[Non-lissabilité pour une classe de groupe d’homéomorphismes linéaires par morceaux de l’intervalle]
Pour une certaine classe de groupes d’homéomorphismes linéaires par morceaux de l’intervalle, on montre qu’ils n’admettent aucune action fidèle sur la droite suffisamment régulière. En s’appuyant sur un travail précédent de Brum, Matte Bon, Rivas, et l’auteur, le nouvel ingrédient est une observation introduite dans un travail récent de Hyde et Tatch Moore, qui permet de ramener le problème aux actions sur le cercle, et ensuite appliquer la théorie d’Herman–Yoccoz.
For a certain class of groups of piecewise linear homeomorphisms of the interval, we prove that they admit no sufficiently regular faithful action on the line. Building on previous work of Brum, Matte Bon, Rivas, and the author, the new ingredient is an observation from a recent work of Hyde and Tatch Moore, which allows to reduce the problem to the case of the circle, and then apply Herman–Yoccoz theory.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Group actions on the real line, locally moving groups, groups of piecewise linear homeomorphisms, Herman–Yoccoz theory, smoothability
Mot clés : Groupes agissant sur la droite, groupes localement mobiles, groupes d’homéomorphismes linéaires par morceaux, théorie d’Herman–Yoccoz, lissabilité
Triestino, Michele 1
@article{AIF_2024__74_3_1095_0, author = {Triestino, Michele}, title = {Non-smoothability for a class of groups of piecewise linear homeomorphisms of the interval}, journal = {Annales de l'Institut Fourier}, pages = {1095--1108}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {3}, year = {2024}, doi = {10.5802/aif.3626}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3626/} }
TY - JOUR AU - Triestino, Michele TI - Non-smoothability for a class of groups of piecewise linear homeomorphisms of the interval JO - Annales de l'Institut Fourier PY - 2024 SP - 1095 EP - 1108 VL - 74 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3626/ DO - 10.5802/aif.3626 LA - en ID - AIF_2024__74_3_1095_0 ER -
%0 Journal Article %A Triestino, Michele %T Non-smoothability for a class of groups of piecewise linear homeomorphisms of the interval %J Annales de l'Institut Fourier %D 2024 %P 1095-1108 %V 74 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3626/ %R 10.5802/aif.3626 %G en %F AIF_2024__74_3_1095_0
Triestino, Michele. Non-smoothability for a class of groups of piecewise linear homeomorphisms of the interval. Annales de l'Institut Fourier, Tome 74 (2024) no. 3, pp. 1095-1108. doi : 10.5802/aif.3626. https://aif.centre-mersenne.org/articles/10.5802/aif.3626/
[1] Sur les homéomorphismes du cercle de classe par morceaux qui sont conjugués par morceaux aux rotations irrationnelles, Ann. Inst. Fourier, Volume 58 (2008) no. 3, pp. 755-775 | DOI | MR | Zbl
[2] On groups of PL-homeomorphisms of the real line, Mathematical Surveys and Monographs, 215, American Mathematical Society, 2016, xvii+174 pages | DOI | MR | Zbl
[3] Centralizers in the R. Thompson group , Groups Geom. Dyn., Volume 7 (2013) no. 4, pp. 821-865 | DOI | MR | Zbl
[4] Hyperbolicity as an obstruction to smoothability for one-dimensional actions, Geom. Topol., Volume 23 (2019) no. 4, pp. 1841-1876 | DOI | MR | Zbl
[5] Automorphisms of generalized Thompson groups, J. Algebra, Volume 203 (1998) no. 1, pp. 285-348 | DOI | MR | Zbl
[6] Locally moving groups acting on the line and -focal actions (2021) (https://arxiv.org/abs/2104.14678)
[7] Circle homeomorphisms with two break points, Nonlinearity, Volume 19 (2006) no. 8, pp. 1951-1968 | DOI | MR | Zbl
[8] A priori bounds for GIETs, affine shadows and rigidity of foliations in genus 2 (2021) (https://arxiv.org/abs/2106.03529)
[9] Groupes d’homéomorphismes du cercle et cohomologie bornée, The Lefschetz centennial conference, Part III (Mexico City, 1984) (Contemporary Mathematics), Volume 58, American Mathematical Society, 1987, pp. 81-106 | DOI | MR | Zbl
[10] Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv., Volume 62 (1987) no. 2, pp. 185-239 | DOI | MR | Zbl
[11] Sur la conjugaison différentiable des difféomorphismes ducercle à des rotations, Publ. Math., Inst. Hautes Étud. Sci. (1979) no. 49, pp. 5-233 | DOI | MR | Zbl
[12] Dynamique des échanges d’intervalles des groupes de Higman-Thompson , Ann. Inst. Fourier, Volume 64 (2014) no. 4, pp. 1477-1491 | DOI | Zbl
[13] Subgroups of which do not embed into Thompson’s group , Groups Geom. Dyn., Volume 17 (2023) no. 2, pp. 533-554 | DOI | MR | Zbl
[14] Herman’s theory revisited, Invent. Math., Volume 178 (2009) no. 2, pp. 333-344 | DOI | MR | Zbl
[15] Rigidity for a class of generalized interval exchange transformations, Dynamical systems, ergodic theory, and probability. In memory of Kolya Chernov. Conference dedicated to the memory of Nikolai Chernov, University of Alabama at Birmingham, Birmingham, AL, USA, May 18–20, 2015, American Mathematical Society, 2017, pp. 161-167 | DOI | Zbl
[16] Chain groups of homeomorphisms of the interval, Ann. Sci. Éc. Norm. Supér., Volume 52 (2019) no. 4, pp. 797-820 | DOI | MR | Zbl
[17] Nombre de rotation, mesures invariantes et ratio set des homéomorphismes affines par morceaux du cercle, Ann. Inst. Fourier, Volume 55 (2005) no. 2, pp. 431-482 | DOI | Numdam | MR | Zbl
[18] Coherent actions by homeomorphisms on the real line or an interval, Isr. J. Math., Volume 235 (2020) no. 1, pp. 183-212 | DOI | MR | Zbl
Cité par Sources :