Length functions on mapping class groups and simplicial volumes of mapping tori
Annales de l'Institut Fourier, Online first, 24 p.

Let M be a closed orientable manifold. We introduce two numerical invariants, called filling volumes, on the mapping class group MCG(M) of M, which are defined in terms of filling norms on the space of singular boundaries on M, both with real and with integral coefficients. We show that filling volumes are length functions on MCG(M), we prove that the real filling volume of a mapping class f is equal to the simplicial volume of the corresponding mapping torus E f , while the integral filling volume of f is not smaller than the stable integral simplicial volume of E f .

We discuss several vanishing and non-vanishing results for the filling volumes. As applications, we show that the hyperbolic volume of 3-dimensional mapping tori is not subadditive with respect to their monodromy, and that the real and the integral filling norms on integral boundaries are often non-biLipschitz equivalent.

Soit M une variété fermée et orientable. Nous introduisons deux invariants numériques, dénotés volumes de remplissage, sur le groupe modulaire MCG(M) de M. Les invariants sont définis en fonction de normes de remplissage sur l’espace des bords singuliers de M, avec coefficients réels ou entiers. Nous montrons que les volumes de remplissage sont des fonctions de longueur, nous prouvons que le volume de remplissage réel d’une classe f est égal au volume simplicial du tore d’application correspondant E f , et que le volume de remplissage entier de f n’est pas plus petit que le volume simplicial entier stable de E f .

Nous exposons plusieurs résultats d’annulation et de positivité des volumes de remplissage. Comme conséquence, nous montrons que le volume hyperbolique des tores d’application tridimensionnels n’est pas sous-additif par rapport à la monodromie, et que les normes de remplissage réelle et entiére sur les bords entiers ne sont souvent pas biLipschitz-équivalents.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/aif.3610
Classification: 55N10, 57S05, 53C23, 57M07
Keywords: Simplicial volume, Stable integral simplicial volume, Filling volume, Length functions, Mapping torus, fibration over the circle, Mapping class group.
Mot clés : Volume simplicial, volume simplicial entier stable, volume de remplissage, fonctions de longueur, tore d’application, groupe modulaire.
Bertolotti, Federica 1; Frigerio, Roberto 2

1 Scuola Normale Superiore, Pisa (Italy)
2 Dipartimento di Matematica, Università di Pisa, (Italy)
@unpublished{AIF_0__0_0_A67_0,
     author = {Bertolotti, Federica and Frigerio, Roberto},
     title = {Length functions on mapping class groups and simplicial volumes of mapping tori},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2024},
     doi = {10.5802/aif.3610},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Bertolotti, Federica
AU  - Frigerio, Roberto
TI  - Length functions on mapping class groups and simplicial volumes of mapping tori
JO  - Annales de l'Institut Fourier
PY  - 2024
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3610
LA  - en
ID  - AIF_0__0_0_A67_0
ER  - 
%0 Unpublished Work
%A Bertolotti, Federica
%A Frigerio, Roberto
%T Length functions on mapping class groups and simplicial volumes of mapping tori
%J Annales de l'Institut Fourier
%D 2024
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3610
%G en
%F AIF_0__0_0_A67_0
Bertolotti, Federica; Frigerio, Roberto. Length functions on mapping class groups and simplicial volumes of mapping tori. Annales de l'Institut Fourier, Online first, 24 p.

[1] Belegradek, Igor; Hruska, G. Christopher Hyperplane arrangements in negatively curved manifolds and relative hyperbolicity, Groups Geom. Dyn., Volume 7 (2013) no. 1, pp. 13-38 | DOI | MR | Zbl

[2] Bertolotti, Federica Self-homotopy equivalences of 3-Manifolds (2022) (https://arxiv.org/abs/2207.05717)

[3] Bucher, Michelle; Neofytidis, Christoforos The simplicial volume of mapping tori of 3-manifolds, Math. Ann., Volume 376 (2020) no. 3-4, pp. 1429-1447 | DOI | MR | Zbl

[4] Connell, Chris; Wang, Shi Some remarks on the simplicial volume of nonpositively curved manifolds, Math. Ann., Volume 377 (2020) no. 3-4, pp. 969-987 | DOI | MR | Zbl

[5] Fauser, Daniel; Löh, Clara Variations on the theme of the uniform boundary condition, J. Topol. Anal., Volume 13 (2021) no. 1, pp. 147-174 | DOI | MR | Zbl

[6] Fauser, Daniel; Löh, Clara; Moraschini, Marco; Quintanilha, José Pedro Stable integral simplicial volume of 3-manifolds, J. Topol., Volume 14 (2021) no. 2, pp. 608-640 | DOI | MR | Zbl

[7] Frigerio, Roberto Bounded cohomology of discrete groups, Mathematical Surveys and Monographs, 227, American Mathematical Society, 2017, xvi+193 pages | DOI | MR | Zbl

[8] Frigerio, Roberto; Moraschini, Marco Gromov’s theory of multicomplexes with applications to bounded cohomology and simplicial volume, Memoirs of the American Mathematical Society, 283, American Mathematical Society, 2023 no. 1402, vi+153 pages | DOI | MR | Zbl

[9] Fujiwara, Koji An example of a closed 5-manifold of nonpositive curvature that fibers over a circle (2021) (https://arxiv.org/abs/2106.08549, to appear in Groups Geom. Dyn.)

[10] Gromov, Michael Volume and bounded cohomology, Publ. Math., Inst. Hautes Étud. Sci. (1982) no. 56, pp. 5-99 | Numdam | MR | Zbl

[11] Gromov, Michael Hyperbolic groups, Essays in group theory (Mathematical Sciences Research Institute Publications), Volume 8, Springer, 1987, pp. 75-263 | DOI | MR | Zbl

[12] Haagerup, Uffe; Munkholm, Hans J. Simplices of maximal volume in hyperbolic n-space, Acta Math., Volume 147 (1981) no. 1-2, pp. 1-11 | DOI | MR | Zbl

[13] Italiano, Giovanni; Martelli, Bruno; Migliorini, Matteo Hyperbolic 5-manifolds that fiber over S 1 , Invent. Math., Volume 231 (2023) no. 1, pp. 1-38 | DOI | MR | Zbl

[14] Kastenholz, Thorben; Reinhold, Jens Simplicial volume and essentiality of manifolds fibered over spheres, J. Topol., Volume 16 (2023) no. 1, pp. 192-206 | DOI | MR | Zbl

[15] Kin, Eiko; Kojima, Sadayoshi; Takasawa, Mitsuhiko Entropy versus volume for pseudo-Anosovs, Exp. Math., Volume 18 (2009) no. 4, pp. 397-407 | DOI | MR | Zbl

[16] Kojima, Sadayoshi Entropy, Weil–Petersson translation distance and Gromov norm for surface automorphisms, Proc. Am. Math. Soc., Volume 140 (2012) no. 11, pp. 3993-4002 | DOI | MR | Zbl

[17] Kojima, Sadayoshi; McShane, Greg Normalized entropy versus volume for pseudo-Anosovs, Geom. Topol., Volume 22 (2018) no. 4, pp. 2403-2426 | DOI | MR | Zbl

[18] Lackenby, Marc; Purcell, Jessica The triangulation complexity of fibred 3-manifolds (2019) (https://arxiv.org/abs/1910.10914, to appear in Geom. Topol.)

[19] Li, Xingzhe; Manin, Fedor Homological filling functions with coefficients, Groups Geom. Dyn., Volume 16 (2022) no. 3, pp. 889-907 | DOI | MR | Zbl

[20] Löh, Clara Homology and simplicial volume, Ph. D. Thesis, WWU Münster (2007) (available online at http://nbn-resolving.de/urn:nbn:de:hbz:6-37549578216)

[21] Löh, Clara Simplicial volume with 𝔽 p -coefficients, Period. Math. Hung., Volume 80 (2020) no. 1, pp. 38-58 | DOI | MR | Zbl

[22] Löh, Clara; Sauer, Roman Bounded cohomology of amenable covers via classifying spaces, Enseign. Math., Volume 66 (2020) no. 1-2, pp. 151-172 | DOI | MR | Zbl

[23] Matsumoto, Shigenori; Morita, Shigeyuki Bounded cohomology of certain groups of homeomorphisms, Proc. Am. Math. Soc., Volume 94 (1985) no. 3, pp. 539-544 | DOI | MR | Zbl

[24] Peyerimhoff, Norbert Simplices of maximal volume or minimal total edge length in hyperbolic space, J. Lond. Math. Soc., Volume 66 (2002) no. 3, pp. 753-768 | DOI | MR | Zbl

[25] Polymath, D. H. J. Homogeneous length functions on groups, Algebra Number Theory, Volume 12 (2018) no. 7, pp. 1773-1786 | DOI | MR | Zbl

[26] Sakuma, Makoto Surface bundles over S 1 which are 2-fold branched cyclic coverings of S 3 , Math. Sem. Notes Kobe Univ., Volume 9 (1981) no. 1, pp. 159-180 | MR | Zbl

[27] Sauer, Roman Volume and homology growth of aspherical manifolds, Geom. Topol., Volume 20 (2016) no. 2, pp. 1035-1059 | DOI | MR | Zbl

[28] Ye, Shengkui Length functions on groups and rigidity (2021) (https://arxiv.org/abs/2101.08902)

Cited by Sources: