[Croissance exponentielle de l’homologie rationnelle de l’espace des lacets libres et des groupes d’homotopie de torsion]
En utilisant des méthodes intégrales, nous retrouvons et généralisons certains résultats de Félix, Halperin et Thomas sur la croissance des groupes d’homologie rationnelle des espaces des lacets libres, et obtenons une nouvelle famille d’espaces dont la -torsion dans les groupes d’homotopie croît exponentiellement et satisfait la conjecture de Moore pour tous les nombres premiers, sauf un nombre fini. Au vu des résultats, nous conjecturons qu’il devrait y avoir un lien étroit entre la croissance exponentielle dans les groupes d’homotopie rationnelle et les groupes d’homotopie de -torsion pour tout nombre premier .
Using integral methods we recover and generalize some results by Félix, Halperin and Thomas on the growth of the rational homology groups of free loop spaces, and obtain a new family of spaces whose -torsion in homotopy groups grows exponentially and satisfies Moore’s Conjecture for all but finitely many primes. In view of the results, we conjecture that there should be a strong connection between exponential growth in the rational homotopy groups and the -torsion homotopy groups for any prime .
Accepté le :
Première publication :
Publié le :
Keywords: Exponential growth, free loop space, homotopy exponent, Moore’s conjecture.
Mot clés : Croissance exponentielle, espace des lacets libre, exposant d’homotopie, conjecture de Moore.
Huang, Ruizhi 1 ; Theriault, Stephen 2
@article{AIF_2024__74_4_1365_0, author = {Huang, Ruizhi and Theriault, Stephen}, title = {Exponential growth in the rational homology of free loop spaces and in torsion homotopy groups}, journal = {Annales de l'Institut Fourier}, pages = {1365--1382}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {4}, year = {2024}, doi = {10.5802/aif.3627}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3627/} }
TY - JOUR AU - Huang, Ruizhi AU - Theriault, Stephen TI - Exponential growth in the rational homology of free loop spaces and in torsion homotopy groups JO - Annales de l'Institut Fourier PY - 2024 SP - 1365 EP - 1382 VL - 74 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3627/ DO - 10.5802/aif.3627 LA - en ID - AIF_2024__74_4_1365_0 ER -
%0 Journal Article %A Huang, Ruizhi %A Theriault, Stephen %T Exponential growth in the rational homology of free loop spaces and in torsion homotopy groups %J Annales de l'Institut Fourier %D 2024 %P 1365-1382 %V 74 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3627/ %R 10.5802/aif.3627 %G en %F AIF_2024__74_4_1365_0
Huang, Ruizhi; Theriault, Stephen. Exponential growth in the rational homology of free loop spaces and in torsion homotopy groups. Annales de l'Institut Fourier, Tome 74 (2024) no. 4, pp. 1365-1382. doi : 10.5802/aif.3627. https://aif.centre-mersenne.org/articles/10.5802/aif.3627/
[1] The smallest singularity of a Hilbert series, Math. Scand., Volume 51 (1982) no. 1, pp. 35-44 | DOI | MR | Zbl
[2] On the number of closed geodesics on a compact Riemannian manifold, Duke Math. J., Volume 49 (1982) no. 3, pp. 629-632 | DOI | MR | Zbl
[3] The loop space homotopy type of simply-connected four-manifolds and their generalizations, Adv. Math., Volume 262 (2014), pp. 213-238 | DOI | MR | Zbl
[4] Homotopy groups of highly connected Poincaré duality complexes, Doc. Math., Volume 27 (2022), pp. 183-211 | DOI | MR | Zbl
[5] -hyperbolicity of homotopy groups via -theory, Math. Z., Volume 301 (2022) no. 1, pp. 977-1009 | DOI | MR | Zbl
[6] Homotopy exponents for large -spaces, Int. Math. Res. Not. (2008) no. 16, rnn061, 5 pages | DOI | MR | Zbl
[7] Tame homotopy theory, Topology, Volume 18 (1979) no. 4, pp. 321-338 | DOI | MR | Zbl
[8] The homotopy Lie algebra for finite complexes, Publ. Math., Inst. Hautes Étud. Sci. (1982) no. 56, pp. 179-202 | DOI | Numdam | MR | Zbl
[9] Rational homotopy theory, Graduate Texts in Mathematics, 205, Springer, 2001, xxxiv+535 pages | DOI | MR | Zbl
[10] Exponential growth and an asymptotic formula for the ranks of homotopy groups of a finite 1-connected complex, Ann. Math., Volume 170 (2009) no. 1, pp. 443-464 | DOI | MR | Zbl
[11] On the growth of the homology of a free loop space, Pure Appl. Math. Q., Volume 9 (2013) no. 1, pp. 167-187 | DOI | MR | Zbl
[12] On the growth of the homology of a free looop space II, Ann. Inst. Fourier, Volume 67 (2017) no. 6, pp. 2519-2531 | DOI | MR | Zbl
[13] Homotopical effects of dilatation, J. Differ. Geom., Volume 13 (1978) no. 3, pp. 303-310 | DOI | MR | Zbl
[14] Suites inertes dans les algèbres de Lie graduées (“Autopsie d’un meurtre. II”), Math. Scand., Volume 61 (1987) no. 1, pp. 39-67 | DOI | MR | Zbl
[15] Moore’s conjecture for polyhedral products, Math. Proc. Camb. Philos. Soc., Volume 167 (2019) no. 1, pp. 23-33 | DOI | MR | Zbl
[16] Algebraic topology, Cambridge University Press, 2002, xii+544 pages | MR | Zbl
[17] Exponential growth of homotopy groups of suspended finite complexes, Math. Z., Volume 295 (2020) no. 3-4, pp. 1301-1321 | DOI | MR | Zbl
[18] The Betti numbers of the free loop space of a connected sum, J. Lond. Math. Soc., Volume 64 (2001) no. 1, pp. 205-228 | DOI | MR | Zbl
[19] On the Betti numbers of the free loop space of a coformal space, J. Pure Appl. Algebra, Volume 161 (2001) no. 1-2, pp. 177-192 | DOI | MR | Zbl
[20] Two contributions to the homotopy theory of -spaces, Ph. D. Thesis, Princeton University (1978)
[21] The exponent of a Moore space, Algebraic topology and algebraic -theory (Princeton, N.J., 1983) (Annals of Mathematics Studies), Volume 113, Princeton University Press, 1987, pp. 35-71 | MR | Zbl
[22] On conjectures of Moore and Serre in the case of torsion-free suspensions, Math. Proc. Camb. Philos. Soc., Volume 94 (1983) no. 1, pp. 53-60 | DOI | MR | Zbl
[23] Exponents and suspension, Math. Proc. Camb. Philos. Soc., Volume 133 (2002) no. 1, pp. 109-116 | DOI | MR | Zbl
[24] Homotopy fibrations with a section after looping (2020) (https://arxiv.org/abs/2005.11570, to appear in Mem. Amer. Math. Soc.)
[25] Homotopie rationnelle et croissance du nombre de géodésiques fermées, Ann. Sci. Éc. Norm. Supér., Volume 17 (1984) no. 3, pp. 413-431 | DOI | Numdam | MR | Zbl
[26] Classification of -connected -manifolds, Ann. Math., Volume 75 (1962), pp. 163-189 | DOI | MR | Zbl
Cité par Sources :