp µ ⊂ i(X). Then, by Example 4.2, i!µ =
i∗ĉn(NX) ∧ ŝ−n(NX , µ1) and i∗ŝ−n(NX , µ) = µ. It is well-known that
i∗cn(NX) = i∗[i(X)]dR and so, in view of (2.1),

i∗[i!µ]dR = i∗
(
i∗cn(NX) ∧ [ŝ−n(NX , µ)]dR

)
= i∗

(
i∗[i(X)]dR ∧ [ŝ−n(NX , µ)]dR

)
= [i(X)]dR ∧ i∗[ŝ−n(NX , µ)]dR = [i(X)]dR ∧ [µ]dR.

The theorem thus follows in case supp µ ⊂ i(X).
It remains to prove the theorem in case 1i(X)µ = 0. Let π : BlX → Z

be the blowup along i(X), D the exceptional divisor, and L the associated
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line bundle. Equip L with a Hermitian metric such that L|D ↪→ π|∗DNX is
Hermitian, cf. Lemma 2.6.

Assume first that µ = π∗ĉ1(L∗)r. It is clear that the first identity in (6.10)
holds if r = 0 since in that case µ = 1. For r ⩾ 1 and k ⩾ 1, in view of
Example 3.4,

ŝk−1
(
L|D, ĉ1(L∗)r

)
= ĉ1(L|∗D)k−1 ∧ j∗ĉ1(L∗)r = j∗ĉ1(L∗)r+k−1,

where j : D → BlX is the inclusion. Hence, if µ = π∗ĉ1(L∗)r, in view of
Proposition 6.2(b), (2.1), and (6.9) we get

[i!µ]dR =
[

n∑
k=1

i∗ĉn−k(NX) ∧ (π|D)∗j∗ĉ1(L∗)r+k−1

]
dR

= (π|D)∗

(
n∑

k=1
(π|D)∗i∗cn−k(NX) ∧ j∗c1(L∗)k ∧ j∗c1(L∗)r−1

)
= −(π|D)∗

(
(π|D)∗i∗cn(NX) ∧ j∗c1(L∗)r−1).

Since i∗cn(NX) = i∗[i(X)]dR, by (2.1), and commutativity of (6.3) thus

(6.11) i∗[i!µ]dR = −i∗
(
i∗cn(NX) ∧ (π|D)∗j∗c1(L∗)r−1)

= −[i(X)]dR ∧ i∗(π|D)∗j∗c1(L∗)r−1

= −[i(X)]dR ∧ π∗j∗j∗c1(L∗)r−1.

However, by (2.15),

(6.12) π∗j∗j∗c1(L∗)r−1 = π∗(c1(L∗)r−1 ∧[D]dR) = −π∗c1(L∗)r = −[µ]dR.

By (6.11) and (6.12) thus µ satisfies the second identity in (6.10) in case
µ = π∗ĉ1(L∗)r.

Next, in view of Proposition 4.3 we notice that the theorem now follows
if µ = αℓ ∧ π∗ĉ1(L∗)r−ℓ, where αℓ is a smooth closed form in Z and ℓ is an
integer, 0 ⩽ ℓ ⩽ r.

Let us now show the theorem for a general µ such that 1i(X)µ = 0. In
view of Proposition 6.2(a) there is a closed ν ∈ PS(BlX) such that 1Dν = 0
and π∗ν = µ. Let r be the degree of ν. We claim that there are smooth
closed ℓ-forms αℓ, ℓ = 0, . . . , r, in Z such that

(6.13) [ν]dR =
[

r∑
ℓ=0

π∗αℓ ∧ ĉ1(L∗)r−ℓ

]
dR

.
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Taking the claim for granted for the moment we can finish the proof: By
Lemma 6.4 and (2.1) we then have

i∗[i!π∗ν]dR = i∗

[
i!π∗

r∑
ℓ=0

π∗αℓ ∧ ĉ1(L∗)r−ℓ

]
dR

= i∗

[
i!

r∑
ℓ=0

(
αℓ ∧ π∗ĉ1(L∗)r−ℓ

)]
dR

.

Hence, since (6.10) holds for each αℓ ∧ π∗ĉ1(L∗)r−ℓ, in view of (2.1)
and (6.13),

i∗[i!µ]dR = i∗[i!π∗ν]dR = [i(X)]dR ∧

[
r∑

ℓ=0
αℓ ∧ π∗ĉ1(L∗)r−ℓ

]
dR

= [i(X)]dR ∧ π∗

[
r∑

ℓ=0
π∗αℓ ∧ ĉ1(L∗)r−ℓ

]
dR

= [i(X)]dR ∧ π∗[ν]dR = [i(X)]dR ∧ [µ]dR,

which shows (6.10).
It remains to prove the claim. Let α be a smooth closed r-form on BlX

such that [α]dR = [ν]dR. Let β = j∗α, and take smooth closed ℓ-forms βℓ

on X such that (6.8) holds. Letting αℓ = π∗
1βℓ, where π1 : Z → X is the

projection on the first factor, we get βℓ = i∗αℓ since π1 ◦ i = idX . Since
i ◦ π|D = π ◦ j thus (π|D)∗βℓ = j∗π∗αℓ; cf. (6.3). It thus follows by (6.8)
that

j∗

[
α−

r∑
ℓ=0

π∗αℓ ∧ ĉ1(L∗)r−ℓ

]
dR

=
[
β −

r∑
ℓ=0

(π|D)∗βℓ ∧j∗ĉ1(L∗)r−ℓ

]
dR

= 0.

Hence, since (6.7) is exact we can add a smooth closed r-form in Z to αr

and get [
α −

r∑
ℓ=0

π∗αℓ ∧ ĉ1(L∗)r−ℓ

]
dR

= 0.

Since [α]dR = [ν]dR this proves the claim and concludes the proof. □

Proof of Theorem 1.2. — If µ ∈ PS(Y ) is closed, then π∗
2µ = 1 ⊗ µ ∈

PS(Z) is closed; recall that π2 : Z → Y is the projection on the second
factor. Using π∗

2µ as µ in Theorem 6.5 we get

[i!π∗
2µ]dR = i∗[π∗

2µ]dR.

The left-hand side is [f∗µ]dR by Definition 5.1. Since π2 is a simple projec-
tion and since f = π2 ◦ i, the right-hand side is i∗π∗

2 [µ]dR = f∗[µ]dR. □
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Remark 6.6. — If there where a Poincaré lemma for PS-currents on
a complex manifold Z, then H∗(Z) could be defined using closed PS-
currents. Theorem 1.2 would then follow by (1.2).

7. The obstruction to functoriality

We begin with an example showing that our pullback is not functorial in
general.

Example 7.1. — Let g : C2 → C2, g(v1, v2) = (v1v2, v2
2), and let α be a

smooth function with compact support in C2. Then µ := g∗α ∈ PS(C2)
and has bidegree (0, 0). Let

f : {pt} → C2, f(pt) = 0,

be inclusion of a point. The mapping f can be factorized as f = f2 ◦ f1,
where

f1 : {pt} → C, f1(pt) = 0, and f2 : C → C2, f2(w) = (w, w2).

We claim that if C2 and C are equipped with their standard Hermitian
structures, then

(7.1) f∗µ = f⋄µ = 2α(0, 0) and f∗
1 f∗

2 µ = f⋄
1 f⋄

2 µ = α(1, 0) + α(−1, 0),

which shows that f∗µ ̸= f∗
1 f∗

2 µ and f⋄µ ̸= f⋄
1 f⋄

2 µ if 2α(0, 0) ̸= α(1, 0) +
α(−1, 0).

To begin with, notice that f∗µ = f⋄µ for degree reasons. Let us calculate
f⋄µ. We consider z = (z1, z2) as a section of the trivial Hermitian rank-2
bundle over {pt}×C2

z. This section defines the graph of f in {pt}×C2. Let
π1 : {pt}×C2 → {pt} and π2 : {pt}×C2 → C2 be the standard projections.
We will make the identification {pt} ×C2 ≃ C2 and then these projections
are identified with C2 → {pt} and idC2 , respectively. In particular, π∗

2µ = µ.
Moreover, in view of (2.21) and the Dimension principle, Mz

0 ∧ µ = 0 =
Mz

1 ∧ µ. Since ĉ(TC2) = 1, it now follows by (5.7) that

(7.2) f⋄µ = f∗ĉ(TC2) ∧ (π1)∗(Mz ∧ π∗
2µ) = (π1)∗(Mz

2 ∧ µ).

To compute the right-hand side, notice that µ = g∗α = g∗p∗p∗α, where
p : Bl0 C2 → C2 is the blowup of 0. The section p∗g∗z defines the divisor
2D + H, where D ⊂ Bl0 C2 is the exceptional divisor and H is the strict
transform of {v2 = 0}. If L is the line bundle associated with 2D +H, then
L ↪→ Bl0 C2 × C2, cf. (2.14), and we equip L with the induced Hermitian
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metric. In view of (2.24) and Example 2.8(2), since p∗α is smooth, it follows
that

(7.3) Mz
2 ∧ µ = g∗p∗(Mp∗g∗z

2 ∧ p∗α) = g∗p∗
(
ĉ1(L∗) ∧ (2[D] + [H]) ∧ p∗α

)
.

A direct calculation in the standard local coordinates on Bl0 C2 shows that
ĉ1(L∗) ∧ [H] = 0 and ĉ1(L∗) ∧ [D] = ω ∧ [D], where ω is the Fubini–Study
form on D ≃ P1. By (7.2) and (7.3) thus

f⋄µ = (π1)∗g∗p∗
(
2ω ∧ [D] ∧ p∗α

)
= (π1)∗g∗(2[0] · α(0))

= 2α(0)(π1)∗[0] = 2α(0).

The first two equalities in (7.1) now follow.
Let us now calculate f⋄

2 µ. Let p1 and p2 be the standard projections from
Cw ×C2

z to the first and second factor, respectively. We consider f2(w) − z

as a section of the trivial Hermitian rank-2 bundle over Cw × C2
z. Then

f2(w) − z defines the graph of f2 in Cw × C2
z. In a similar way as above,

since p∗
2µ = (idC ×g)∗(1 ⊗ α),

(7.4) f⋄
2 µ = (p1)∗(Mf2(w)−z

2 ∧p∗
2µ) = (p1)∗(idC ×g)∗(Mf2(w)−g(v)

2 ∧(1⊗α)).

We have that f2(w) − g(v) = (w − v1v2, w2 − v2
2), which defines a locally

complete intersection ideal J in Cw ×C2
v. The fundamental cycle ZJ of J

is the proper intersection of the divisors div(w − v1v2) and div(w2 − v2
2). A

standard calculation gives

div(w2 − v2
2) · div(w − v1v2)

= 2[w = v2 = 0] + [w = v2, v1 = 1] + [w = −v2, v1 = −1].

Thus, in view of (7.4), (2.23), and Example 2.8,

f⋄
2 µ = p1∗(idC ×g)∗(

(1 ⊗ α) ∧ (2[w = v2 = 0] + [w = v2, v1 = 1] + [w = −v2, v1 = −1])
)
.

Since p1 ◦ (idC ×g) is the natural projection Cw × C2
v → Cw it follows that

f⋄
2 µ = α(1, w) + α(−1, −w).

For degree reasons we have f⋄
2 µ = f∗

2 µ.
Since α(1, w)+α(−1, −w) is smooth we have f⋄

1 (α(1, w)+α(−1, −w)) =
f∗

1 (α(1, w)+α(−1, −w)) = α(1, 0)+α(−1, 0). Hence, the last two equalities
in (7.1) follow.

Next we give a sufficient condition in terms of M -operators for func-
toriality of the ⋄-pullback. On can formulate a similar condition for our

TOME 0 (0), FASCICULE 0



40 Håkan SAMUELSSON KALM

∗-pullback but it becomes a bit more technical so we omit giving the de-
tails.

Recall that we say that a complex manifold X is good if there is a
holomorphic section Φ of a vector bundle F → X ×X defining the diagonal
∆ in X × X. If in addition X is Hermitian we say that such a Φ is a
Hermitian defining section of the diagonal if F is equipped with a Hermitian
metric such that the induced embedding TX = N∆ ↪→ F |∆, where N∆ is
the normal bundle of ∆, is Hermitian.

Proposition 7.2. — Let f1 : X1 → X2 and f2 : X2 → Y be holomor-
phic mappings between complex manifolds. Assume that X2 and Y are
good and Hermitian. Let Φ and Ψ be Hermitian defining sections of the
diagonals in X2 × X2 and Y × Y , respectively. If µ ∈ PS(Y ) and if

MΦ(f1(x1),x2) ∧ MΨ(f2(x2),y) ∧ (1 ⊗ 1 ⊗ µ)

= MΦ(f1(x1),x2)+Ψ(f2◦f1(x1),y) ∧ (1 ⊗ 1 ⊗ µ)

in X1 × X2 × Y , then f⋄
1 f⋄

2 µ = (f2 ◦ f1)⋄µ.

Proof. — Let β = f∗
1 ĉ(TX2) ⊗ f∗

2 ĉ(TY ) ⊗ 1, which is a smooth form in
X1 × X2 × Y . Let Π: X1 × X2 × Y → X1 be the natural projection. We
will show

Π∗
(
β ∧ MΦ(f1(x1),x2) ∧ MΨ(f2(x2),y) ∧ (1 ⊗ 1 ⊗ µ)

)
= f⋄

1 f⋄
2 µ,(7.5)

Π∗
(
β ∧ MΦ(f1(x1),x2)+Ψ(f2◦f1(x1),y) ∧ (1 ⊗ 1 ⊗ µ)

)
= (f2 ◦ f1)⋄µ.(7.6)

From (7.6) and (7.5) the proposition immediatly follows.
To prove (7.5) we factorize Π as

X1 × X2 × Y
Π2−→ X1 × X2

Π1−→ X1.

Notice that Π2 = idX1 ×π2, where π2 : X2 × Y → X2 is the natural projec-
tion. For notational convenience, let

T = MΦ(f1(x1),x2) ∧ MΨ(f2(x2),y) ∧ (1 ⊗ 1 ⊗ µ).

By a small abuse of notation we have Φ(f1(x1), x2) = Π∗
2Φ(f1(x1), x2) and

so

β ∧ T = Π∗
2Π∗

1f∗
1 ĉ(TX2) ∧ MΠ∗

2Φ(f1(x1),x2)

∧
(
1 ⊗ (π∗

2f∗
2 ĉ(TY ) ∧ MΨ(f2(x2),y) ∧ (1 ⊗ µ))

)
.

By applying (Π2)∗ and using (2.1), (2.24), and that (Π2)∗ = (idX1 ×π2)∗,
in view of (5.7) we get

(Π2)∗(β ∧ T ) = Π∗
1f∗

1 ĉ(TX2) ∧ MΦ(f1(x1),x2) ∧
(
1 ⊗ f⋄

2 µ
)
.
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Since Π∗ = (Π1)∗(Π2)∗, by applying (Π1)∗ now (7.5) follows in view of (5.7)
and (2.1).

Let us now show (7.6). Let f = f2 ◦ f1. We first check that

(7.7) j∗β = j∗((f∗ĉ(TY ) ⊗ 1 ⊗ 1) ∧ ĉ(N)
)
,

where

j : X1 × Y → X1 × X2 × Y, j(x1, y) = (x1, f1(x1), y)

and N → j(X1 × Y ) is the normal bundle of j(X1 × Y ) in X1 × X2 × Y

equipped with the metric induced by the natural isomorphism N ≃ TX2.
Then j∗ĉ(N) = j∗(1 ⊗ ĉ(TX2) ⊗ 1). From the special form of j we have
j∗(a ⊗ b ⊗ c) = (a ∧ f∗

1 b) ⊗ c if a, b, and c are smooth forms on X1, X2, and
Y , respectively. Thus,

(7.8) j∗(f∗
1 ĉ(TX2)⊗1⊗1) = f∗

1 ĉ(TX2)⊗1 = j∗(1⊗ĉ(TX2)⊗1) = j∗ĉ(N).

Moreover,

(7.9) j∗(1 ⊗ f∗
2 ĉ(TY ) ⊗ 1) = f∗

1 f∗
2 ĉ(TY ) ⊗ 1 = f∗ĉ(TY ) ⊗ 1

= j∗(f∗ĉ(TY ) ⊗ 1 ⊗ 1).

Now (7.7) follows from (7.8) and (7.9).
Let

T̃ = MΦ(f1(x1),x2)+Ψ(f(x1),y) ∧ (1 ⊗ 1 ⊗ µ).
By our assumption in the proposition of course T̃ = T , but (7.6) holds
without this assumption so we here distinguish between T̃ and T . In view
of Lemma 3.1, T̃ = j∗ν for some (PS-)current ν. By (7.7) and (2.1) thus

β ∧ T̃ = (f∗ĉ(TY ) ⊗ 1 ⊗ 1) ∧ ĉ(N) ∧ T̃ .

Hence, since Φ(f1(x1), x2) defines j(X1 × Y ) in X1 × X2 × Y it follows by
Lemma 5.9 and (2.1) that

(7.10) β ∧ T̃ = j∗
(
j∗(f∗ĉ(TY ) ⊗ 1 ⊗ 1) ∧ MΨ(f(x1),y) ∧ (1 ⊗ µ)

)
;

Lemma 5.9 is indeed applicable since, in view of Lemma 2.6, the metric
we have on N is the same as the one induced by the embedding N ↪→
h∗F |j(X1×Y ), where h(x1, x2, y) = (f1(x1), x2) and F → X2 × X2 is the
Hermitian vector bundle of which Φ is a section. Let P : X1 × Y → X1
be the natural projection. Then P∗ = Π∗j∗ and moreover P ∗f∗ĉ(TY ) =
j∗(f∗ĉ(TY )⊗1⊗1). Hence, by applying Π∗ to (7.10), in view of (5.7) we get

Π∗(β ∧ T̃ ) = Π∗j∗
(
P ∗f∗ĉ(TY ) ∧ MΨ(f(x1),y) ∧ (1 ⊗ µ)

)
= P∗

(
P ∗f∗ĉ(TY ) ∧ MΨ(f(x1),y) ∧ (1 ⊗ µ)

)
= f⋄µ.

This proves (7.6) and the proposition follows. □
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Whether the assumed M -identity in Proposition 7.2 holds depends on
how singular µ is compared to the composition f2 ◦ f1. To illustrate this,
assume that µ = g∗α, where g : V → Y and α are as in Definition 2.1. Then
one can show that if the fiber product V ′ := X2 ×Y V is a locally complete
intersection in X2 ×V and the fiber product X1 ×X2 V ′ is a locally complete
intersection in X1 ×V ′, then the assumed identity in Proposition 7.2 holds.
From this it follows in particular that if µ in Proposition 7.2 is a smooth
form, so that we can take V = Y , then the M -identity in the proposition
holds.

We conclude by a comment about the assumption in Proposition 7.2 that
X2 and Y are good. The conclusion f⋄

1 f⋄
2 µ = (f2 ◦ f1)⋄µ of Proposition 7.2

is a local statement in X so we can replace X by a small neighborhood of a
given x ∈ X. In view of Proposition 5.6(a) one can then replace X2 and Y in
Proposition 7.2 by small neighborhoods of f1(x) and f2(f1(x)), respectively.
Locally any complex manifold is good, cf. the proof of Proposition 3.3. The
assumption that X2 and Y are good thus becomes superfluous after these
localizations.
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