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ÉTALE DIFFERENCE ALGEBRAIC GROUPS

by Michael WIBMER (*)

Abstract. — Étale difference algebraic groups are a difference analog of étale
algebraic groups. Our main result is a Jordan–Hölder type decomposition theorem
for these groups. Roughly speaking, it shows that any étale difference algebraic
group can be build up from simple étale algebraic groups and two finite étale
difference algebraic groups. The simple étale algebraic groups occurring in this
decomposition satisfy a certain uniqueness property.

Résumé. — Les groupes algébriques aux différences étales sont des analogues
aux différence des groupes algébriques étales. Le résultat principal de cet article
est un théorème de décomposition de type Jordan–Hölder pour ces groupes. Nous
montrons que tout groupe algébrique aux différences étale peut être construit à
partir de groupes algébriques étales simples et de deux groupes algébriques aux
différences étales finis. Les groupes algébriques étales simples apparaissant dans
cette décomposition satisfont une certaine propriété d’unicité.

1. Introduction

Affine difference algebraic groups are a generalization of affine algebraic
groups. Instead of just algebraic equations, one allows difference algebraic
equations as the defining equations. Alternatively, affine difference algebraic
groups can be described as affine group schemes with an additional struc-
ture (the difference structure). In algebraic terms, to specify an affine dif-
ference algebraic group G over a difference field k (i.e., k is a field equipped
with an endomorphism σ : k → k) is equivalent to specifying a Hopf al-
gebra k{G} over k together with a ring endomorphism σ : k{G} → k{G}
extending σ : k → k such that the Hopf algebra structure maps commute
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2 Michael WIBMER

with σ. It is also required that G is “of finite σ-type”, i.e., there exists a
finite subset B of k{G} such that B, σ(B), σ2(B), . . . generates k{G} as a
k-algebra.

Étale difference algebraic groups are a difference analog of étale alge-
braic groups. Algebraically, they can be described as the affine difference
algebraic groups G such that every element of k{G} satisfies a separable
polynomial over k. For example, the difference algebraic equations xn = 1,
σ(x)x = 1 define an étale difference algebraic subgroup of the multiplica-
tive group Gm, as long as n is not divisible by the characteristic of k. By
interpreting algebraic equations as difference algebraic equations, any étale
algebraic group G over k defines an étale difference algebraic group [σ]kG
over k. The Hopf algebra corresponding to [σ]kG is the Hopf algebra of the
affine group scheme G × σG × σ2G × · · · , where σiG is the base change of G
along σi : k → k.

Étale difference algebraic groups feature prominently in the general struc-
ture theory of affine difference algebraic groups, as any affine difference
algebraic group G fits into a short exact sequence

1→ Go → G→ π0(G)→ 1,

with Go a connected affine difference algebraic group (the identity com-
ponent of G) and π0(G) ≃ G/Go an étale difference algebraic group (the
group of connected components of G).

The components referred to here are the components of the underly-
ing group scheme of G, i.e., the affine group scheme represented by k{G}.
Typically, there are infinitely many such components, i.e., k{π0(G)} is an
infinite dimensional k-vector space. In this article we also study a true
difference analog of the identity component of an algebraic group. The
σ-identity component Gσo of an affine difference algebraic group G is such
that G/Gσo is finite, i.e., k{G/Gσo} is a finite dimensional k-vector space.
A σ-infinitesimal étale difference algebraic group is an étale difference al-
gebraic group G such that G(R) = 1 whenever σ : R → R is injective. A
σ-infinitesimal étale difference algebraic group is automatically finite.

Our main result is a Jordan–Hölder type decomposition theorem for étale
difference algebraic groups.

Theorem (Theorem 6.38). — Let G be an étale difference algebraic
group. Then there exists a subnormal series

G ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn ⊇ 1
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ÉTALE DIFFERENCE ALGEBRAIC GROUPS 3

of difference algebraic subgroups of G such that G1 = Gσo, Gn is σ-in-
finitesimal and Gi/Gi+1 ≃ [σ]kGi for some σ-stably simple étale algebraic
group Gi for i = 1, . . . , n− 1.

If
G ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hm ⊇ 1

is another subnormal series such that H1 = Gσo, Hm is σ-infinitesimal and
Hi/Hi+1 ≃ [σ]kHi for some σ-stably simple étale algebraic group Hi for
i = 1, . . . ,m − 1, then m = n and there exists a permutation τ such that
Gi and Hτ(i) are σ-stably equivalent.

Here an étale algebraic group G is called simple if its only closed normal
subgroups are 1 and G and σ-stably simple if σiG is simple for every i ∈ N.
Finally, two étale algebraic groups G and H are σ-stably equivalent if there
exist i, j ∈ N such that σiG and σjH are isomorphic.

The category of étale algebraic groups over k is equivalent to the category
of finite groups equipped with a continuous action of the absolute Galois
group of k. There is a similar combinatorial-arithmetic description of étale
difference algebraic groups (Theorem 5.6): Fix an extension σ : ks → ks of
σ : k → k to the separable algebraic closure ks of k. Then there exists a
unique endomorphism σ : G → G of the absolute Galois group G = G (ks/k)
of k such that for every τ ∈ G the diagram

ks
σ(τ) //

σ

��

ks

σ

��
ks

τ // ks

commutes. Recall that an endomorphism σ : G → G of a profinite group G
is called expansive if there exists a normal open subgroup N of G such that⋂
i∈N σ

−i(N) = 1. The category of étale difference algebraic groups over k is
equivalent to the category of profinite groups G equipped with an expansive
endomorphism σ : G → G and a continuous action of G that is compatible
with σ in the sense that σ(τ(g)) = σ(τ)(σ(g)) for τ ∈ G and g ∈ G.

In particular, if k is separably algebraically closed, the category of étale
difference algebraic groups over k is equivalent to the category of profinite
groups equipped with an expansive endomorphism. The study of expansive
endo- or automorphisms of profinite groups or more generally totally dis-
connected locally compact groups is an interesting topic in its own right.
See e.g., [12, 14, 35, 36]. When translated to profinite groups (via Theo-
rem 5.6) our decomposition theorem recovers results proved by G. Willis
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4 Michael WIBMER

([35, Section 6]) for expansive automorphisms of profinite groups. (The
case of expansive endomorphisms of profinite groups is somewhat more
complicated than the case of expansive automorphisms but similar ideas
and techniques apply.) A restatement and proof of Theorem 6.38 in the
language of profinite groups can be found in [33].

Our decomposition theorem has some formal similarities with Babbitt’s
decomposition theorem ([18, Theorem 5.4.13]), an important structure the-
orem for finitely generated extensions of difference fields whose underlying
field extension is Galois. This similarity is no coincidence, in fact, as de-
tailed in [33, Section 6], one can deduce Babbitt’s decomposition theorem
from the profinite group version of Theorem 6.38 via the Galois correspon-
dence.

The theory of difference algebraic groups is still in its infancy, at least
compared to the sister theory of differential algebraic groups, where a large
body of foundational material was developed well before the turn of the
century. (See the text books [5, 17] and the references given there.) There-
fore, a goal of this article is also to provide some foundational results and
ideas to pave the way for a further comprehensive study of affine difference
algebraic groups. In this regard, our main contributions are

• our study of the difference identity component of an affine difference
algebraic group and the associated group of difference connected
components,

• our study of σ-infinitesimal difference algebraic groups (a difference
analog of infinitesimal algebraic groups),

• our study of the σ-Frobenius morphism (a difference analog of the
Frobenius morphism of an algebraic group).

Note that, while infinitesimal algebraic groups and the Frobenius morphism
only make sense over a field of positive characteristic, σ-infinitesimal differ-
ence algebraic groups and the σ-Frobenius morphism make sense over an
arbitrary difference field. Roughly speaking, the idea is that the abstract
endomorphism σ assumes the role played, in the study of algebraic groups,
by the Frobenius endomorphism a 7→ ap in characteristic p.

A main motivation for developing the theory of affine difference algebraic
groups, is that these groups can be used, via appropriate Galois theories
([9, 21]), to study the difference algebraic relations among the solutions of
linear differential and difference equations. In this context, Theorem 6.38
sheds light on the possible difference algebraic relations among algebraic
solutions of linear differential or difference equations.

ANNALES DE L’INSTITUT FOURIER



ÉTALE DIFFERENCE ALGEBRAIC GROUPS 5

We conclude the introduction with an overview of the article. In Sec-
tion 2 we go through the details of the definition of affine difference alge-
braic groups and we review the known results on affine difference algebraic
groups relevant for our purpose. We then embark on a general study of
the difference identity component of a difference algebraic group and the
associated group of difference connected components in Section 3. After a
brief discussion of basic properties of étale difference algebraic groups in
Section 4, we establish the combinatorial-arithmetic description of the cat-
egory of étale difference algebraic groups in Section 5. Finally, in Section 6
we prove our decomposition theorem.

2. Preliminaries and notation

In this preliminary section we recall the basic definitions and construc-
tions from difference algebra. We also review the required results from [32]
and [34] concerning affine difference algebraic groups.

All rings are assumed to be commutative and unital. The natural num-
bers N contain 0.

2.1. Difference algebra

Difference algebra is the study of difference equations from an algebraic
perspective. Standard references are [8] and [18].

A difference ring, or σ-ring for short, is a ring R together with an endo-
morphism σ : R→ R. A difference field, or σ-field for short, is a difference
ring whose underlying ring is a field. A σ-subring of a σ-ring R is a subring
S of R such that σ(S) ⊆ S. In case S and R are fields, we call R a σ-field
extension of S.

A morphism of σ-rings ψ : R→ S is a morphism of rings such that

R
ψ //

σ

��

S

σ

��
R

ψ // S

commutes. In this situation, we also say that S is an R-σ-algebra or that
S is a difference algebra over R. An R-σ-subalgebra of an R-σ-algebra S
is an R-subalgebra of S that is a σ-subring. A morphism of R-σ-algebras
is a morphism of σ-rings that also is a morphism of R-algebras. If S1 and
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6 Michael WIBMER

S2 are R-σ-algebras, the tensor product S1 ⊗R S2 is an R-σ-algebra via
σ(s1 ⊗ s2) = σ(s1)⊗ σ(s2). This is, in fact, the coproduct in the category
of R-σ-algebras.

An R-σ-algebra S is finitely σ-generated (over R) if there exists a finite
subset B of S such that B, σ(B), σ2(B), . . . generates S as an R-algebra.

A difference ideal, or σ-ideal for short, of a σ-ring R is an ideal I of R such
that σ(I) ⊆ I. In this case, R/I naturally carries the structure of a σ-ring
such that the canonical map R→ R/I is a morphism of σ-rings. For F ⊆ R,
the smallest σ-ideal of R that contains F is called the σ-ideal σ-generated
by F . It is denoted by [F ]. Explicitly, we have [F ] = (F, σ(F ), σ2(F ), . . .).

As a matter of convenience, we usually suppress the endomorphism σ in
the notation, e.g., we speak of the σ-ring R, rather than the σ-ring (R, σ). In
case we have need to indicate that we consider the underlying ring without
the endomorphism, we will write R♯.

Let k be σ-field. The functor R⇝ R♯ from the category of k-σ-algebras to
the category of k-algebras has a right adjoint T ⇝ [σ]kT ([34, Lemma 1.7]).
Explicitly, for a k-algebra T , the k-σ-algebra [σ]kT can be described as
follows. For i ∈ N let σi

T = T ⊗k k denote the k-algebra obtained from T

by base change via σi : k → k. In particular, multiplication in σi

T = T ⊗k k
is determined by (t1 ⊗ λ1) · (t1 ⊗ λ2) = t1t2 ⊗ λ1λ2. Moreover, λ1t⊗ λ2 =
t⊗ σi(λ1)λ2 ∈ σi

T for λ1, λ2 ∈ k and t ∈ T and the k-algebra structure of
σi

T is given by k → σi

T , λ 7→ 1⊗ λ.
Set

T [i] = T ⊗k σT ⊗k · · · ⊗k σ
i

T

and let [σ]kT be the union the T [i]’s. The endomorphism σ : [σ]kT → [σ]kT
is given by

σ((t0⊗λ0)⊗· · ·⊗(ti⊗λi)) = (1⊗1)⊗(t0⊗σ(λ0))⊗· · ·⊗(ti⊗σ(λi)) ∈ T [i+1]

for (t0 ⊗ λ0) ⊗ · · · ⊗ (ti ⊗ λi) ∈ σ0
T ⊗k · · · ⊗k σi

T = T [i]. Note that if
B ⊆ T generates T as a k-algebra, then B ⊆ [σ]kT σ-generates [σ]kT as a
k-σ-algebra.

2.2. Affine difference algebraic geometry

Let k be a σ-field. The σ-polynomial ring

k{y1, . . . , yn} = k[y1, . . . , yn, σ(y1), . . . , σ(yn), σ2(y1), . . . , σ2(yn), . . .]

over k in the σ-variables y1, . . . , yn is the polynomial ring over k in the
variables σi(yj) (i ∈ N, 1 ⩽ j ⩽ n) equipped with the action of σ that
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ÉTALE DIFFERENCE ALGEBRAIC GROUPS 7

extends σ : k → k and acts on the variables as suggested by their names.
If f ∈ k{y1, . . . , yn} is a σ-polynomial and a = (a1, . . . , an) ∈ Rn, where R
is a k-σ-algebra, then f(a) ∈ R is defined by replacing σi(yj) with σi(aj).
For F ⊆ k{y1, . . . , yn}, the set of R-valued solutions of F is

VR(F ) = {a ∈ Rn | f(a) = 0 ∀ f ∈ F}.

Note that R ⇝ VR(F ) is naturally a functor from the category of k-σ-al-
gebras to the category of sets.

Definition 2.1. — An affine difference variety, or affine σ-variety for
short, over k is a functor from the category of k-σ-algebras to the category
of sets that is isomorphic to a functor of the form R ⇝ VR(F ) for some
n ⩾ 1 and F ⊆ k{y1, . . . , yn}.

All difference varieties in this article are affine and for the sake of brevity
we shall henceforth drop the attribute affine. A morphism of σ-varieties
(over k) is a morphism of functors, i.e., a natural transformation.

The functorR⇝ VR(F ) is represented by the finitely σ-generated k-σ-al-
gebra k{y1, . . . , yn}/[F ]. Indeed,

Hom(k{y1, . . . , yn}/[F ], R)→ VR(F ), ψ 7→ (ψ(y1), . . . , ψ(yn))

is a bijection that is functorial in R. As any finitely σ-generated k-σ-algebra
can be written in the form k{y1, . . . , yn}/[F ], it follows that a functor from
the category of k-σ-algebras to the category of sets is a σ-variety if and
only if it is representable by a finitely σ-generated k-σ-algebra. Thus, from
the Yoneda lemma we obtain:

Remark 2.2. — The category of σ-varieties over k is anti-equivalent to
the category of finitely σ-generated k-σ-algebras.

For a σ-variety X we denote its representing k-σ-algebra with k{X}
and call it the coordinate ring of X. We will usually identify X with the
functor R⇝ Hom(k{X}, R). For a morphism ϕ : X → Y of σ-varieties, the
corresponding morphism ϕ∗ : k{Y } → k{X} of k-σ-algebras is called the
morphism dual to ϕ.

A σ-closed σ-subvariety X of a σ-variety Y is a subfunctor X of Y that is
defined by a σ-ideal I(X) of k{Y }. In more detail, the requirement is that
for any k-σ-algebra R, the bijection Y (R) ≃ Hom(k{Y }, R) maps X(R)
onto {ψ ∈ Hom(k{Y }, R) | ψ(I(X)) = 0}. We call I(X) the defining ideal
of X (in k{Y }). We may write X ⊆ Y to indicate that X is a σ-closed
σ-subvariety of Y .

Note that a σ-closed σ-subvariety is a σ-variety it its own right; it is rep-
resented by k{X} = k{Y }/I(X). The canonical map k{Y } → k{Y }/I(X)
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8 Michael WIBMER

is the dual of the inclusion morphism X → Y . The σ-closed σ-subvarieties
of Y are in bijection with the σ-ideals of k{Y } ([34, Lemma 1.4]).

A morphism ϕ : X → Y of σ-varieties is a σ-closed embedding if it
induces an isomorphism between X and a σ-closed σ-subvariety of Y . This
is equivalent to ϕ∗ : k{Y } → k{X} being surjective ([34, Lemma 1.6]).

Let ϕ : X → Y be a morphism of σ-varieties and let Z be a σ-closed
σ-subvariety of Y . We define a subfunctor ϕ−1(Z) of X by ϕ−1(Z)(R) =
ϕ−1
R (Z(R)), where ϕR : X(R)→ Y (R) for any k-σ-algebra R. As

ϕ−1(Z)(R) = {ψ ∈ Hom(k{X}, R) | I(Z) ⊆ ker(ψϕ∗)}
= {ψ ∈ Hom(k{X}, R) | ϕ∗(I(Z)) ⊆ ker(ψ)},

we see that ϕ−1(Z) is the σ-closed σ-subvariety ofX defined by I(ϕ−1(Z)) =
[ϕ∗(I(Z))] ⊆ k{X}.

Notational conventions. — Throughout the article we will work with
σ-varieties (over the σ-field k) and with varieties/schemes (over the field k).
To have a clear notational distinction between the two, we will, following
the conventions from [32] and [34], use standard font, e.g., X, Y , G, H for
σ-varieties and calligraphic font, e.g., X , Y, G, H for varieties/schemes.

A similar convention is used for coordinate rings. As usual, we use k[X ]
to denote the coordinate ring, i.e., the ring of global sections, of an affine
scheme X over k. For σ-varieties we use, as above, curly brackets, e.g.,
k{X} is the coordinate ring of a σ-variety X over k.

For an affine scheme X of finite type over k, the functor [σ]kX defined by
([σ]kX )(R) = X (R) for any k-σ-algebra R is a σ-variety over k. Indeed, if
k[X ] is the coordinate ring of X , then Hom(k[X ], R♯) ≃ Hom([σ]kk[X ], R)
for any k-σ-algebra R. So k{[σ]kX} = [σ]kk[X ]. For simplicity, we will
write k{X} for k{[σ]kX} = [σ]kk[X ]. By a σ-closed σ-subvariety of X we
mean a σ-closed σ-subvariety of [σ]kX .

Let Y be a σ-closed σ-subvariety of X . For i ∈ N let σiX be the base
change of X via σi : k → k and set

X [i] = X × σX × · · · × σi

X .

The i-th order Zariski closure Y [i] of Y in X is the scheme theoretic image of
the morphism Y ♯ → X [i] of affine schemes corresponding to the morphism
k[X [i]] ↪→ k{X} → k{Y } of k-algebras. In other words, if I(Y ) ⊆ k{X} =
[σ]kk[X ] =

⋃
i∈N k[X [i]] is the defining ideal of Y in [σ]kX , then Y [i] is the

closed subscheme of X [i] defined by the ideal I(Y ) ∩ k[X [i]] of k[X [i]]. We
say that Y is Zariski dense in X if Y [0] = X and we refer to Y [0] as the
Zariski closure of Y in X .
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ÉTALE DIFFERENCE ALGEBRAIC GROUPS 9

Note that the projections πi: X [i]→X [i−1], (x0, . . . , xi) 7→ (x0, . . . , xi−1)
restrict to projections πi : Y [i]→ Y [i− 1].

2.3. Difference algebraic groups

The category of σ-varieties over k has products. Indeed, if X and Y are
σ-varieties over k, the functor X×Y defined by (X×Y )(R) =X(R)×Y (R)
for any k-σ-algebraR, is a product ofX and Y . It is represented by k{X}⊗k
k{Y }. There also is a terminal object, namely the σ-variety represented by
the k-σ-algebra k. Therefore we can make the following definition.

Definition 2.3. — A σ-algebraic group (over k) is a group object in
the category of σ-varieties (over k).

In other words, a σ-algebraic group over k is a functor from the category
of k-σ-algebras to the category of groups such that the correspond functor
to the category of sets is representable by a finitely σ-generated k-σ-algebra.

A morphism of σ-algebraic groups ϕ : G→ H is a morphism of σ-varieties
such that ϕR : G(R)→ H(R) is a morphism of groups for any k-σ-algebra.
See [34, Section 2] for a list of examples of σ-algebraic groups.

A σ-closed subgroup of a σ-algebraic group G is a σ-closed σ-subvariety
H of G such that H(R) is a subgroup of G(R) for any k-σ-algebra R. We
may write H ⩽ G to indicate that H is a σ-closed subgroup of G. A σ-closed
embedding of σ-algebraic groups is a morphism of σ-algebraic groups that
is a σ-closed embedding of σ-varieties.

Recall (see e.g., [31, Section 1.4]) that affine group schemes correspond
to Hopf algebras. A k-σ-Hopf algebra is a k-σ-algebra R equipped with
the the structure of a Hopf algebra such that the Hopf algebra structure
maps (the comultiplication ∆: R→ R⊗k R, the counit ε : R→ k and the
antipode S : R→ R) are morphisms of k-σ-algebras. From Remark 2.2 we
obtain:

Remark 2.4. — The category of σ-algebraic groups over k is anti-
equivalent to the category of finitely σ-generated k-σ-Hopf algebras.

For a σ-algebraic group G, we write mG for the kernel of the counit
ε : k{G} → k. Note that mG defines the trivial subgroup 1 of G.

Lemma 2.5 ([34, Lemma 2.15]). — Let R be a k-σ-Hopf algebra and S
a k-Hopf algebra. If S → R is a morphism of k-Hopf algebras, the induced
morphism [σ]kS → R is a morphism of k-σ-Hopf algebras.

TOME 0 (0), FASCICULE 0



10 Michael WIBMER

Example 2.6. — To any finite group G equipped with an endomorphism
σ : G → G one can associate a σ-algebraic group G. Since we will refer to
this example later, we explain the details. For any k-σ-algebra R, let G(R)
denote the set of all locally constant functions f : Spec(R)→ G such that

Spec(R)
f //

σ

��

G

σ

��
Spec(R)

f // G

commutes, where σ : Spec(R) → Spec(R) is the continuous map induced
by σ : R→ R. Then G(R) is a group under pointwise multiplication.

Let kG be the finite dimensional k-algebra of all maps from G to k. As
explained in [31, Section 2.3] the k-algebra kG naturally has the structure
of a k-Hopf algebra. Defining σ : kG → kG by σ(h)(g) = σ(h(σ(g))) for
h : G → k and g ∈ G defines the structure of k-σ-Hopf algebra on kG. One
can show ([34, Example 2.14]) thatG is represented by the k-σ-Hopf algebra
k{G} = kG.

For further examples of σ-algebraic groups see [34, Section 2]. Before
further discussing σ-algebraic groups, let us agree on the following conven-
tions.

Notation for algebraic groups. — We use the term “algebraic group (over
k)” as synonymous for “affine group scheme of finite type (over k)”. The
coordinate ring, i.e., the ring of global sections, of an algebraic group G
is denoted by k[G]. Following [20, Definition 5.5] a morphism ϕ : G → H
of algebraic groups is a quotient map if the dual map ϕ∗ : k[H] → k[G] is
injective (equivalently, faithfully flat). By a closed subgroup of an algebraic
group we mean a closed subgroup scheme.

From now on and throughout this article k denotes an arbitrary σ-field.
All σ-varieties, σ-algebraic groups and algebraic groups are assumed to be
over k (unless the contrary is explicitly indicated).

If ϕ : X → Y is a morphism of σ-varieties, there exists a unique σ-closed
σ-subvariety ϕ(X) of Y such that ϕ factors through the inclusion ϕ(X) ⊆ Y
and if Z is any σ-closed σ-subvariety of Y such that ϕ factors through Z,
then ϕ(X) ⊆ Z ([34, Lemma 1.5]). Indeed, ϕ(X) is the σ-closed σ-subva-
riety of Y defined by I(ϕ(X)) = ker(ϕ∗). If ϕ : G → H is a morphism of
σ-algebraic groups, then ϕ(G) is a σ-closed subgroup of H.

If G is an algebraic group over k, then [σ]kG is a σ-algebraic group.
By a σ-closed subgroup of G, we mean a σ-closed subgroup of [σ]kG. For
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ÉTALE DIFFERENCE ALGEBRAIC GROUPS 11

i ∈ N the affine scheme G[i] = G × · · · × σiG is an algebraic group and if
G is a σ-closed subgroup of G, then G[i] is a closed subgroup of G[i]. The
projections πi : G[i]→ G[i− 1] are morphisms of algebraic groups. In fact,
they are quotient maps.

A basic fact about σ-algebraic groups is that every σ-algebraic group is
isomorphic to a σ-closed subgroup of an algebraic group.

Proposition 2.7 ([34, Proposition 2.16]). — Let G be a σ-algebraic
group. Then there exists an algebraic group G and a σ-closed embedding
G→ [σ]kG.

These σ-closed embeddings of σ-algebraic groups into algebraic groups
can be used to define three numerical invariants of a σ-algebraic group G:
the σ-dimension σ- dim(G), the order ord(G) and the limit degree ld(G).

Theorem 2.8 ([34, Theorem 3.7]). — Let G be a σ-closed subgroup of
an algebraic group G. For i ∈ N let di = dim(G[i]) denote the dimension of
the i-th order Zariski closure of G in G. Then there exist d, e ∈ N such that
di = d(i+1)+e for all sufficiently large i. The integer d only depends on G
(and not on the choice of the σ-closed embedding of G into G). Moreover,
if d = 0, the integer e only depends on G.

The integer d of Theorem 2.8 is called the σ-dimension of G. If
σ- dim(G) = 0, the integer e of Theorem 2.8 is called the order of G.

For an algebraic group G we denote with |G| the dimension of k[G] as a
k-vector space. (This is infinite if G has positive dimension.)

Proposition 2.9. — Let G be a σ-closed subgroup of an algebraic
group G and for i ∈ N let G[i] denote the i-th order Zariski closure of
G in G. Let Gi denote the kernel of the projection πi : G[i]→ G[i−1]. Then
the sequence (|Gi|)i∈N is non-increasing and therefore eventually constant.
The eventual value limi→∞ |Gi| only depends on G (and not on the choice
of the σ-closed embedding of G into G).

Proof. — This follows by combining Propositions 4.1 and 5.1 in [34]. □

The value ld(G) = limi→∞ |Gi| from Proposition 2.9 is called the limit
degree of G. Note that ld(G) is finite if and only if σ- dim(G) = 0. In [7],
the authors introduce an invariant for difference field extension called the
distant degree and discuss its relation with the limit degree. See, in par-
ticular, [7, Sections 1.14 and 1.15] where the case of difference groups is
discussed. It also seems interesting to note that the main result of [7] as
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well as our decomposition theorem (Theorem 6.38) are closely related to re-
sults of G. Willis on automorphisms of totally disconnected locally compact
groups.

The following Lemma explains the meaning of ld(G) = 1.

Lemma 2.10 ([34, Lemma 5.7]). — Let G be a σ-algebraic group. Then
ld(G) = 1 if and only if k{G} is finitely generated as a k-algebra.

We next discuss quotients. A σ-closed subgroup N of a σ-algebraic group
G is normal if N(R) is a normal subgroup of G(R) for any k-σ-algebra R.
We may write N ⊴ G to indicate that N is a normal σ-closed subgroup
of G.

The kernel ker(ϕ) of a morphism ϕ : G → H of σ-algebraic groups is
defined by ker(ϕ)(R) = ker(ϕR) for any k-σ-algebra R. Since ker(ϕ) =
ϕ−1(1), where 1 is the trivial subgroup of H (defined by the kernel mH of
the counit k{H} → k), we see that ker(ϕ) is the normal σ-closed subgroup
of G defined by I(ker(ϕ)) = (ϕ∗(mH)) ⊆ k{G}.

A quotient of G mod N is a σ-algebraic group G/N together with a
morphism π : G→ G/N of σ-algebraic groups such that N ⊆ ker(π) and for
any other morphism ϕ : G→ H of σ-algebraic groups such that N ⊆ ker(ϕ)
there exists a unique morphism ϕ′ : G/N → H such that

G
π //

ϕ ��

G/N

ϕ′
}}

H

commutes.

Theorem 2.11 ([32, Theorem 3.3]). — Let G be σ-algebraic group and
N a normal σ-closed subgroup of G. Then a quotient of G mod N exists.
Moreover, a morphism π : G→ G/N of σ-algebraic groups is a quotient of
G mod N if and only if N = ker(π) and π∗ : k{G/N} → k{G} is injective.

A morphism ϕ : G→ H of σ-algebraic groups is a quotient map if it is a
quotient of G mod N for some normal σ-closed subgroup of G. Equivalently,
ϕ(G) = H, i.e., ϕ∗ : k{H} → k{G} is injective. See [32, Proposition 4.10]
for further characterizations of quotient maps.

A sequence 1→ N
α−→ G

β−→ H → 1 of morphisms of σ-algebraic groups is
exact if α is a σ-closed embedding, β is a quotient map and α(N) = ker(β).

A k-σ-Hopf subalgebra of a k-σ-Hopf algebra is a Hopf subalgebra that
is also a k-σ-subalgebra.
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Theorem 2.12 ([34, Theorem 4.5]). — A k-σ-Hopf subalgebra of a
finitely σ-generated k-σ-Hopf algebra is finitely σ-generated.

Corollary 2.13. — Let G be a σ-algebraic group. There is a bijection
between the normal σ-closed subgroups of G and the k-σ-Hopf subalgebras
of k{G}.

Proof. — If N is a normal σ-closed subgroup of G and π : G → G/N

the corresponding quotient, then π∗(k{G/N}) is k-σ-Hopf subalgebra of
k{G}. Conversely, if R is a k-σ-Hopf subalgebra of k{G}, then R is finitely
σ-generated by Theorem 2.12. So R = k{H} for some σ-algebraic group
H. The kernel N of the morphism G → H of σ-algebraic groups corre-
sponding to the inclusion R ⊆ k{G} is a normal σ-closed subgroup of G.
By Theorem 2.11 these two constructions are inverse to each other. □

The three numerical invariants are well-behaved under quotients.

Proposition 2.14. — Let N be a normal σ-closed subgroup of a σ-al-
gebraic group G. Then

σ- dim(G) = σ- dim(N) + σ- dim(G/N),
ord(G) = ord(N) + ord(G/N)

and

ld(G) = ld(G/N) · ld(N).

Proof. — This is Corollaries 3.13 and 3.15 in [34]. □

The formulas in Proposition 2.14 are written in a form so that they still
make sense in case infinite values are involved. For example, if ld(G) is
finite, then also ld(N) and ld(G/N) are finite and ld(G/N) = ld(G)

ld(N) .
If X is a σ-variety over k and R a k-σ-algebra, we denote with XR the

functor from the category of R-σ-algebras to the category of sets such that
XR(R′) = X(R′) for any R-σ-algebra R′. Note that XR is represented by
k{X} ⊗k R. In particular, if R = k′ is a σ-field extension of k, then Xk′ is
a σ-variety over k′, called the base change of X along k → k′.

Quotients have all the expected good properties, for example:

Lemma 2.15 ([32, Lemma 3.9]). — Let N be a normal σ-closed sub-
group of a σ-algebraic group G and let k′ be a σ-field extension of k. Then
(G/N)k′ = Gk′/Nk′ .

Lemma 2.16 ([32, Corollary 3.4]). — If ϕ : G → H is a morphism of
σ-algebraic groups, the induced morphism G/ ker(ϕ) → H is a σ-closed
embedding.
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Example 2.17 ( [32, Example 3.7]). — If N is a normal closed subgroup
of an algebraic group G. Then [σ]kG/[σ]kN = [σ]k(G/N ).

The isomorphism theorems hold for σ-algebraic groups. In particular, we
have the first isomorphism theorem:

Theorem 2.18 ([32, Theorem 5.2]). — Let ϕ : G → H be a morphism
of σ-algebraic groups. Then the induced morphism G/ ker(ϕ)→ ϕ(G) is an
isomorphism of σ-algebraic groups.

As a corollary to the above theorem we obtain:

Corollary 2.19. — A morphism of σ-algebraic groups that is a quo-
tient map and a σ-closed embedding is an isomorphism.

The following is the third isomorphism theorem for σ-algebraic groups.

Theorem 2.20 ([32, Theorem 5.9]). — Let N be a normal σ-closed sub-
group of a σ-algebraic group G with quotient map π : G→ G/N . Then the
map H 7→ π(H) = H/N defines a bijection between the σ-closed subgroups
H of G containing N and the σ-closed subgroups of G/N . The inverse is
H ′ 7→ π−1(H ′). A σ-closed subgroup H of G containing N is normal in G

if and only if H/N is normal in G/N . In this case the canonical morphism
G/H → (G/N)/(H/N) is an isomorphism.

Let G be a σ-algebraic group. A subnormal series of G is a sequence

(2.1) G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = 1

of σ-closed subgroups of G such that Gi+1 is normal in Gi for i = 0, . . . , n−
1. Another subnormal series

(2.2) G = H0 ⊇ H1 ⊇ · · · ⊇ Hm = 1

is a refinement of (2.1) if {G0, . . . , Gn} ⊆ {H1, . . . ,Hm}. The subnormal
series (2.1) and (2.2) are equivalent if m = n and there exists a permutation
π such that the factor groups Gi/Gi+1 and Hπ(i)/Hπ(i)+1 are isomorphic
for i = 0, . . . , n− 1.

Our main main decomposition theorem (Theorem 6.38) is reminiscent
of the Jordan–Hölder theorem. The standard proof of the uniqueness part
of the Jordan–Hölder theorem proceeds through the Schreier refinement
theorem. The following is the Schreier refinement theorem for σ-alegbraic
groups.

Theorem 2.21 ([32, Theorem 7.5]). — Any two subnormal series of a
σ-algebraic group have equivalent refinements.
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3. The difference identity component

There are three types of “identity components” for a σ-algebraic group G.
The identity component Go, the σ-identity component Gσo and the strong
identity component Gso. The identity component and the strong identity
component are discussed in [32, Section 6]. These are not relevant for the
purpose of this article. However, it might be interesting to note that, more
or less by definition, a σ-algebraic group G is σ-étale if and only if Go = 1.

In this section we discuss the σ-identity component. It plays a crucial role
in our decomposition theorem (Theorem 6.38). The σ-identity component
was already used in [1] to derive a necessary condition on a σ-algebraic
group to be a σ-Galois group over the difference-differential field C(x) with
derivation δ = d

d x and endomorphism σ given by σ(f(x)) = f(x + 1).
Some difference algebraic results necessary to define the difference identity
component also already appeared in [29].

We will give a difference topological interpretation of the difference iden-
tity component. Therefore, we begin with some general difference topolog-
ical definitions and observations.

3.1. The difference topology

Let X be a topological space equipped with a continuous endomorphism
σ : X → X. In this situation we may call X a σ-topological space. A
morphism of σ-topological spaces is a continuous map that commutes with
the action of σ. A subset V of X is called σ-invariant if σ(V ) ⊆ V . We
call V σ-closed if it is closed and σ-invariant. The σ-topology on X is the
topology on X whose closed sets are the σ-closed sets. The σ-connected
components of X are the connected components with respect to the σ-
topology. We call X σ-connected if X is connected with respect to the
σ-topology.

We are mainly interested in the following example: For a σ-ring R,
Spec(R) is a naturally a σ-topological space. The topology is the usual
Zariski topology and

σ : Spec(R)→ Spec(R), p 7→ σ−1(p)

is the continuous endomorphism induced by σ : R→ R.
For a subset B of R, let us denote with V(B) = {p ∈ Spec(R) | B ⊆ p}

the closed subset of Spec(R) defined by B. The map a 7→ V(a) is a bijection
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between the set of radical σ-ideals of R and the set of σ-closed subsets of
Spec(R).

Our first goal is to express the property that Spec(R) is σ-connected
via difference algebraic conditions on R. Recall that an element e of a
ring is called idempotent if e2 = e. The trivial idempotents are 1 and 0.
The spectrum of a ring R is connected if and only if R has no non-trivial
idempotent elements ([26, Lemma 10.21.4] or [31, Section 5.5]). We will
prove a difference analog of this result.

An element f of a σ-ring R is called constant if σ(f) = f . The subring
of all constant elements is denoted by Rσ.

Proposition 3.1. — Let R be a σ-ring. If e ∈ R is a non-trivial con-
stant idempotent element, then

Spec(R) = V(e) ⊎ V(1− e)

is a decomposition of Spec(R) into disjoint non-empty σ-closed subsets.
Conversely, if Spec(R) = X ⊎ Y is a decomposition of Spec(R) into dis-
joint non-empty σ-closed subsets, then there exists a non-trivial constant
idempotent element e ∈ R such that X = V(e) and Y = V(1− e).

Proof. — Set e′ = 1−e. Then also e′ is constant and idempotent. Because
e is constant, the ideal generated by e is a σ-ideal and therefore V(e) is
σ-closed. Similarly, V(e′) is σ-closed. Since ee′ = 0, every p ∈ Spec(R) is
contained in V(e) or V(e′). Since e+ e′ = 1, no p can be contained in V(e)
and V(e). Thus Spec(R) is the disjoint union of the σ-closed sets V(e) and
V(e′).

Suppose V(e) = ∅. Then 1 must lie in the ideal generated by e. So 1 = re

for some r ∈ R. Therefore e = re2 = re. Combining the last two equations
yields e = 1; a contradiction. Suppose V(e) = Spec(R). Then e must lie
in the nilradical of R. Because e is idempotent this implies e = 0; again a
contradiction.

Now assume that Spec(R) = X ⊎ Y is a decomposition of Spec(R) into
disjoint non-empty σ-closed subsets. It is known that any decomposition
of Spec(R) into two disjoint non-empty closed subsets arises from a pair
e, e′ of non-trivial idempotent elements with ee′ = 0 and e + e′ = 1 ([26,
Lemma 10.21.3] or [31, Section 5.5]). So X = V(e) and Y = V(e′). It
remains to show that e is constant.

Let p ∈ X = V(e). Since X is σ-invariant, σ−1(p) ∈ X, i.e., e ∈ σ−1(p).
Thus σ(e) ∈ p and V(e) ⊆ V(σ(e)). Similarly, one shows V(e′) ⊆ V(σ(e′)).
Because σ(e)σ(e′) = 0 and σ(e) + σ(e′) = 1, we have Spec(R) = V(σ(e)) ⊎
V(σ(e′)). This implies V(e) = V(σ(e)) and V(e′) = V(σ(e′)). Consequently

ANNALES DE L’INSTITUT FOURIER

https://stacks.math.columbia.edu/tag/00EF
https://stacks.math.columbia.edu/tag/00EE


ÉTALE DIFFERENCE ALGEBRAIC GROUPS 17

√
(e) =

√
(σ(e)). Because e is idempotent, it follows that e = aσ(e) for

some a ∈ R. Since (1 − σ(e))σ(e) = 0, this implies (1 − σ(e))e = 0. Inter-
changing the roles of e and σ(e) in the last argument, we find (1−e)σ(e) = 0.
Taking the difference of the last two equations yields σ(e) = e as de-
sired. □

From Proposition 3.1 we immediately obtain:

Corollary 3.2. — Let R be a σ-ring. Then Spec(R) is σ-connected if
and only if R contains no non-trivial constant idempotent element.

Recall that idempotent elements e1, . . . , en of a ring R are called orthog-
onal if eiej = 0 for i ̸= j.

Proposition 3.3. — Let R be a σ-ring and let e1, . . . , en ∈ R be con-
stant orthogonal idempotent elements with e1 + · · · + en = 1 such that
no ei can be written as a sum of two non-trivial constant orthogonal
idempotent elements. Then the σ-connected components of Spec(R) are
V(1−e1), . . . ,V(1−en). Moreover, eiR is naturally a σ-ring and Spec(eiR)
is isomorphic to V(1− ei) as a σ-topological space.

Proof. — Note that eiR is a σ-ideal of R but not a σ-subring of R (be-
cause the identity elements differ). However, eiR is also a σ-ring with iden-
tity element ei. As eiR and R/(1 − ei) are isomorphic as σ-rings, we see
that Spec(eiR) and V(1− ei) are isomorphic as σ-topological spaces.

Assume e∈ eiR is a constant idempotent element. Then ei = eie+ei(1−e)
expresses ei as a sum of orthogonal constant idempotent elements. By as-
sumption eie = ei or eie = 0. But eie = e, so e = ei or e = 0. It follows
from Corollary 3.2 that V(1− ei) ≃ Spec(eiR) is σ-connected.

Because the ei’s are orthogonal, the V(1− ei)’s are disjoint and because
e1 + · · ·+ en = 1, their union equals Spec(R). In summary we see that the
V(1− ei)’s are the σ-connected components of Spec(R). □

To show that Spec([σ]kT ) is σ-connected for any k-algebra T , we will
need the following result.

Lemma 3.4. — Let T be a k-algebra. Then ([σ]kT )σ = kσ.

Proof. — Let (vi)i∈I be a k-basis of T ⊆ [σ]kT that contains 1. For
n ⩾ 0 and i = (i0, . . . , in) ∈ In+1 define vi = vi0σ(vi1) · · ·σn(vin). By
construction of T [n] (Section 2.1), Vn := (vi)i∈In+1 is a k-basis of T [n].
Because (vi)i∈I contains 1, we have Vn ⊆ Vn+1 and σ(Vn) ⊆ Vn+1.

Let a be a constant element of [σ]kT and suppose a does not lie in k. Let
n ⩾ 0 be minimal such that a ∈ T [n]. Then we can write a =

∑
v∈Vn

λvv
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with λv ∈ k, where, for some v ∈ Vn ∖ Vn−1, the coefficient λv is non-zero.
As a is constant

(3.1) a =
∑
v∈Vn

σ(λv)σ(v)

If v ∈ Vn ∖ Vn−1, then σ(v) ∈ Vn+1 ∖ Vn. Therefore equation (3.1) shows
that a /∈ T [n], a contradiction. □

The following corollary shows that σ-connectedness is a concept that
truly belongs to the σ-world. The connectedness of Spec(T ) and the σ-con-
nectedness of Spec([σ]kT ) are unrelated.

Corollary 3.5. — Let T be a k-algebra. Then Spec([σ]kT ) is σ-con-
nected.

Proof. — By Corollary 3.2 it suffices to show that [σ]kT has no non-
trivial constant idempotent element. But by Proposition 3.4 every constant
idempotent of [σ]kT belongs to k and must therefore be trivial. □

3.2. Strongly étale difference algebras and the strong core

To motivate the definitions in this subsection, let us recall a possible path
to the definition of the connected component Go of an algebraic group G. See
e.g., [31, Chapter 6]. Instead of defining Go directly, one first constructs the
coordinate ring of G/Go. Let π0(k[G]) be the union of all étale k-subalgebras
of k[G]. One shows that π0(k[G]) is an étale k-algebra and a Hopf subalgebra
of k[G]. One can then define Go as the kernel of the morphism G → π0(G)
of algebraic groups corresponding to the inclusion π0(k[G]) ⊆ k[G] of Hopf
algebras.

We will follow here a similar path. The first step is to clarify, what is
the appropriate difference analog of an étale k-algebra in our context. This
question is addressed in the following definitions.

Definition 3.6. — A k-σ-algebra R is σ-separable (over k) if the map
σ : R⊗k k′ → R⊗k k′ is injective for every σ-field extension k′ of k.

See [29, Proposition 1.2] for other equivalent characterizations of σ-
separable k-σ-algebras. E.g., a k-σ-algebra R is σ-separable if and only
if the map σ : σR→ R, f ⊗ λ 7→ σ(f)λ is injective. Here σR = R ⊗k k is
the base change of R via σ : k → k.

Recall ([3, Chapter V, §6]) that a k-algebra T is étale if T ⊗k k is iso-
morphic (as a k-algebra) to a finite direct product of copies of the algebraic
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closure k of k. (In particular, T is finite dimensional as a k-vector space.)
Following [29, Definition 1.7] we make the following definition.

Definition 3.7. — A k-σ-algebra is strongly σ-étale if it is σ-separable
over k and étale as a k-algebra. A σ-algebraic group G is strongly σ-étale
if k{G} is strongly σ-étale.

Let us see some examples of strongly σ-étale σ-algebraic groups.

Example 3.8. — Let 0 ⩽ α < n and m ⩾ 1 be integers and let G be the
σ-closed subgroup of the multiplicative group Gm given by

G(R) = {g ∈ R× | gn = 1, σm(g) = gα}

for any k-σ-algebra R. Then k{G} = k[x, σ(x), . . . , σm−1(x)], where x de-
notes the image of the coordinate function on Gm. Let us assume that the
characteristic of k is zero or does not divide n. Then the polynomial yn−1
is separable over k and it follows that k{G} is an étale k-algebra.

We claim that G is strongly σ-étale if and only if α and n are relatively
prime. Indeed, if there are a, b ∈ N with 1 ⩽ a < n and αa = bn, then

σ(σm−1(x)a − 1) = xαa − 1 = xbn − 1 = 0

and so σ is not injective on k{G} and therefore G is not strongly σ-étale.
On the other hand, if 1 = aα+ bn for a, b ∈ Z, then

σ(σm−1(x)a) = σm(x)a = xaα = xaαxbn = x.

This shows that σ(k{G})→ k{G} is surjective. Because σ(k{G})→ k{G} is
a morphism of finite dimensional k-algebras, it must then also be injective.
So k{G} is σ-separable and therefore strongly σ-étale.

Example 3.9. — Let G be a finite group with an endomorphism σ : G→ G
and let G be the σ-algebraic group associated to these data as in Exam-
ple 2.6. We claim that G is strongly σ-étale if and only if σ : G → G is an
automorphism. Clearly k{G} = kG is étale, so the question is about the
σ-separability of k{G}.

If σ : G → G is not an automorphism, there exist a g ∈ G that does not
lie in the image of σ : G→ G. Define h : G→ k by

h(g′) =
{

1 if g′ = g,

0 otherwise.

Then σ(h)(g′) = σ(h(σ(g′))) = σ(0) = 0 for any g′ ∈ G. Thus σ(h) = 0 and
σ : k{G} → k{G} is not injective. So G is not strongly σ-étale.

Conversely, if σ : G→ G is an automorphism, then σ(k{G})→ k{G} is an
isomorphism. Therefore k{G} is σ-separable and so strongly σ-étale.
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We proceed on our path to define the σ-identity component.

Definition 3.10 ([29, Definition 1.17]). — Let R be a k-σ-algebra. The
union πσ0 (R) = πσ0 (R|k) of all strongly σ-étale k-σ-subalgebras of R is called
the strong core of R.

The strong core πσ0 (R) of R is a σ-separable k-σ-subalgebra of R ([29,
Remark 1.18]). It is however an open problem if πσ0 (R) is strongly σ-étale
(equivalently, finite dimensional as a k-vector space) if R is finitely σ-gener-
ated ([29, Conjecture 1.19]). However, ifR is a finitely σ-generated k-σ-Hopf
algebra, then πσ0 (R) is strongly σ-étale ([29, Theorem 3.2]).

The strong core has good functorial properties:

Lemma 3.11 ([29, Lemma 1.25]). — Let R and S be k-σ-algebras. Then

πσ0 (R⊗k S) = πσ0 (R)⊗k πσ0 (S).

Lemma 3.12 ([29, Lemma 1.24]). — Let R be a k-σ-algebra and let k′

be a σ-field extension of k. Then

πσ0 (R⊗k k′|k′) = πσ0 (R|k)⊗k k′.

The following proposition allows us to define the σ-identity component
and the group of σ-connected components of a σ-algebraic group. It is a
difference analog of [31, Theorem 6.7].

Proposition 3.13. — Let G be a σ-algebraic group. Among the mor-
phisms from G to strongly σ-étale σ-algebraic groups there exists a univer-
sal one.

In more detail: There exists a strongly σ-étale σ-algebraic group πσ0 (G),
together with a morphism G→ πσ0 (G) of σ-algebraic groups such that for
every morphism G → H of σ-algebraic groups with H strongly σ-étale,
there exists a unique morphism πσ0 (G)→ H making

G //

��

πσ0 (G)

||
H

commutative.

Proof. — This was already proved in [1, Proposition 6.5]. For the con-
venience of the reader and because it is instructive, we sketch the proof:
Using Lemma 3.11 one shows that πσ0 (k{G}) is a k-σ-Hopf subalgebra. By
Theorem 2.12 it is finitely σ-generated. Because πσ0 (k{G}) is a union of
k-σ-algebras that are finite dimensional k-vector spaces, it follows from the
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finite σ-generation that in fact πσ0 (k{G}) is a finite dimensional k-vector
space. Thus πσ0 (k{G}) is strongly σ-étale and corresponds to a strongly σ-
étale σ-algebraic group πσ0 (G). The inclusion πσ0 (k{G}) ⊆ k{G} correspond
to a morphism G→ πσ0 (G) of σ-algebraic groups.

Let k{H} be a strongly σ-étale k-σ-Hopf algebra and k{H} → k{G} a
morphism of k-σ-Hopf algebras. Since quotients of strongly σ-étale k-σ-al-
gebras are strongly σ-étale ([29, Lemma 1.15]), the image of k{H} in k{G}
is strongly σ-étale, i.e., contained in πσ0 (k{G}). In other words, the map
k{H} → k{G}, factors uniquely through the inclusion πσ0 (k{G}) ⊆ k{G}.
Dualizing yields the required universal property. □

As a corollary to the above proof we obtain:

Corollary 3.14. — Let G be a σ-algebraic group. Then πσ0 (k{G}) is
strongly σ-étale.

The reader may wonder about the significance of the σ-separability as-
sumption in Definition 3.7. Indeed, one may wonder if only working with
k-σ-subalgebras that are étale as k-algebras (and not necessarily strongly
σ-étale) leads to similar results. The following example shows that this is
not the case.

Example 3.15. — Let G be the σ-algebraic subgroup of G2
m given by

G(R) =
{(

g1
g2

)
∈ G2

m(R)
∣∣∣∣ g2

1 = 1, σ(g1) = 1, g2
2 = 1

}
for any k-σ-algebra R. Let S denote the union of all k-σ-subalgebras of
k{G} that are étale as k-algebras. Then S is a k-σ-subalgebra of k{G}.
However, as we will show, S is not a k-σ-Hopf subalgebra of k{G}.

Let us assume that the characteristic of k is not equal to 2. WithH1(R) =
{g ∈ Gm(R) | g2 = 1, σ(g) = 1} and H2(R) = {g ∈ Gm(R) | g2 = 1} we
have G = H1 ×H2. Moreover,

k{H1} = k{y}/[y2 − 1, σ(y)− 1] = k[y]/(y2 − 1)
= k[y]/(y − 1)⊕ k[y]/(y + 1) ≃ k ⊕ k.

Thus, if e1 and e2 denote the images of 1+y
2 and 1−y

2 in k{H1} respectively,
then e1 and e2 are orthogonal idempotent elements of k{H1} with σ(e1) =
1, σ(e2) = 0 and k{H1} = ke1 ⊕ ke2. We have

k{G} = k{H1} ⊗k k{H2} = (e1 ⊗ k{H2})⊕ (e2 ⊗ k{H2}).

For any element a ∈ e2 ⊗ k{H2} we have σ(a) = 0 and so k{a} = k[a] is
a k-σ-algebra that is étale as a k-algebra. This shows that e2 ⊗ k{H2} is
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contained in S. In particular, S has infinite dimension as a k-vector space,
because k{H2} = k{y}/[y2 − 1] has infinite dimension as a k-vector space.

Suppose S is a k-σ-Hopf subalgebra of k{G}. Then S is finitely σ-gener-
ated over k by Theorem 2.12 and it follows that S is a finite dimensional
k-vector space; a contradiction. So S is not a k-σ-Hopf subalgebra of k{G}.

3.3. The difference identity component and the group of
difference connected components

Definition 3.16. — Let G be a σ-algebraic group. The σ-algebraic
group πσ0 (G) from Proposition 3.13 is called the group of σ-connected
components of G. The kernel Gσo of G → πσ0 (G) is called the σ-identity
component of G.

So k{πσ0 (G)} = πσ0 (k{G}) and πσ0 (G) is strongly σ-étale. Moreover the
morphism G→ πσ0 (G) is a quotient map and G/Gσo = πσ0 (G).

Our next goal is to connect πσ0 (G) with the σ-topology on Spec(k{G}).
In particular, we will see that πσ0 (G) = 1 if and only if Spec(k{G}) is
σ-connected. To this end we need some preparatory results.

Recall that a non-zero idempotent element e is primitive if it cannot
be written as e = e′ + e′′ for non-zero orthogonal idempotent elements e′

and e′′. In an étale k-algebra the set {e1, . . . , en} of primitive idempotent
elements is finite. Moreover, the ei’s are orthogonal and e1 + · · ·+ en = 1.

Lemma 3.17 ([29, Lemma 1.11]). — Let R be a strongly σ-étale k-σ-al-
gebra. Then σ induces a bijection on the set of primitive idempotent ele-
ments of R.

Lemma 3.18. — Let R be a strongly σ-étale k-σ-algebra and let us
denote with d1, . . . , dm ∈ R the primitive idempotent elements of R. Let
A1 ⊎ · · · ⊎An = {1, . . . ,m} be the partition of {1, . . . ,m} corresponding to
the cycle decomposition of the permutation τ of the di’s induced by σ (cf.
Lemma 3.17). For i = 1, . . . , n let ei =

∑
j∈Ai

dj .
Then e1, . . . , en are constant orthogonal idempotent elements with e1 +

· · · + en = 1 such that no ei can be written as a sum of two non-trivial
constant orthogonal idempotent elements.

Proof. — The ei’s are constant because the Ai’s are the orbits of τ .
Since the dj ’s are orthogonal and the Ai’s are disjoint, also the ei’s are
orthogonal. We have e1 + · · · + en = d1 + · · · + dm = 1. Any constant
idempotent element of R is a sum of some ei’s, so no ei can be written as
a sum of two non-trivial constant orthogonal idempotent elements. □
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Proposition 3.19. — Let R be a k-σ-algebra such that πσ0 (R) is
strongly σ-étale. Let e1, . . . , en ∈ πσ0 (R) be as in Lemma 3.18. Then the
σ-connected components of Spec(R) are V(1−e1), . . . ,V(1−en). Moreover
V(1− ei) is isomorphic to Spec(eiR) as a σ-topological space.

Proof. — By [29, Lemma 1.12] all the constant idempotent elements of
R belong to πσ0 (R). So by Lemma 3.18 the constant idempotent elements
e1, . . . , en satisfy the condition of Proposition 3.3. □

The topological space of a σ-algebraic group G is Spec(k{G}) (equipped
with the Zariski topology). As in Section 3.1 above, we consider Spec(k{G})
as a σ-topological space.

Theorem 3.20. — Let G be a σ-algebraic group. Then the topological
space of G has only finitely many σ-connected components. Moreover, the
topological space of Gσo is isomorphic (as a σ-topological space) to the
σ-connected component of the topological space of G that contains the
identity, i.e., the kernel mG of the counit ε : k{G} → k.

Proof. — As πσ0 (k{G}) is strongly σ-étale (Corollary 3.14), the first state-
ment follows immediately from Theorem 3.19. Let d1, . . . , dm ∈ πσ0 (k{G})
and e1, . . . , en ∈ πσ0 (k{G}) be as in Lemma 3.18. Then the counit
ε : πσ0 (k{G})→ k maps precisely one di to 1 ∈ k and all other di’s to 0. We
may assume that ε(d1) = 1. By Lemma 3.17 we have σ(d1) ∈ {d1, . . . , dm}.
As ε(σ(d1)) = σ(ε(d1)) = σ(1) = 1, this shows that σ(d1) = d1. So
e1 = d1. The kernel of ε on πσ0 (k{G}) is the ideal generated by 1 − e1.
So, by the definition of Gσo, we have I(Gσo) = (1− e1) ⊂ k{G}. Therefore
k{Gσo} = k{G}/(1− e1) and consequently Spec(k{Gσo}) is isomorphic to
V(1− e1) ⊆ Spec(k{G}). We know from Proposition 3.19 that V(1− e1) is
a σ-connected component and clearly mG ∈ V(1− e1). □

There does not seem to be an easy formula for the number of σ-connected
components. Indeed, the following example illustrates that the number of
σ-connected components does not only depend on the underlying field of the
base difference field, but it also depends on the endomorphism σ : k → k.

Example 3.21. — Let k = Q (considered as a constant σ-field). Let G be
the σ-closed subgroup of Gm given by

G(R) = {g ∈ R× | g3 = 1, σ(g) = g}

for any k-σ-algebra R. Then Spec(k{G}) consists of two elements and σ is
the identity map on Spec(k{G}). Thus G has two σ-connected components.

Now assume k is a σ-field of characteristic zero that contains the two
non-trivial third roots of unity a1 and a2. Then Spec(k{G}) consists of
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three elements. The endomorphism σ either permutes or fixes a1 and a2.
If σ fixes a1 and a2, then σ is the identity map on Spec(k{G}) and G

has three σ-connected components. If σ permutes a1 and a2, then G has
two σ-connected components. In particular, in this case the number of
σ-connected components of G is strictly smaller than the vector space di-
mension of πσ0 (k{G}) = k{G}.

We next characterize σ-connected σ-algebraic groups.

Lemma 3.22. — For a σ-algebraic group G, the following statements
are equivalent:

(i) The topological space of G is σ-connected.
(ii) G = Gσo.
(iii) πσ0 (G) = 1.

Proof. — The equivalence of (ii) and (iii) is tautological. The implication
(iii) ⇒ (i) follows from the fact that the topological space of Gσo is σ-
connected by Theorem 3.20

Finally, let us show that (i) implies (iii). Let d1, . . . , dm ∈ πσ0 (k{G}) and
e1, . . . , en ∈ πσ0 (k{G}) be as in Lemma 3.18. Then

πσ0 (k{G}) = e1π
σ
0 (k{G})× · · · × enπσ0 (k{G})

and as in the proof of Theorem 3.20 we have e1 = d1. So

e1π
σ
0 (k{G}) = d1π

σ
0 (k{G})

is a finite separable field extension of k (because πσ0 (k{G}) is an étale k-
algebra). But the counit ε identifies e1π

σ
0 (k{G}) = πσ0 (k{G})/(1− e1) with

k. So e1π
σ
0 (k{G}) = e1k ≃ k. We know from Proposition 3.19 that G has

n σ-connected components. By assumption n = 1. So πσ0 (k{G}) = k. □

Definition 3.23. — A σ-algebraic group satisfying the equivalent con-
ditions of Lemma 3.22 is called σ-connected.

As an immediate corollary to Theorem 3.20 we obtain:

Corollary 3.24. — Let G be a σ-algebraic group. Then Gσo is σ-con-
nected.

Example 3.25. — Let G be an algebraic group. Then [σ]kG is a
σ-connected σ-algebraic group by Corollary 3.5.

Example 3.26. — The σ-algebraic group G from Example 3.15 is σ-con-
nected. With the notation of Example 3.15, we clearly have πσ0 (k{H1}) = k.
Note that H2 is the algebraic group of order two, considered as a σ-algebraic
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group. So it follows from Example 3.25 that πσ0 (k{H2}) = k. Finally, using
Lemma 3.11 we find

πσ0 (k{G}) = πσ0 (k{H1} ⊗k k{H2}) = πσ0 (k{H1})⊗k πσ0 (k{H2}) = k.

Example 3.27. — Let n ⩾ 2 be an integer and let G be the σ-algebraic
group given by

G(R) = {g ∈ R× | gn = 1, σ(g) = 1} ⩽ Gm(R)

for any k-σ-algebra R. We claim that G is σ-connected. Let x ∈ k{G}
denote the image of the coordinate function on Gm. Then k{G} = k{x} =
k[x] with σ(x) = 1 and xn = 1. Clearly, σ(x− 1) = 0. Since mG = (x− 1)
is a maximal ideal of k{G}, the kernel of σ on k{G} is mG. Therefore
σ−1(p) = mG for every prime ideal p of k{G}. Now Spec(k{G}) is a discrete
topological space. Suppose X1 and X2 are non-empty disjoint σ-invariant
subsets of Spec(k{G}). A point x1 from X1 is mapped onto mG under σ,
similarly for a point x2 from X2. So mG lies in the intersection of X1 and
X2; a contradiction. Thus G is σ-connected.

An example of a σ-algebraic group that is not σ-connected can be de-
duced from Example 3.8:

Example 3.28. — Let G be the σ-algebraic group from Example 3.8 with
α = 1. Then πσ0 (G) = G and so Gσo = 1. In particular, G is not σ-con-
nected.

The formation of πσ0 (G) and Gσo is compatible with base extension:

Proposition 3.29. — Let G be a σ-algebraic group and k′ a σ-field
extension of k. Then

πσ0 (Gk′) = πσ0 (G)k′ and (Gσo)k′ = (Gk′)σo.

Proof. — This is clear from Lemma 3.12. □

A connected algebraic group is geometrically connected ([20, Proposi-
tion 1.34]). From Proposition 3.29 we obtain a similar result in our setting:

Corollary 3.30. — Let G be a σ-connected σ-algebraic group. Then
Gk′ is σ-connected for every σ-field extension k′ of k.

Recall ([32, Definition 6.15]) that a σ-closed subgroup H of a σ-algebraic
group G is characteristic if for every k-σ-algebra R, every automorphism
of GR induces an automorphism of HR.

Theorem 3.31. — Let G be a σ-algebraic group. Then Gσo is a char-
acteristic subgroup of G.

TOME 0 (0), FASCICULE 0



26 Michael WIBMER

Proof. — By Lemma [32, Lemma 6.16] it suffices to show that for every
k-σ-algebra R, every automorphism ψ of the R-σ-Hopf algebra k{G}⊗k R
maps πσ0 (k{G})⊗k R into πσ0 (k{G})⊗k R. Since ψ is an automorphism of
the k-σ-algebra k{G}⊗k R, we have ψ(πσ0 (k{G}⊗k R)) ⊆ πσ0 (k{G}⊗k R).
Using Lemma 3.11, we obtain

ψ(πσ0 (k{G})⊗ 1) ⊆ ψ(πσ0 (k{G} ⊗k R)) ⊆ πσ0 (k{G} ⊗k R)
= πσ0 (k{G})⊗k πσ0 (R) ⊆ πσ0 (k{G})⊗k R.

Thus ψ(πσ0 (k{G})⊗k R) ⊆ πσ0 (k{G})⊗k R as required. □

The three basic numerical invariants for σ-algebraic groups do not change
when passing to the σ-identity component.

Proposition 3.32. — Let G be a σ-algebraic group. Then

σ- dim(Gσo)k = σ- dim(G), ord(Gσo) = ord(G) and ld(Gσo) = ld(G).

Proof. — By Proposition 2.14 it suffices to show that σ- dim(πσ0 (G)) = 0,
ord(πσ0 (G)) = 0 and ld(πσ0 (G)) = 1. Clearly a strongly σ-étale σ-algebraic
group has σ-dimension zero and order zero. Furthermore, a strongly σ-étale
σ-algebraic group has limit degree one by Lemma 2.10. □

The following two propositions are useful for determining the σ-identity
component in concrete examples. Proposition 3.33 is a difference analog
of [20, Proposition 5.58], while Proposition 3.35 is a difference analog of [20,
Proposition 5.59].

Proposition 3.33. — Let G be a σ-algebraic group. If N is a normal
σ-connected σ-closed subgroup of G such that G/N is strongly σ-étale,
then N = Gσo.

Proof. — As G/N is strongly σ-étale, we obtain from Proposition 3.13 a
commutative diagram

G //

!!

πσ0 (G)

{{
G/N

Hence Gσo ⩽ N . On the other hand, the image of N under the morphism
G→ πσ0 (G) is trivial because N is σ-connected, and so N ⩽ Gσo. □

For any σ-algebraic group G, there exists a unique (up to isomorphism)
exact sequence

1→ Gσo → G→ πσ0 (G)→ 1
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with Gσo σ-connected and πσ0 (G) strongly σ-étale. The existence follows
from Proposition 3.13 and Corollary 3.24, while the uniqueness follows from
Proposition 3.33 (or directly from Proposition 3.13).

The following example shows how Proposition 3.33 can be used to de-
termine the σ-identity component of a σ-algebraic group.

Example 3.34. — Let G be the σ-algebraic group given by

G(R) = {g ∈ R× | g4 = 1, g2σ(g)2 = 1} ⩽ Gm(R)

for any k-σ-algebra R. Let us assume that the characteristic of k is not
equal to two. We will show that G is not σ-connected. Indeed, G has two
σ-connected components and Gσo is given by Gσo(R) = {g ∈ R× | g2 = 1}.

Let H be the σ-algebraic group given by

H(R) = {g ∈ R× | g2 = 1, σ(g) = g} ⩽ Gm(R)

for any k-σ-algebra R. It follows from g4 = 1 and g2σ(g)2 = 1 that σ(g2) =
g2 in G(R). Therefore we can define a morphism of σ-algebraic groups

ϕ : G→ H, g 7→ g2.

We claim that ϕ is a quotient map. Recall ([32, Example 4.5 and Propo-
sition 4.10]) that quotient maps are not necessarily surjective on the R-
points. Indeed, to see that ϕ is a quotient map, it suffices to show that
ϕ(G) = H. As k{H} = k{y}/[y2 − 1, σ(y) − y] = k[y]/(y2 − 1) = k × k,
we see that the only closed subgroups of H are H itself and the triv-
ial group. So, it suffices to show that ϕ(G) is not the trivial group. But
for R = k[i] = k[y]/(y2 + 1) with σ(i) = i and g = i ∈ G(R) we have
ϕR(g) = g2 = −1 ̸= 1 and so ϕ(G) is not trivial.

The kernel N of ϕ is given by N(R) = {g ∈ R× | g2 = 1}. It follows
from Example 3.25 that N is σ-connected. Moreover, by Example 3.8 the
σ-algebraic group H is strongly σ-étale. Therefore it follows from Proposi-
tion 3.33 that Gσo = N and πσ0 (G) = H. As πσ0 (k{G}) = k{H} = k × k,
with the two non-trivial idempotent elements being constant, it follows
from Proposition 3.19 that G has two σ-connected components.

See [1, Example 6.8] for another example computation of πσ0 (G) and Gσo
that uses Proposition 3.33.

Proposition 3.35. — Let 1→ N → G→ H → 1 be an exact sequence
of σ-algebraic groups. If N and H are σ-connected, then G is σ-connected.
Moreover, if G is σ-connected, then H is σ-connected.

Proof. — By Proposition 3.13, the morphism N → G → πσ0 (G) factors
through the morphism N → πσ0 (N) = 1. So N is contained in Gσo, i.e.,

TOME 0 (0), FASCICULE 0



28 Michael WIBMER

in the kernel of G → πσ0 (G). We therefore have an induced quotient map
G/N → πσ0 (G). But G/N ≃ H is σ-connected, so G/N → πσ0 (G) factors
through πσ0 (G/N) = 1. Thus πσ0 (G) = 1.

For a quotient map G → H, we have an inclusion k{H} ⊆ k{G}. So,
clearly, πσ0 (k{H}) = k if πσ0 (k{G}) = k. Alternatively, this also follows from
Proposition 3.13, as the quotient map G → H → πσ0 (H) factors through
πσ0 (G) = 1. □

The following example illustrates how Proposition 3.35 can be used to
show that a σ-algebraic group is σ-connected. See Examples 6.42 and 6.43
for more example applications of Proposition 3.35.

Example 3.36. — Let G be the σ-closed subgroup of Gm given by

G(R) = {g ∈ R× | g4 = 1, σ(g)2 = 1} ⩽ Gm(R)

for any k-σ-algebra R. We will show that G is σ-connected. Let H be the
σ-algebraic group given by H(R) = {g ∈ R× | g2 = 1} and let ϕ : G → H

be the morphism given by

ϕR : G(R)→ H(R), g 7→ σ(g).

As
k{H} = k{y}/[y2 − 1]

= k[y, σ(y), σ2(y), . . .]/(y2 − 1, σ(y)2 − 1, σ2(y)2 − 1, . . .)

and

k{G} = k{y}/[y4 − 1, σ(y)2 − 1]

= k[y, σ(y), σ2(y), . . .]/(y4 − 1, σ(y)2 − 1, σ2(y)2 − 1, . . .),

we see that the dual map ϕ∗ : k{H} → k{G}, y 7→ σ(y) is injective and
so ϕ is a quotient map. The kernel N of ϕ is given by N(R) = {g ∈ R× |
g4 = 1, σ(g) = 1} for any k-σ-algebra R. We have an exact sequence
1 → N → G → H → 1. Note that H = [σ]kH where H is the algebraic
group given by H(T ) = {g ∈ T× | g2 = 1} for any k-algebra T . So it follows
from Example 3.25 that H is σ-connected. Because N is σ-connected by
Example 3.27, Proposition 3.35 shows that G is σ-connected.

We conclude this section with one more example computation.

Example 3.37. — Let G be a finite group with an endomorphism σ : G→ G
and let G be the σ-algebraic group associated to these data as in Exam-
ple 2.6. We will show that G is σ-connected if and only if some power of
σ : G→ G is the trivial endomorphism (g 7→ 1) of G.
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Let us start by determining the topological space of Gσo. Note that
Spec(k{G}) is naturally in bijection with G. We have a commutative dia-
gram

Spec(k{G})

σ

��

≃ // G

σ

��
Spec(k{G}) ≃ // G

Let N = {g ∈ G | ∃ n ⩾ 1 : σn(g) = 1}. Then N is a normal subgroup of G
that is invariant under σ. Because any element of N will eventually map to 1
under iterations of σ, we see that N cannot be written as a disjoint union of
σ-invariant sets. As also the complement of N is stable under σ, we see that
N corresponds to the σ-connected component of Spec(k{G}) that contains
mG under the bijection G ≃ Spec(k{G}). In particular, G is σ-connected if
and only if G = N, i.e., some power of σ is the trivial endomorphism of G.

The cosets gN of N in G need not correspond to σ-connected components
of G because they may not be stable under σ. Note that the induced map
σ : G/N→ G/N is an automorphism (because it is injective). The σ-connected
components of G are in one-to-one correspondence with the orbits of σ on
G/N.

4. Basic properties of étale difference algebraic groups

In this short section we recall the definition of étale difference algebraic
groups and establish some first properties.

Recall ([26, Section 61.7]) that a k-algebra T is ind-étale if it is a union
of étale k-subalgebras. Equivalently, T is integral over k and a separa-
ble k-algebra. Yet another characterization of ind-étale k-algebras is that
every element satisfies a separable polynomial over k. Following [32, Defi-
nition 6.1] we make the following definition.

Definition 4.1. — A k-σ-algebra is σ-étale if it is finitely σ-generated
over k and ind-étale as a k-algebra. A σ-algebraic group G is σ-étale if
k{G} is a σ-étale k-σ-algebra.

Of course strongly σ-étale σ-algebraic groups are σ-étale. Let us see some
examples of σ-étale σ-algebraic groups.

Example 4.2. — Let G be a finite group and σ : G→ G a group endomor-
phism. Then the σ-algebraic group G constructed from these data as in
Example 2.6 is a σ-étale σ-algebraic group. This is clear because k{G} is
a finite direct product of copies of k and therefore étale.
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Example 4.3. — Let n ⩾ 2 be an integer. If the characteristic of k does
not divide n, the σ-algebraic group G given by

G(R) = {g ∈ R× | gn = 1} ⩽ Gm(R)

for any k-σ-algebra R is σ-étale. To verify that k{G} = k{y}/[yn − 1] is
σ-étale it suffices to observe that k[y]/(yn−1) is an étale k-algebra because
of our assumption on the characteristic.

Example 4.4. — Let G be an étale algebraic group. Then G = [σ]kG is a
σ-étale σ-algebraic group with ld(G) = |G|.

As k[G] is an étale k-algebra, also σi(k[G]) and k[G[i]] = k[G] ⊗k · · · ⊗k
σi(k[G]) are étale k-algebras for every i ∈ N. Therefore k{G} =

⋃
k[G[i]]

is σ-étale. The statement that ld(G) = |G| is a special case of [34, Exam-
ple 5.5].

Note that Example 4.3 can be seen as a special case of Example 4.4, as
the σ-algebraic group G from Example 4.3 is of the form G = [σ]kG, with
G the algebraic group of n-th roots of unity, i.e., G(T ) = {g ∈ T× | gn = 1}
for any k-algebra T .

One of the main results of this article (Theorem 6.38) shows that any
σ-étale σ-algebraic group can be build up (in a rather precise way) from the
σ-algebraic groups in Example 4.4 and two finite σ-étale σ-algebraic groups.
(Here a σ-algebraic group G is called finite if k{G} is a finite dimensional
k-vector space.)

Definition 4.5. — A σ-algebraic group is benign if it is isomorphic to
a σ-algebraic group of the form [σ]kG for an étale algebraic group G.

The usage of the word benign originates from [18, Definition 5.4.7], where
it is used to describe an extension L/K of σ-fields such L = [σ]KM for a
finite Galois extension M of K.

Clearly, a σ-étale σ-algebraic group has σ-dimension zero and order zero.
However, as seen in Example 4.4, the limit degree may be strictly larger
than one.

Lemma 4.6. — Quotients and σ-closed subgroups of σ-étale σ-algebraic
groups are σ-étale.

Proof. — Let G be a σ-étale σ-algebraic group. Quotients of G corre-
spond to k-σ-Hopf subalgebras of k{G} (Corollary 2.13) and σ-closed sub-
groups of G correspond to quotients of k{G}. Thus the claim follows from
the fact that subalgebras and quotients of ind-étale algebras are ind-étale
(as follows from the equivalent characterizations of ind-étale algebras given
at the beginning of this section). □
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Lemma 4.7. — Let G be a σ-closed subgroup of an algebraic group G.
For i ⩾ 0 let G[i] denote the i-th order Zariski closure of G in G. Then the
following statements are equivalent:

(i) G is σ-étale.
(ii) G[0] is an étale algebraic group.
(iii) G[i] is an étale algebraic group for every i ⩾ 0.

Proof. — Because k{G} is the union of the k[G[i]]’s (i) and (iii) are
equivalent. If k[G[0]] is an étale k-algebra, all the k[G[i]]’s are étale k-
algebras, because k[G[i]] is a quotient of

k[G[0]][i] = k[G[0]]⊗k σ(k[G[0]])⊗k · · · ⊗k σ
i

(k[G[0]])

and étaleness is preserved under base change, tensor products and quo-
tients. □

A σ-closed subgroup of an étale algebraic group is σ-étale (Lemma 4.6).
Conversely, ifG is a σ-étale σ-algebraic group, we can embedG as a σ-closed
subgroup into an étale algebraic group. For example, we may first embed G
into some algebraic group G (Proposition 2.7) and then consider the Zariski
closure of G in G, which is an étale algebraic group by Lemma 4.7. Thus a
σ-algebraic group is σ-étale if and only if it is isomorphic to a Zariski-dense
σ-closed subgroup of an étale algebraic group.

Proposition 4.8. — A σ-algebraic group G is σ-étale if and only if it
is reduced (i.e., k{G} is reduced) and has order zero.

Proof. — Clearly a σ-étale σ-algebraic group is reduced and has order
zero. Conversely, let G be a reduced σ-algebraic group of order zero. Embed
G as a σ-closed subgroup in some algebraic group G and let G[i] denote
the i-th order Zariski closure of G in G. Then each G[i] is a reduced finite
algebraic group and therefore étale ([31, Example 8, p. 53]). It follows from
Lemma 4.7 that G is σ-étale. □

Corollary 4.9. — Assume that the base σ-field k has characteristic
zero. Then a σ-algebraic group is σ-étale if and only if it has order zero.

Proof. — A σ-algebraic group over a σ-field of characteristic zero is re-
duced ([31, Theorem 11.4, p. 86]). Thus the claim follows from Proposi-
tion 4.8. □
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5. Expansive endomorphisms and étale difference
algebraic groups

The category of étale algebraic groups over k is equivalent to the category
of finite groups equipped with a continuous action of the absolute Galois
group of k ([31, Theorem 6.4]). The goal of this section is to provide a
difference analog of this statement (Theorem 5.6): The category of σ-étale
σ-algebraic groups is equivalent to the category of profinite groups equipped
with an expansive endomorphism and a compatible action of the absolute
Galois group of k.

This theorem follows rather directly from a much more general equiva-
lence of categories proved in [30]. The equivalence in [30] works over an arbi-
trary σ-ring in place of our base σ-field k and its proof relies on Janelidze’s
categorical Galois theory. We present here a comparatively short, self-
contained proof of Theorem 5.6 that avoids Janelidze’s categorical Galois
theory and mainly relies on the classical equivalence of ind-étale k-algebras
and profinite spaces equipped with a continuous action of the absolute
Galois group.

We denote with ks the separable algebraic closure of k and with G =
Gal(ks/k) the absolute Galois group of k. Note that it is always possible
to extend σ : k → k to an endomorphism σ : ks → ks. However, such an
extension is usually not unique. We fix once and for all such an extension
σ : ks → ks. The following lemma shows that we have a natural action of
σ on G .

Lemma 5.1. — For every τ ∈ G there exists a unique σ(τ) ∈ G such
that

ks
σ(τ) //

σ

��

ks

σ

��
ks

τ // ks

commutes. The map σ : G → G , τ 7→ σ(τ) is a continuous morphism of
groups.

Proof. — This is points (1) and (2) of [33, Lemma 6.1]. □

In the sequel we will always consider G as equipped with the endomor-
phism σ : G → G as in Lemma 5.1.

Recall that a continuous map σ : X → X on a metric space (X, d) is
called (forward) expansive if there exists an ε > 0 such that for any x ̸= y

in X there exists an n ∈ N with d(σn(x), σn(y)) > ε. In the context of
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a continuous group homomorphism σ : G → G on a topological group G,
this idea translates to: There exists a neighborhood U of the identity 1 ∈ G
such that for any x ̸= y in G there exists an n ∈ N with σn(x) /∈ σn(y)U,
equivalently, y−1x /∈ σ−n(U). Since the open normal subgroups of a profinite
group are a neighborhood basis at 1 ([23, Theorem 2.1.3]), we can assume
that U is an open normal subgroup of G, in case G is a profinite group. We
thus arrive at the following definition.

Definition 5.2. — An endomorphism σ : G → G of a profinite group
G is expansive if there exists an open normal subgroup N of G such that⋂
i∈N σ

−i(N) = 1.

Similarly, an automorphism σ : G→ G of a profinite group G is expansive
if there exists an open normal subgroup N of G such that

⋂
i∈Z σ

−i(N) = 1.
Profinite groups, or more general topological groups, such as totally discon-
nected locally compact groups, equipped with an expansive automorphism
have been studied by various authors. See [4, 10, 12, 14, 16, 25, 35], [24,
Chapter 3] and the references given there.

While there has been some interest in generalizing results from automor-
phisms to endomorphisms ([6, 11, 22, 33, 36]), the literature on expansive
endomorphisms of profinite groups is rather scarce.

There are two basic examples of expansive endomorphisms of profinite
groups.

Example 5.3. — Let G be a finite (discrete) group. Then any endomor-
phism σ : G→ G is expansive since we can choose N = 1 in Definition 5.2.

Example 5.4. — Let H be a finite (discrete) group and consider G = HN as
a profinite group under componentwise multiplication and equipped with
the product topology. Then the shift map

σ : HN → HN, (h0, h1, h2, . . .) 7→ (h1, h2, . . .)

is expansive. Indeed, we can choose N = 1× H× H · · · ⩽ HN.

Definition 5.5. — A profinite G -σ-group is a profinite group G equipped
with an endomorphism σ : G→ G and a continuous action G × G→ G of G

on G by group automorphisms such that σ(τ(g)) = σ(τ)(σ(g)) for τ ∈ G

and g ∈ G. An expansive profinite G -σ-group is a profinite G -σ-group such
that σ : G→ G is expansive.

A morphism ϕ : G→ H of profinite G -σ-groups is a morphism of profinite
groups that commutes with σ and is G -equivariant, i.e., ϕ(τ(g)) = τ(ϕ(g))
for τ ∈ G and g ∈ G. The main result of this section is the following:
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Theorem 5.6. — The category of σ-étale σ-algebraic groups over k is
equivalent to the category of expansive profinite G -σ-groups.

The proof of Theorem 5.6 is given at the end of this section, after some
preparatory results are established.

The fact that étale algebraic groups over k are equivalent to finite groups
with a continuous G -action follows from the fact that étale algebras over
k are anti-equivalent to finite sets with a continuous G -action ([31, Theo-
rem 6.3]). For our proof of Theorem 5.6 we shall need an “infinite” version
of this anti-equivalence, i.e., a version that applies to ind-étale algebras
instead of just étale algebras. On the side of the G -actions one then has to
replace finite sets by profinite spaces.

Recall that a profinite (topological) space is a topological space that
can be written as a projective limit of finite discrete topological spaces.
Equivalently, a topological space is profinite, if it is Hausdorff, compact
and totally disconnected ([23, Theorem 1.1.12]).

For an ind-étale k-algebra T , the set Hom(T, ks) of all k-algebra mor-
phisms of T to ks is naturally a profinite space: As T = lim−→Ti is the
directed union of its étale k-subalgebras Ti, we see that Hom(T, ks) =
lim←−Hom(Ti, ks) is the projective limit of the finite sets Hom(Ti, ks). More
explicitly, a basis for the topology of Hom(T, ks) is given by the open sub-
sets

U(a1, . . . , an, b1, . . . , bn) = {ψ ∈ Hom(T, ks) | ψ(a1) = b1, . . . , ψ(an) = bn},

where a1, . . . , an ∈ T and b1, . . . , bn ∈ ks.
The action G ×Hom(T, ks)→ Hom(T, ks), (τ, ψ) 7→ τ ◦ ψ is continuous

([2, Lemma 3.5.4]). A profinite G -space is a profinite space together with a
continous G -action. (According to [23, Lemma 5.6.4 (a)], this definition is
equivalent to Definition 3.5.1 in [2], where a profinite G -space is defined to
be the projective limit of finite discrete G -spaces.) A morphism of profinite
G -spaces is a continuous G -equivariant map. We are now prepared to state
the infinitary version of the “Galois equivalence”.

Theorem 5.7 ([2, Theorem 3.5.8]). — The functor T ⇝ Hom(T, ks)
defines an anti-equivalence of categories between the category of ind-étale
k-algebras and the category of profinite G -spaces. Under this anti-equiva-
lence, surjective morphisms of ind-étale k-algebras correspond to injective
morphisms of profinite G -spaces.

Proof. — The anti-equivalence is a special case of [2, Theorem 3.5.8],
where an arbitrary Galois extension is allowed in place of ks/k. Note that
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a k-algebra T is split by ks (in the sense of Definition [2, Definition 2.3.1])
if and only if T is ind-étale.

The surjective/injective statement is [30, Lemma 3.24]. □

We now return to our difference scenario. Our first goal is to add a σ to
the anti-equivalence of Theorem 5.7.

Definition 5.8. — A profinite G -σ-space X is a profinite space X to-
gether with a continuous endomorphism σ : X→ X and a continuous action
G × X→ X compatible with σ in the sense that

σ(τ(x)) = σ(τ)(σ(x))

for τ ∈ G and x ∈ X.

A morphism of profinite G -σ-spaces is a continuous G -equivariant map
that commutes with the action of σ.

A k-σ-algebra is called ind-étale if it is ind-étale as a k-algebra. The
following two lemmas show that ind-étale k-σ-algebras give rise to profinite
G -σ-spaces.

Lemma 5.9. — Let T be an ind-étale k-algebra and let α : T → ks be a
morphism of rings such that α(λa) = σ(λ)α(a) for λ ∈ k and a ∈ T . Then
there exists a unique morphism β : T → ks of k-algebras such that

T
β //

α
��

ks

σ
��

ks

commutes.

Proof. — The uniqueness of β holds because the field endomorphism
σ : ks → ks is automatically injective. For the existence of β it suffices
to show that α(T ) ⊆ σ(ks) (because then, for any a ∈ T , we can define
β(a) ∈ ks to be the unique element of ks such that α(a) = σ(β(a))).

Let a ∈ T . Since T is an ind-étale k-algebra, a satisfies a monic (sep-
arable) polynomial f ∈ k[x]. Write f =

∏n
i=1(x − ai) with ai ∈ ks. Let

σf ∈ k[x] denote the polynomial obtained from f by applying σ : k → k to
the coefficients. Then σf =

∏n
i=1(x− σ(ai)).

From f(a) = 0 and α(λa) = σ(λ)α(a) for λ ∈ k, we obtain σf(α(a)) = 0.
So α(a) ∈ {σ(a1), . . . , σ(an)} ⊆ σ(ks). □

Recall (Section 2.1) that for a k-σ-algebra R, we denote with R♯ the
underlying k-algebra.
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Lemma 5.10. — Let R be an ind-étale k-σ-algebra. Then, for every mor-
phism ψ :R→ ks of k-algebras, there exists a unique morphism σ(ψ):R→ ks
of k-algebras such that

R
σ(ψ) //

σ

��

ks

σ

��
R

ψ // ks

commutes. Moreover, σ : Hom(R♯, k♯s) → Hom(R♯, k♯s), ψ 7→ σ(ψ) is con-
tinuous and

(5.1) σ(τ(ψ)) = σ(τ)(σ(ψ))

for τ ∈ G , i.e., Hom(R♯, k♯s) is a profinite G -σ-space.

Proof. — The existence and uniqueness of σ(ψ) follows from Lemma 5.9
applied to

α : R σ−→ R
ψ−→ ks.

For a1, . . . , an ∈ R and b1, . . . , bn ∈ ks we have,

σ−1(U(a1, . . . , an, b1, . . . , bn))

= {ψ ∈ Hom(R♯, k♯s) | σ(ψ)(ai) = bi, i = 1, . . . , n}.

But

σ(ψ)(ai) = bi ⇔ σ(σ(ψ)(ai)) = σ(bi) ⇔ ψ(σ(ai)) = σ(bi).

Therefore

σ−1(U(a1, . . . , an, b1, . . . , bn)) = U(σ(a1), . . . , σ(an), σ(b1), . . . , σ(bn))

is open. Formula (5.1) follows from the commutative diagram

R
σ(ψ) //

σ

��

ks

σ

��

σ(τ) // ks

σ

��
R

ψ // ks
τ // ks

□

If α : R → S is a morphism of ind-étale k-σ-algebras, the commutative
diagram

R
α //

σ

��

S
σ(ψ) //

σ

��

ks

σ

��
R

α // S
ψ // ks
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shows that the diagram

Hom(S♯, k♯s) //

σ

��

Hom(R♯, k♯s)

σ

��
Hom(S♯, k♯s) // Hom(R♯, k♯s)

commutes. So the induced map Hom(S♯, k♯s)→ Hom(R♯, k♯s) is a morphism
of profinite G -σ-spaces. In other words, R ⇝ Hom(R♯, k♯s) is a contravari-
ant functor from the category of ind-étale k-σ-algebras to the category of
profinite G -σ-spaces. To show that this functor defines an anti-equivalence
we need some more preparatory results.

For a profinite G -space X, we can twist the action of G on X by σ to
obtain a new profinite G -space σX. In detail, σX = X as profinite spaces but
the action of G on σX is given by g(x) = σ(g)(x) for x ∈ σX and g ∈ G . Note
that for a profinite G -σ-space X, the map σ : X→ X can be interpreted as a
morphism σ : X→ σX of profinite G -spaces.

Recall (Section 2.1) that for a k-algebra T , we denote with σT = T ⊗k k
the k-algebra obtained from T by base change via σ : k → k.

Lemma 5.11. — Let T be an ind-étale k-algebra. Then
σ(Hom(T, ks)) ≃ Hom(σT , ks)

as profinite G -spaces.

Proof. — Let us first describe the bijection η : Hom(T,ks)→Hom(σT,ks).
If ψ : T → ks is a morphism of k-algebras, then ψ′ = η(ψ) : σT = T ⊗k k →
ks, a⊗λ 7→ σ(ψ(a))λ is a morphism of k-algebras. Conversely, if ψ′ : σT →
ks is a morphism of k-algebras, then α : T → σT

ψ′

−→ ks (where the first map
is a 7→ a⊗ 1) is a morphism of rings satisfying α(λa) = σ(λ)α(a) for λ ∈ k
and a ∈ T . Thus Lemma 5.9 yields a (unique) morphism ψ = ρ(ψ′) : T → ks
of k-algebras such that

T
ψ //

��

ks

σ

��
σT

ψ′
// ks

commutes. The above diagram shows that ρ is the inverse of η. For elements
a1, . . . , an ∈ T and b1, . . . , bn ∈ ks we have

ρ−1(U(a1, . . . ,an, b1, . . . , bn))
= {ψ′ ∈ Hom(σT , ks) | ρ(ψ′)(ai) = bi i = 1, . . . , n}.
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But

ρ(ψ′)(ai) = bi ⇔ σ(ρ(ψ′)(ai)) = σ(bi) ⇔ ψ′(ai ⊗ 1) = σ(bi).

So ρ−1(U(a1, . . . , an, b1, . . . , bn)) = U(a1 ⊗ 1, . . . , an ⊗ 1, σ(b1), . . . , σ(bn))
and ρ is continuous. As any continuous bijection between compact Haus-
dorff spaces is a homeomorphism ([27, Proposition 13.26]), we see that ρ
and therefore also η is a homeomorphism.

For a ∈ T , λ ∈ k, τ ∈ G and ψ ∈ Hom(T, ks), it follows from the
commutative diagram

T
ψ //

��

ks

σ

��

σ(τ) // ks

σ

��
σT

η(ψ) // ks
τ // ks

that

η(σ(τ)(ψ))(a⊗ λ) = σ(σ(τ)(ψ)(a))λ = τ(η(ψ))(a⊗ 1)λ = τ(η(ψ))(a⊗ λ).

Thus η(σ(τ)(ψ)) = τ(η(ψ)) as desired. □

Lemma 5.12. — The isomorphism from Lemma 5.11 is functorial, i.e.,
for a morphism α : S → T of ind-étale k-algebras, we have a commutative
diagram

(5.2)

σ(Hom(T, ks))
≃ //

��

Hom(σT , ks)

��
σ(Hom(S, ks))

≃ // Hom(σS, ks)

in the category of profinite G -spaces.

Proof. — Let ψ ∈ σ(Hom(T, ks)). Both paths in diagram (5.2) yield the
element of Hom(σS, ks) given by σS → ks, s⊗ λ 7→ σ(ψ(α(s)))λ. □

For a k-σ-algebra R, the map σ : σR→ R, a⊗λ 7→ σ(a)λ is a morphism
of k-algebras. Thus, if R is ind-étale, we obtain a morphism Hom(R♯, k♯s)→
Hom(σR♯, k♯s) of profinite G -spaces.

Lemma 5.13. — Let R be an ind-étale k-σ-algebra. Then the composi-
tion

Hom(R♯, k♯s)→ Hom(σR♯, k♯s) ≃ σ(Hom(R♯, k♯s))

equals σ : Hom(R♯, k♯s)→ Hom(R♯, k♯s).
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Proof. — This follows from the commutative diagram

R
σ(ψ) //

��

σ

��

ks

σ

��
σR

σ // R
ψ // ks

□

We are now prepared to prove a σ-version of Theorem 5.7.

Proposition 5.14. — The functor R ⇝ Hom(R♯, k♯s) defines an anti-
equivalence of categories between the category of ind-étale k-σ-algebras and
the category of profinite G -σ-spaces.

Proof. — We first show that the functor is fully faithful. Let R and S be
ind-étale k-σ-algebras. According to Theorem 5.7 we have a bijection

ξ : Hom(R♯, S♯) ≃ Hom(Hom(S♯, k♯s)♯,Hom(R♯, k♯s)♯),

where Hom(S♯, k♯s)♯ denotes the profinite G -space obtained from the profi-
nite G -σ-space Hom(S♯, k♯s) by forgetting σ. It suffices to show that ξ re-
stricts to a bijection between the subsets Hom(R,S) ⊆ Hom(R♯, S♯) and

Hom(Hom(S♯, k♯s),Hom(R♯, k♯s)) ⊆ Hom(Hom(S♯, k♯s)♯,Hom(R♯, k♯s)♯).

In fact, it suffices to show that if α : R → S is a morphism of k-algebras,
such that ξ(α) : Hom(S♯, k♯s) → Hom(R♯, k♯s) is a morphism of profinite
G -σ-spaces, then α is a morphism of k-σ-algebras. Note that, since R and
S are ind-étale k-σ-algebras, α : R → S is a morphism of k-σ-algebras if
and only if

σR
σα //

σ
��

σS

σ
��

R
α // S

is a commutative diagram in the category of ind-étale k-algebras. According
to Theorem 5.7 it thus suffices to show that the induced diagram

(5.3)

Hom(S♯, k♯) //

��

Hom(R♯, k♯)

��
Hom(σS♯, k♯) // Hom(σR♯, k♯)
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is a commutative diagram in the category of profinite G -spaces. Now (5.3)
fits into the larger diagram

(5.4)

Hom(S♯, k♯)

σ

%%

//

��

Hom(R♯, k♯)

��
σ

yy

Hom(σS♯, k♯) //

≃
��

Hom(σR♯, k♯)

≃
��

σ(Hom(S♯, k♯)) // σ(Hom(R♯, k♯))

in the category of profinite G -spaces. Note that if ϕ : X→ Y is a morphism
of profinite G -σ-spaces, then

X
ϕ //

σ

��

Y

σ

��
σX

ϕ // σY

is a commutative diagram in the category of profinite G -spaces. Thus the
outer rectangle of (5.4) commutes. The left and right triangles commute
by Lemma 5.13 and the lower rectangle commutes by Lemma 5.12. Thus
also the upper rectangle commutes as desired.

It remains to show that the functor R⇝ Hom(R♯, k♯s) is essentially sur-
jective, i.e., every profinite G -σ-space is isomorphic to Hom(R♯, k♯s) for some
ind-étale k-σ-algebra R. Let X be a profinite G -σ-space. From Theorem 5.7
we know that there exists an ind-étale k-algebra R and an isomorphism
X ≃ Hom(R, k♯s) of profinite G -spaces. Again, by Theorem 5.7, the mor-
phism

Hom(R, k♯s) ≃ X σ−→ σX ≃ σ(Hom(R, k♯s)) ≃ Hom(σR, k♯s)

of profinite G -spaces is induced by a unique morphism σ : σR → R of k-
algebras. Then σ : R→ R, a 7→ σ(a⊗1) is a ring endomorphism extending
σ : k → k, i.e., R is a k-σ-algebra.
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By definition of σ : σR→ R, the diagram

X

≃
��

σ // σX

≃
��

Hom(R♯, k♯s)

((

σ(Hom(R♯, k♯s))

≃
��

Hom(σR♯, k♯s)

commutes. Using Lemma 5.13 it follows that

X

≃
��

σ // σX

≃
��

Hom(R♯, ks)
σ // σ(Hom(R♯, ks))

commutes, i.e., X ≃ Hom(R♯, k♯s) as profinite G -σ-spaces. □

Note that the profinite G -σ-groups are exactly the group objects in the
category of profinite G -σ-spaces. From Proposition 5.14 we thus obtain:

Corollary 5.15. — The category of ind-étale k-σ-Hopf algebras is
anti-equivalent to the category of profinite G -σ-groups.

Example 5.16. — Let H be an étale algebraic group. We would like to
describe the profinite G -σ-group G corresponding to the ind-étale k-σ-Hopf
algebra k{H} under the anti-equivalence of Corollary 5.15. Recall (Sec-
tion 2.2) that k{H} is our shorthand notation for k{[σ]kH} = [σ]kk[H].

Let H = Hom(k[H], ks) be the finite (discrete) group equipped with the
continuous G -action corresponding to H. Forgetting σ for now, note that
k{H}♯ is the coproduct of the σi(k[H])’s and so G♯ is the product of the
Hom(σi(k[H]), ks)’s. But Hom(σi(k[H]), ks) ≃ σi

H by Lemma 5.11. So G♯ =
HN with action of G given by

τ(h0, h1, h2, . . .) = (τ(h0), σ(τ)(h1), σ2(τ)(h2), . . .).

Multiplication in HN is componentwise and the topology is the product
topology.

The morphism ψ : k{H} → ks of k-algebras corresponding to (ψi)i∈N ∈
HN is determined by ψ(ai ⊗ λi) = σi(ψi(ai))λi for ai ⊗ λi ∈ k[H] ⊗k k =
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σi(k[H]). Thus the morphism σ(ψ) : k{H} → ks of k-algebras such that

k{H}
σ(ψ) //

σ

��

ks

σ

��
k{H}

ψ // ks

commutes, is given by σ(ψ)(ai⊗λi) = σi(ψi+1(ai))λi for ai⊗λi ∈ k[H]⊗k
k = σi(k[H]). This shows that

σ : HN → HN, (h0, h1, h2, . . .) 7→ (h1, h2, . . .)

is simply the shift.

For the proof of Theorem 5.6 we need one more preparatory result.

Lemma 5.17. — Let G be an expansive profinite G -σ-group. Then there
exists an open normal subgroup U of G such that

⋂
i∈N σ

−i(U) = 1 and
τ(U) = U for all τ ∈ G .

Proof. — This proof has some similarity with the proof
of [23, Lemma 5.6.4(a)]. Since σ : G→ G is expansive, there exists an open
normal subgroup N of G such that

⋂
i∈N σ

−i(N) = 1. Set U =
⋂
τ∈G τ(N).

Then U is a normal subgroup of G, τ(U) = U for all τ ∈ G and
⋂
i∈N σ

−i(U) =
1 because U ⊆ N.

It remains to see that U is open. Let g ∈ U. Then τ(g) ∈ U ⊆ N for
any τ ∈ G . Since N ⊆ G is open and the action G × G → G is continuous,
there exist open neighborhoods τ ∈ Vτ ⊆ G and g ∈ Wτ ⊆ G such that
τ ′(g′) ∈ N for all τ ′ ∈ Vτ and g′ ∈ Wτ . The Vτ ’s are an open cover of G .
Therefore, there exist τ1, . . . , τn ∈ G such that G = Vτ1 ∪ · · · ∪ Vτn . Set
W = Wτ1 ∩· · ·∩Wτn

. Then W is an open neighborhood of g and τ ′(g′) ∈ N
for all τ ′ ∈ G and g′ ∈ W . Thus g′ ∈ τ(N) for all g′ ∈ W and all τ ∈ G ,
i.e., W ⊆ U. □

Proof of Theorem 5.6. — Given Corollary 5.15, it suffices to show that
for an ind-étale k-σ-Hopf algebra R, the profinite G -σ-group G =
Hom(R♯, k♯s) is expansive if and only if R is finitely σ-generated over k.

First assume that R is finitely σ-generated, so that R = k{G} for
the σ-étale σ-algebraic group G = Hom(R,−). By Lemma 4.7 there ex-
ist an étale algebraic group H and a σ-closed embedding G → [σ]kH.
On the side of the coordinate rings, this corresponds to a surjective mor-
phism k{H} → k{G} ind-étale k-σ-Hopf algebras. (Recall that k{H} =
k{[σ]kH} = [σ]kk[H].) Which, in turn, according to Theorem 5.7, cor-
responds to an injective morphism ϕ : G → Hom(k{H}♯, k♯s) of profinite
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G -σ-groups. By Example 5.16, the profinite G -σ-group Hom(k{H}♯, k♯s) can
be identified with HN, where H = Hom(k[H], ks) is a finite (discrete) group
and σ : HN → HN is the shift map. Set U = 1 × H × H × · · · ⩽ HN. Then U is
an open normal subgroup of HN with

⋂
i∈N σ

−i(U) = 1. Set N = ϕ−1(U) ⩽ G.
Then N is an open normal subgroup of G and⋂

i∈N
σ−i(N) =

⋂
i∈N

σ−i(ϕ−1(U)) =
⋂
i∈N

ϕ−1(σ−i(U))

= ϕ−1
( ⋂
i∈N

σ−i(U)
)

= ϕ−1(1) = 1,

since ϕ is injective. Thus G = Hom(R♯, k♯s) is expansive.
Conversely, assume that G = Hom(R♯, k♯s) is expansive. Let U be as in

Lemma 5.17 and set H = G/U. Then H is a finite (discrete) group equipped
with a continuous action of G . We consider HN as a profinite G -σ-group as
in Example 5.16. In particular, G is acting on HN via τ(h0, h1, h2, . . .) =
(τ(h0), σ(τ)(h1), σ2(τ)(h2), . . .) for τ ∈ G .

The map ϕ : G → HN, g 7→ (σi(g))i∈N is a continuous group homomor-
phism that commutes with σ. Moreover, for τ ∈ G and g ∈ G we have

ϕ(τ(g)) = (σi(τ(g)))i∈N = (σi(τ)(σi(g)))i∈N = τ(σi(g))i∈N = τ(ϕ(g)).

So ϕ is a morphism of profinite G -σ-groups. Since
⋂
i∈N σ

−i(U) = 1, the
map ϕ is injective.

Let H be the étale algebraic group corresponding to the finite group
H with the continuous G -action. According to Theorem 5.6, Theorem 5.7
and Example 5.16, the injective morphism ϕ of profinite G -σ-groups cor-
responds to a surjective morphism k{H} → R of k-σ-algebras. As k{H} is
finitely σ-generated, it follows that also R is finitely σ-generated. □

Remark 5.18. — It is a natural question to ask, which profinite
G -σ-spaces correspond to the finitely σ-generated k-σ-algebras under Pro-
position 5.14? As explained in [30, Theorem 5.1], these are exactly the
subshifts. The subshifts of finite type, extensively studied in symbolic dy-
namics ([15, 19]), correspond to finitely σ-presented k-σ-algebras.

As an immediate corollary to Theorem 5.6 we obtain:

Corollary 5.19. — Let k be a separably algebraically closed σ-field.
Then the category of σ-étale σ-algebraic groups (over k) is equivalent to the
category of profinite groups equipped with an expansive endomorphism.

From Theorem 5.6 we also obtain a combinatorial-arithmetic description
of the category of strongly σ-étale σ-algebraic groups.
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Corollary 5.20. — The category of strongly σ-étale σ-algebraic
groups is equivalent to the category of finite groups equipped with an au-
tomorphism and a compatible continuous action of G .

Proof. — Let G be a σ-étale σ-algebraic group and G = Hom(k{G}♯, k♯s)
the corresponding profinite G -σ-group. Clearly, k{G} is an étale k-algebra
if and only if G is finite. So, assuming that k{G} is étale, it suffices to show
that k{G} is σ-separable if and only if σ : G→ G is bijective.

As in the proof of Proposition 5.14, the map σ : G→ G can be interpreted
as a morphism σ : G→ σG of profinite G -spaces. According to Lemma 5.13,
the corresponding morphism of k-algebras is

σ : σ(k{G}) = k{G} ⊗k k → k{G}, f ⊗ λ 7→ σ(f)λ.

So σ : G → G is bijective if and only if σ : σ(k{G}) → k{G} is bijective.
Since k{G} is a finite dimensional k-vector space, the latter is equivalent
to σ : σ(k{G}) → k{G} being injective. This in turn is equivalent to k{G}
being σ-separable. □

We conclude this section with an example, illustrating the equivalence
of Theorem 5.6.

Example 5.21. — Let H = {1, h, h2, h3} be the cyclic group of order four
(considered as a discrete topological group). As in Example 5.16 we consider
HN as a profinite group via the product topology. The map σ : HN → HN is the
shift. Consider the subgroup G of HN given by G = {(h0, h1, h2, . . .) ∈ HN |
h2
i = h2

i+1 ∀ i ∈ N}. Then G is a closed subgroup of HN and invariant under
σ : HN → HN. Since σ : HN → HN is expansive, also σ : G→ G is expansive. So
G is a profinite group equipped with an expansive endomorphism.

Let us also add the action of an absolute Galois group. Let k = Q,
considered as a constant σ-field and let G denote the Galois group of ks = Q
over k. As extension of σ to ks we choose the identity map. So the action
of σ on G is trivial and consequently a compatible action of G on G is
a continuous action that commutes with σ. Let G act on H as G acts on
{1, i,−1,−i} = {a ∈ Q | h4 = 1} (under the isomorphism determined by
i 7→ h). Let G act on G by τ(h0, h1, h2, . . .) = (τ(h0), τ(h1), τ(h2), . . .) for
τ ∈ G . Then G is an expansive profinite G -σ-group.

The corresponding σ-étale σ-algebraic group G is the σ-closed subgroup
of Gm given by

G(R) = {g ∈ R× | g4 = 1, σ(g)2 = g2} ⩽ Gm(R)

for any k-σ-algebra R.
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6. A decomposition theorem for étale difference algebraic
groups

In this section we establish a rather precise structure theorem for σ-étale
σ-algebraic groups (Theorem 6.38). In particular, this theorem shows that
any σ-étale σ-algebraic group is built up from benign σ-algebraic groups
and finite σ-étale σ-algebraic groups.

6.1. Infinitesimal difference algebraic groups

The last σ-closed subgroup in the subnormal series of Theorem 6.38 is
σ-infinitesimal. In this subsection we establish the properties of σ-infinites-
imal σ-algebraic groups relevant for the proof of Theorem 6.38.

Recall that an algebraic group G is infinitesimal if G(T ) = 1 for every
reduced k-algebra T . The following definition introduces a σ-analog of infin-
itesimal algebraic groups. A k-σ-algebra R is called σ-reduced if σ : R→ R

is injective.

Definition 6.1. — A σ-algebraic group G is σ-infinitesimal if G(R) = 1
for every σ-reduced k-σ-algebra R.

Example 6.2. — Let n ⩾ 2. The σ-closed subgroup G of Gm given by

G(R) = {g ∈ R× | gn = 1, σ(g) = 1}

for any k-σ-algebra R, is σ-infinitesimal.

Example 6.3. — For r ⩾ 1 the σ-closed subgroup G of GLn given by

G(R) = {g ∈ GLn(R) | σr(g) = In}

for any k-σ-algebra R, is σ-infinitesimal. (Here In is the n × n identity
matrix.)

The following lemma gives an algebraic characterization of σ-infinitesimal
σ-algebraic groups.

Lemma 6.4. — A σ-algebraic group G is σ-infinitesimal if and only if
for every f ∈ mG there exists an n ∈ N such that σn(f) = 0. In fact, if G
is σ-infinitesimal, then σn(mG) = 0 for some n ∈ N.

Proof. — Let a = {f ∈ k{G} | ∃ n ∈ N : σn(f) = 0} denote the reflexive
closure (cf. [18, p. 107]) of the zero ideal of k{G}. Then a is a σ-ideal of
k{G} and R = k{G}/a is σ-reduced.
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Assume that G is σ-infinitesimal. Then the canonical map k{G} → R

factors through the counit ε : k{G} → k. So mG ⊆ a.
Conversely, assume that mG ⊆ a. Then mG = a, since mG is a maximal

ideal of k{G}. Let R be a σ-reduced k-σ-algebra and g : k{G} → R a
morphism of k-σ-algebras. To show that G(R) = 1, it suffices to show that
g(mG) = 0. But if f ∈ mG = a, then there exists an n ∈ N with σn(f) = 0
and so σn(g(f)) = g(σn(f)) = g(0) = 0. Since σ : R → R is injective, this
implies g(f) = 0.

The σ-ideal mG is finitely σ-generated, i.e., of the form mG = [f1, . . . , fm],
for f1, . . . , fm ∈ mG (e.g., by [34, Theorem 4.1]). So we can find n ∈ N such
that σn(fi) = 0 for i = 1, . . . ,m. But then σn(mG) = 0. □

Corollary 6.5. — A σ-infinitesimal σ-algebraic group has limit degree
one and is σ-connected.

Proof. — Let G be a σ-infinitesimal σ-algebraic group. According to
Lemma 2.10 it suffices to show that k{G} is finitely generated as a k-alge-
bra. We have k{G} = k ⊕ mG (direct sum of k-vector spaces). Therefore,
we can find a finite σ-generating set B of k{G} that is contained in mG.
By Lemma 6.4 there exists an n ∈ N such that σn(B) = 0. So k{G} is
generated by B, σ(B), . . . , σn−1(B) as a k-algebra.

Suppose G is not σ-connected. Then k ⫋ πσ0 (k{G}) ⊆ k ⊕ mG = k{G}
and so πσ0 (k{G}) contains an element f of mG. But then σn(f) = 0 for
some n. This contradicts the σ-separability of πσ0 (k{G}). □

A σ-algebraic group G is finite if k{G} is a finite dimensional k-vector
space.

Corollary 6.6. — A σ-infinitesimal σ-étale σ-algebraic group is finite.

Proof. — If G is a σ-infinitesimal σ-étale σ-algebraic group, then k{G}
is ind-étale and finitely generated as a k-algebra by Corollary 6.5. Thus
k{G} is an étale k-algebra. □

Lemma 6.7. — A reduced finite σ-connected σ-algebraic group is σ-in-
finitesimal.

Proof. — Because G is finite, Spec(k{G}) is a finite discrete topological
space. Set

Z = {p ∈ Spec(k{G}) | ∃ n ∈ N : σ−n(p) = mG}.

Then Z and the complement of Z are σ-closed subsets of Spec(k{G}).
Because Spec(k{G}) is σ-connected and mG ∈ Z, we must have Z =
Spec(k{G}). It follows that there exists an n ∈ N such that σ−n(p) = mG
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for every prime ideal p of k{G}. Thus, for f ∈ mG we have σn(f) ∈
∩p∈Spec(k{G})p =

√
0 = 0. So G is σ-infinitesimal by Lemma 6.4. □

Lemma 6.8. — Let ϕ : G→ H be a morphism of σ-algebraic groups and
let H ′ be a σ-infinitesimal σ-closed subgroup of H. If ker(ϕ) is σ-infinites-
imal, then ϕ−1(H ′) is σ-infinitesimal.

Proof. — Let R be a σ-reduced k-σ-algebra. Then

ϕ−1(H ′)(R) = {g ∈ G(R) | ϕ(g) ∈ H ′(R) = 1} = ker(ϕ)(R) = 1. □

6.2. The difference Frobenius morphism

The Frobenius morphism and the closely related Frobenius kernels play
an important role in the representation theory of algebraic groups in posi-
tive characteristic. (See e.g., [13, Section 9, Part I].) In this subsection we
introduce a difference analog of the Frobenius morphism and establish the
properties relevant for the proof of Theorem 6.38.

The idea is that in most of the constructions and results from [13, Sec-
tion 9, Part I], the Frobenius endomorphism a 7→ ap can be replaced by
our “abstract” endomorphism σ.

Let R be a k-σ-algebra. For r ∈ N the map σr : k → k, λ 7→ σr(λ) is a
morphism of difference rings. We denote by σrR the k-σ-algebra obtained
from R by restriction of scalars via σr : k → k. That is, σrR equals R as a
difference ring, but the k-algebra structure map is k → σrR, λ 7→ σr(λ).
Note that σr : R→ σrR, a 7→ σr(a) is a morphism of k-σ-algebras.

Let X be a σ-variety and let σr

X denote the σ-variety obtained from X

by base change along σr : k → k. So
σr

X(R) = X(σrR)

for any k-σ-algebra R and σr

X is represented by the k-σ-algebra k{σr

X} =
σr(k{X}) = k{X} ⊗k k, where the tensor product k{X} ⊗k k is formed
using σr : k → k.

We define a morphism
F rX : X → σr

X

of σ-varieties over k by (F rX)R := X(σr) : X(R) → X(σrR) = σr

X(R) for
any k-σ-algebra R. This makes sense because σr : R→ σrR is a morphism
of k-σ-algebras. Moreover, if ψ : R → R′ is a morphism of k-σ-algebras,
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then
R

ψ

��

σr

//
σrR

ψ

��
R′ σr

//
σrR′

is a commutative diagram of k-σ-algebras. Therefore

X(R)

X(ψ)
��

(F r
X )R // σr

X(R)

σr
X(ψ)

��
X(R′)

(F r
X )R′ // σr

X(R′)

commutes, so that F rX is indeed natural in R, as required. We write FX for
F 1
X and call FX the σ-Frobenius morphism of X.
If ϕ : X → Y is a morphism of σ-varieties, then

X(R)

X(σr)
��

ϕR // Y (R)

Y (σr)
��

X(σrR)
ϕ(σr R) // Y (σrR)

commutes for any k-σ-algebra R. Therefore, we have a commutative dia-
gram

X
ϕ //

F r
X

��

Y

F r
Y

��
σr

X
σr
ϕ // σr

Y

of σ-varieties.
The dual morphism (F rX)∗ : σr(k{X}) → k{X} is the image of id ∈

X(k{X}) = Hom(k{X}, k{X}) in
σr

X(k{X}) = Hom(k{X}, σr (k{X})) = Hom(σ
r

(k{X}), k{X})

under (F rX)k{X}. Thus (F rX)∗ is given by

(6.1) (F rX)∗ : σ
r

(k{X})→ k{X}, f ⊗ λ 7→ σr(f)λ.

Note that if G is a σ-algebraic group, then F rG : G→ σr

G is a morphism
of σ-algebraic groups.

Example 6.9. — Let G be a σ-algebraic group. By Proposition 2.7 we
may embed G as a σ-closed subgroup into some GLn. Then also σr

G is
naturally embedded into GLn: The equations defining σr

G as a σ-closed
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subgroup of GLn are obtained from the equations defining G as a σ-closed
subgroup of GLn by applying σr to the coefficients of the equations. The
endomorphism ϕ of the σ-algebraic group [σ]k GLn given by

ϕR : GLn(R)→ GLn(R), g 7→ σr(g)

where σr(g) is the matrix obtained from g by applying σ to the coefficients,
restricts to a morphism ϕ : G → σr

G. The dual map of ϕ on k{GLn} =
k{xij , 1

det(x)} is given by

ϕ∗ : k
{
xij ,

1
det(x)

}
→ k

{
xij ,

1
det(x)

}
, xij 7→ σr(xij).

It follows that the dual map of ϕ : G → σr

G agrees with the dual map of
F rG given in (6.1). In other words, ϕ agrees with F rG. (The advantage of the
abstract description is that it shows that ϕ does not depend on the chosen
embedding of G into GLn.)

Because of Example 6.9, we may sometimes simply write σr(g) instead
of F rG(g), for g ∈ G(R) and R a k-σ-algebra.

Our next goal is to understand when the σ-Frobenius FG : G→ σr

G is a
quotient map. The following definition will help answer this question.

Definition 6.10. — A σ-algebraic group G is σ-reduced if k{G} is
σ-reduced (i.e., σ : k{G} → k{G} is injective). A σ-algebraic group G is
absolutely σ-reduced if Gk′ is σ-reduced for every σ-field extension k′ of k.

In other words, G is absolutely σ-reduced if and only if k{G} is a
σ-separable k-σ-algebra. The following example shows that a σ-reduced
σ-algebraic group need not be absolutely σ-reduced.

Example 6.11. — Let k be a σ-field such that there exists a λ ∈ k that is
transcendental over σ(k). Let G be the σ-closed subgroup of the additive
group given by

G(R) = {g ∈ R | σ2(g) + λσ(g) = 0} ⩽ Ga(R)

for any k-σ-algebra R. Then k{G} = k[y, σ(y)]. To show that σ is injective
on k{G}, it suffices to show that σ(y) and σ2(y) = −λσ(y) are algebraically
independent over σ(k). But this is guaranteed by the assumption on λ. Thus
G is σ-reduced. However, G is not absolutely σ-reduced. Over the inversive
closure k∗ of k ([18, Definition 2.1.6]) we can find a µ ∈ k∗ such that
σ(µ) = λ and then σ(y)+µy lies in the kernel of σ on k∗{Gk∗} = k∗[y, σ(y)].

The following lemma implies that an algebraic group, when considered
as a σ-algebraic group is absolutely σ-reduced.
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Lemma 6.12. — Let T be a k-algebra. Then [σ]kT is σ-separable over k.

Proof. — For a σ-field extension k′ of k we have ([σ]kT )⊗kk′ = [σ]k′(T⊗k
k′). Therefore, it suffices to show that σ : [σ]kT → [σ]kT is injective. Indeed,
it suffices to show that σ : T [i] → T [i + 1] is injective for every i ⩾ 0. But
σ : T [i]→ σ(T [i])→ T [i+ 1] is the composition of two injective maps. □

From Lemma 6.12 we immediately obtain:

Corollary 6.13. — Let G be an algebraic group. Then [σ]kG is an
absolutely σ-reduced σ-algebraic group.

The following lemma explains when FG : G→ σG is a quotient map.

Lemma 6.14. — Let G be a σ-algebraic group. The following statements
are equivalent:

(i) FG : G→ σG is a quotient map.
(ii) F rG : G→ σr

G is a quotient map for every r ∈ N.
(iii) G is absolutely σ-reduced.

Proof. — Recalling the equivalent characterization of σ-separability
stated after Definition 3.6, we see that the k-σ-algebra k{G} is σ-separable
over k if and only if σ = (FG)∗ : σ(k{G}) → k{G} is injective. Thus (i)
and (iii) are equivalent. To see that (i) implies (ii), note that the injec-
tivity of σ : σ(k{G}) → k{G} can be rephrased as: If f1, . . . , fn ∈ k{G}
are k-linearly independent, then σ(f1), . . . , σ(fn) ∈ k{G} are k-linearly
independent. If this is true, and f1, . . . , fn ∈ k{G} are k-linearly indepen-
dent, then σr(f1), . . . , σr(fn) are also k-linearly independent, i.e., the map
(F rG)∗ : σr(k{G})→ k{G} is injective. □

The following definition introduces a σ-analog of the Frobenius kernels
([13, Section 9.4, Part I])

Definition 6.15. — Let G be a σ-algebraic group and r ∈ N. The
kernel G(r) of the morphism F rG : G → σr

G is called the r-th σ-Frobenius
kernel of G.

Since F r+s
G = F sσrG

◦ F rG we have

1 = G(0) ⊆ G(1) ⊆ G(2) ⊆ · · · .

Moreover, from formula (6.1) we see that

I(G(r)) = (σr(mG)) ⊆ k{G}

and
k{G/G(r)} = k[σr(k{G})] ⊆ k{G}.
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Example 6.16. — The r-th σ-Frobenius kernel of [σ]k GLn is given by

([σ]k GLn)(r)(R) = {g ∈ GLn(R) | σr(g) = In}

for any k-σ-algebra R. (Here In denotes the n× n identity matrix.)

As a Corollary to Lemma 6.14 we obtain:

Corollary 6.17. — Let G be an absolutely σ-reduced σ-algebraic
group and let r ∈ N. Then G/G(r) ≃ σr

G.

Proof. — This follows immediately from Lemma 6.14 (and
Theorem 2.18). □

The following lemma explains the close connection between σ-infinites-
imal σ-algebraic groups and the σ-Frobenius kernels.

Lemma 6.18. — Let G be a σ-algebraic group. Then G(r) is a σ-in-
finitesimal σ-algebraic group for every r ∈ N. Conversely, if H is a σ-in-
finitesimal σ-closed subgroup of G, then H is contained in some G(r). In
particular, if G is σ-infinitesimal, then G = G(r) for some r ∈ N.

Proof. — Since k{G(r)} = k{G}/(σr(mG)), it is clear that the augmen-
tation ideal mG(r) of G(r) satisfies σr(mG(r)) = 0. So G(r) is σ-infinitesimal
(Lemma 6.4).

If H ⩽ G is σ-infinitesimal, then σr(mG) ⊆ I(H) for some r ∈ N by
Lemma 6.4. So I(G(r)) = (σr(mG)) ⊆ I(H) and consequentlyH ⩽ G(r). □

For later use we record:

Lemma 6.19. — Let H be a σ-closed subgroup of a σ-algebraic group
G and let N be a normal σ-closed subgroup of H. If H/N is absolutely
σ-reduced, then

(F rG)−1(σ
r

H)/(F rG)−1(σ
r

N) ≃ σr

(H/N)

for every r ∈ N.

Proof. — Using Lemma 2.15, we obtain a morphism

(F rG)−1(σ
r

H) F r
G−−→ σr

H → σr

H/σ
r

N = σr

(H/N)

with kernel (F rG)−1(σr

N). By Lemma 2.16, this yields a σ-closed embedding

ϕ : (F rG)−1(σ
r

H)/(F rG)−1(σ
r

N)→ σr

(H/N).
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Since H/N is absolutely σ-reduced, F rH/N is a quotient map (Lemma 6.14).
As

H/N //

F r
H/N $$

(F rG)−1(σr

H)/(F rG)−1(σr

N)

ϕuu
σr(H/N)

commutes, this implies that ϕ must also be a quotient. Thus ϕ is an iso-
morphism by Corollary 2.19. □

Note that the functor G ⇝ [σ]kG from the category of algebraic groups to
the category of σ-algebraic groups is not full. For example, for λ0, . . . ,λn−1 ∈
k, the morphism ϕ : [σ]kGa → [σ]kGa given by

ϕ(g) = σn(g) + λn−1σ
n−1(g) + · · ·+ λ0g

for g ∈ R and any k-σ-algebra R, is not induced by an endomorphism of
the algebraic group Ga. Nevertheless, we have the following result.

Proposition 6.20. — Let G and H be algebraic groups. If [σ]kG and
[σ]kH are isomorphic as σ-algebraic groups, then G and H are isomorphic
as algebraic groups.

Proof. — The morphism F[σ]kG : [σ]kG→ σ([σ]kG) = [σ]kσG of σ-algebraic
groups has the morphism

G × σG × σ2
G × · · · → σG × σ2

G × · · · , (g0, g1, g2, . . .) 7→ (g1, g2, . . .)

as underlying morphism of affine group schemes. So ([σ]kG)(1) has G as
the underlying affine group scheme. If [σ]kG ≃ [σ]kH, then ([σ]kG)(1) ≃
([σ]kH)(1) and therefore also G ≃ H. □

6.3. Simple étale algebraic groups

The material in this subsection will be helpful for establishing the unique-
ness part of our main decomposition theorem (Theorem 6.38).

Definition 6.21. — Let G be a non-trivial étale algebraic group. Then
G is simple if for every normal closed subgroup N of G either N = G are
N = 1. Moreover, G is σ-stably simple if σiG is simple for every i ∈ N.

The following example illustrates that for a simple étale algebraic group
G, the finite group G(ks) need not be a simple group.
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Example 6.22. — Let V = {(0, 0), (1, 0), (0, 1), (1, 1)} be the Klein four
group. Its automorphism group can be identified with the symmetric group
S3 on (1, 0), (0, 1), (1, 1). Let G be the Galois group of ks/k and let G → S3
be a surjective continuous morphism (i.e., we assume that S3 is a Galois
group over k). Let G be the étale algebraic group over k associated to this
continuous action of G on V (as in Section 5). Then G(ks) ≃ V is not
a simple group. However, G is a simple étale algebraic group because no
non-trivial proper subgroup of V is invariant under the action of G .

The following example shows that a simple étale algebraic group need
not be σ-stably simple.

Example 6.23. — Let k be a σ-field and as in Section 5 let us fix an
extension of σ to the separable algebraic closure ks of k. Let a ∈ ks be such
that σ(a) ∈ k and k(a) ⊆ ks is a Galois extension of k with Galois group
isomorphic to S3. To see that such a k and a exists, consider the difference
field K = C(y, σ(y), σ2(y), . . .) obtained by taking the field of fractions
of the difference polynomial ring C{y} = C[y, σ(y), σ2(y), . . .], where C is
considered as a σ-field via the identity map. Fix an extension of σ : K → K

to the algebraic closure K of K. As any finite group is a Galois group
over the rational function field C(y) ([28, Corollary 3.4.4]), there exists an
element a ∈ C(↷) ⊆ K such that C(y)(a) is a Galois extension of C(y)
with Galois group isomorphic to S3. Then k = K(σ(a), σ2(a), σ3(a), . . .)
has the required properties.

Let G be the simple algebraic group from Example 6.22 associated with
the surjection G → S3, where G is the Galois group of ks/k. As in
Lemma 5.1 the profinite group G is equipped with an endomorphism
σ : G → G . The diagram

ks

σ

��

σ(τ) // ks

σ

��
ks

τ // ks

shows that σ(τ)(a) = a for all τ ∈ G , i.e., σ(G ) lies in the kernel of G → S3.
So it follows from Lemma 5.11 that G acts trivially on σG(ks). Since the
Klein four group V is not simple, σG is not a simple étale algebraic group.

Our main goal here is to describe the normal σ-closed subgroups of σ-sta-
bly simple étale algebraic groups and the corresponding quotients.

Lemma 6.24. — Let G be a σ-stably simple étale algebraic group that is
not commutative. Let N be a normal closed subgroup of G×σG×· · ·×σnG.
Then N = N0 ×N1 × · · · × Nn, where Ni ∈ {1, σ

iG} for i = 0, . . . , n.
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Proof. — For i = 0, . . . , n set Hi = 1× · · · × 1× σiG × 1× · · · × 1 ⩽ G ×
σG × · · ·× σnG. It suffices to show the following: If g = (g0, . . . , gn) ∈ N (ks)
with gi ̸= 1, then Hi ⩽ N .

Since σiG is a non-commutative simple étale algebraic group, its center
is trivial. Thus there exists an h ∈ σiG(ks) with hgi ̸= gih. Therefore

(1, . . . , 1, h, 1, . . . , 1)(g1, . . . , gn)(1, . . . , 1, h, 1, . . . , 1)−1(g1, . . . , gn)−1 =

= (1, . . . , 1, hgih−1g−1
i , 1, . . . , 1)

is a non-trivial element of N (ks) ∩ Hi(ks). Since Hi is simple, we have
N ∩Hi = Hi, i.e., Hi ⩽ N as desired. □

Corollary 6.25. — Let G be a σ-stably simple étale algebraic group
that is not commutative and let N be a proper normal σ-closed subgroup
of G = [σ]kG. Then N = G(r) for some r ∈ N.

Proof. — For i ∈ N let N [i] denote the i-th order Zariski closure of N
in G. Since N is normal in G, it follows that N [i] is normal in G[i] =
G × σG × · · · × σiG (Lemma [32, Lemma 3.10]). As N is a proper subgroup
of G, N [i] must be a proper subgroup of G[i] for some i. Let r ∈ N be such
that N [i] = G[i] for i = 0, . . . , r − 1 but N [r] ⫋ G[r]. By Lemma 6.24 we
must have N [r] = G × σG × · · · × σr−1G × 1. Thus N = G(r). □

The following example shows that the conclusion of Corollary 6.25 does
not hold for commutative σ-stably simple étale algebraic group.

Example 6.26. — Let q be a prime number different from the char-
acteristic of k. Then the algebraic group G = µq defined by G(T ) =
{g ∈ T× | gq = 1} for any k-algebra T , is a σ-stably simple étale al-
gebraic group. The proper normal σ-closed subgroup N of G given by
N(R) = {g ∈ G(R) | σ(g) = g} for any k-σ-algebra R, is not of the
form G(r) for some r ∈ N.

For clarity of the exposition, we separate the following elementary lemma
from the proof of Proposition 6.29.

Lemma 6.27. — Let i, r ∈ N and let G0, G1, G2, . . . , Gi+r be abelian
groups. For j = 0, . . . , i let ψj : Gj × Gj+1 × · · · × Gj+r−1 → Gj+r be a
morphism of groups and set

Nj = {(gj , . . . , gj+r) ∈ Gj × · · · × Gj+r | gj+r = ψj(gj , . . . , gj+r−1)}
⩽ Gj × · · · × Gj+r.
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Then the morphism

ϕ : G0×G1×· · ·×Gi+r −→ ((G0×· · ·×Gr)/N0)× . . .×((Gi × · · ·×Gi+r)/Ni)

(g0, g1, . . . , gi+r) 7−→ ((g0, . . . , gr), . . . , (gi, . . . , gi+r))

is surjective.

Proof. — For j = 0, . . . , i let (gj,0, . . . , gj,r) ∈ Gj × · · · × Gj+r. So h =
((g0,0, . . . , g0,r), . . . , (gi,0, . . . , gi,r)) is an arbitrary element of the codomain
of ϕ. Define g= (g0, . . . , gi+r)∈ G0×· · ·×Gi+r by (g0, . . . , gr) = (g0,0, . . . , g0,r)
and then recursively by

gr+j = ψj

(
gjg

−1
j,0 , gj+1g

−1
j,1 , . . . , gj+r−1g

−1
j,r−1

)
gj,r

for j = 1, . . . , i. Then (gjg−1
j,0 , gj+1g

−1
j,1 , . . . , gj+rg

−1
j,r ) ∈ Nj and so

(gj , . . . , gj+r) = (gj,0, . . . , gj,r) ∈ (Gj × · · · × Gj+r)/Nj .

Thus ϕ(g) = h. □

Definition 6.28. — Two étale algebraic groups G and H are σ-stably
equivalent if there exist m,n ∈ N such that σmG ≃ σnH.

Note that this defines an equivalence relation on the class of all étale
algebraic groups over k.

Proposition 6.29. — Let G be a σ-stably simple étale algebraic group
and let N be a proper normal σ-closed subgroup of G = [σ]kG. Then
G/N ≃ [σ]kH for some σ-stably simple étale algebraic group H σ-stably
equivalent to G.

Proof. — First assume that G is not commutative. From Corollary 6.25
we know that N = G(r) for some r ∈ N. So G/N = G/G(r) ≃ σr

G = [σ]kσ
rG

by Corollaries 6.13 and 6.17.
Now assume that G is commutative. For i ∈ N let N [i] denote the i-

th order Zariski closure of N in G. Moreover, let Ni denote the kernel
of the projection πi : N [i] → N [i − 1]. Then Ni can be identified with
a closed subgroup of σiG. Since σiG is simple and commutative, we have
Ni ∈ {1, σ

iG}. Let r ∈ N be such that Ni = σiG for i = 1, . . . , r − 1 and
Nr = 1. Then πr : N [r]→N [r−1] is an isomorphism and N [r−1] =G[r−1] =

G × · · · × σr−1G. Define ψ : G × · · · × σr−1G = N [r − 1] π−1
r−−→ N [r] → σrG,

where the last map is the projection onto the last coordinate. Then ψ is a
morphism of algebraic groups and

(6.2) N [r](T ) = {(g0, . . . , gr) ∈ G[i](T ) | gr = ψ(g0, . . . , gr−1)}
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for any k-algebra T . Moreover,

(6.3) N(R) = {g ∈ G(R) | σr(g) = ψ(g, . . . , σr−1(g))}

for any k-σ-algebra R. Set H = G[r]/N [r]. We claim that the morphism
σrG → H, g 7→ (1, . . . , 1, g) is an isomorphism. Clearly, the kernel is trivial
and so the claim follows from |H| = |G[r]|

|N [r]| = |G|r+1

|G|r = |σrG|.
The inclusion k[H] ⊆ k[G[r]] ⊆ k{G} of Hopf algebras, gives rise to a

morphism k{H} → k{G} of k-σ-Hopf algebras by Lemma 2.5. (Recall that
k{H} = k{[σ]kH} = [σ]kk[H].) Let ϕ : G → [σ]kH be the corresponding
morphism of σ-algebraic groups. Note that ϕ can also be described as the
composition

ϕ : G = [σ]kG → [σ]kG × · · · × [σ]kσ
r

G
= [σ]kG[r]→ [σ]kG[r]/[σ]kN [r] = [σ]k(G[r]/N [r]),

(6.4)

where the first map is given by g 7→ (g, σ(g), . . . , σr(g)) for g ∈ G(R) and
R a k-σ-algebra.

We claim that ϕ : G → [σ]kH is a quotient map with kernel N . (So
G/N ≃ [σ]kH as desired.) Indeed, ker(ϕ) = N by (6.2), (6.3) and (6.4). To
see that ϕ is a quotient map, we have to show that ϕ∗ : k{H} → k{G} is
injective. It suffices to show that the restriction of ϕ∗ to k[H[i]]→ k[G[i+r]]
is injective for every i ∈ N. This restriction corresponds to the morphism

ϕi : G × · · · × σi+r

G → H× · · · × σi

H,

(g0, . . . , gi+r) 7→
(

(g0, . . . , gr), (g1, . . . , g1+r), . . . , (gi, . . . , gi+r)
)

of étale algebraic groups. It suffices to show that ϕi is surjective on the
ks-points. But this follows from Lemma 6.27 with Gj = (σjG)(ks) for j =
0, . . . , i+r and ψj : Gj×· · ·×Gj+r−1 → Gj+r the base change of ψ : G×· · ·×
σr−1G → σrG via σj : k → k (and then evaluated at ks) for j = 0, . . . , i. □

Corollary 6.30. — Let G be a σ-stably simple étale algebraic group.
Then ld(N) = 1 for every proper normal σ-closed subgroup N of G.

Proof. — In case G is non-commutative, this follows from Lemma 6.18
and Corollaries 6.25 and 6.5. In case G is commutative, this follows from
the proof of Proposition 6.29 (Nr = 1). □

The following lemma provides a converse to Corollary 6.30.

Lemma 6.31. — Let G be a non-trivial étale algebraic group. If ld(N) ∈
{1, |G|} for every normal σ-closed subgroup N of G, then G is σ-stably
simple.
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Proof. — Suppose G is not σ-stably simple. Then there exists an r ∈ N
and a closed normal subgroup N of σrG such that 1 < |σrG/N| < |G|. Using
Corollary 6.13 and Lemma 6.14 we see that the morphism

ϕ : [σ]kG
F r

[σ]kG−−−−→ σr

([σ]kG) = [σ]kσ
r

G → [σ]kσ
r

G/[σ]kN = [σ]k(σ
r

G/N )

is a quotient map. Thus, N = ker(ϕ) is a normal σ-closed subgroup of
G = [σ]kG and ld(G/N) = ld([σ]k(σrG/N )) = |σrG/N| by Example 4.4. So
1 < ld(N) < |G| by Proposition 2.14; a contradiction. □

6.4. The decomposition theorem

Some more preparations are in order before we can finally tackle the
proof of the main decomposition theorem (Theorem 6.38). The following
proposition provides an important step in the proof. Roughly speaking, it
shows that in a subnormal series we can get rid of the top σ-infinitesimal
quotient.

For simplicity, we call a σ-étale σ-algebraic group G σ-stably simple
benign if G ≃ [σ]kG, where G is a σ-stably simple étale algebraic group.

Proposition 6.32. — Let G be a σ-algebraic group with a subnormal
series

G ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn+1 ⊇ 1
such that G/G1 is σ-infinitesimal, Gi/Gi+1 is σ-stably simple benign for
i = 1, . . . , n and Gn+1 is σ-infinitesimal. Then there exists a subnormal
series

G ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn ⊇ 1
such that G/H1 and Hi/Hi+1 (i = 1, . . . , n−1) are σ-stably simple benign
and Hn is σ-infinitesimal.

Proof. — Since G/G1 is σ-infinitesimal, there exists an r ∈ N such that
(G/G1)(r) = G/G1 (Lemma 6.18). It is then clear from the commutative
diagram

G //

F r
G

��

G/G1

F r
G/G1
��

σr

G // σr(G/G1)

that (F rG)−1(σr

G1) = G. Define

Hi = (F rG)−1(σ
r

Gi+1) for i = 0, . . . , n.
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(So H0 = G.) Because benign σ-algebraic groups are absolutely σ-reduced
(Corollary 6.13), it follows from Lemma 6.19 that Hi/Hi+1 ≃ σr(Gi−1/Gi)
for i = 0, . . . , n. So, if Gi−1/Gi ≃ [σ]kGi with Gi a σ-stably simple étale
algebraic group, then Hi/Hi+1 ≃ σr([σ]kGi) = [σ]kσ

rGi.
Finally, as Gn+1 is σ-infinitesimal, also σr

Gn+1 is σ-infinitesimal and
therefore the σ-algebraic group Hn = (F rG)−1(σr

Gn+1) is σ-infinitesimal by
Lemmas 6.8 and 6.18. □

Lemma 6.33. — Let G be a σ-étale σ-algebraic group and G an étale
algebraic group. If ϕ : G → [σ]kG is a σ-closed embedding of σ-algebraic
groups such that ld(G) = |G|, then ϕ is an isomorphism. In particular, G
is benign.

Proof. — We identify G with ϕ(G). For i ∈ N let G[i] denote the i-th
order Zariski closure of G in G and let Gi ⩽ G[i] denote the kernel of the
projection πi : G[i]→ G[i−1] (G0 = G[0]). By Proposition 2.9 the sequence
(|Gi|)i∈N is non-increasing and stabilizes with value ld(G) = |G|. But as G0
is an algebraic subgroup of G, we must have |Gi| = |G| for all i ∈ N.

Since πi : G[i] → G[i − 1] is a quotient map with kernel Gi, we have
|G[i]| = |G[i− 1]| · |Gi| for i ⩾ 1. As G0 = G, we find

|G[i]| = |Gi| · · · |G0| = |G|i+1.

But G[i] ⩽ G × σG × · · · × σiG = G[i]. Therefore G[i] = G[i] for all i and it
follows that G = [σ]kG is benign. □

Let G be a σ-étale σ-algebraic group. Let G be an étale algebraic group
and ϕ : G→ [σ]kG a morphism of σ-algebraic groups. Then ϕ(G) is a σ-étale
σ-closed subgroup of G (Lemma 4.6). Let ϕ(G)[0] and ϕ(G)[1] denote the
Zariski closures of ϕ(G) in G of order 0 and 1 respectively. Then ϕ(G)[0] and
ϕ(G)[1] are étale algebraic groups (Lemma 4.7). Let π1 : ϕ(G)[1]→ ϕ(G)[0]
be the natural projection (as in the end of Section 2.2). We abbreviate

|ϕ|1 := |ker(π1)|.

By Proposition 2.9 we have |ϕ|1 ⩽ ld(ϕ(G)). If ker(ϕ) is σ-infinitesimal
(e.g., trivial), then

ld(ϕ(G)) = ld(G/ ker(ϕ)) = ld(G)
ld(ker(ϕ)) = ld(G)

by Corollary 6.5. So |ϕ|1 ⩽ ld(G).

Definition 6.34. — Let G be a σ-étale σ-algebraic group and G an
étale algebraic group. A morphism ϕ : G → [σ]kG of σ-algebraic groups is
a standard embedding of G (into G) if
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• ϕ is a σ-closed embedding,
• ϕ(G) is Zariski dense in G and
• ld(G) = |ϕ|1.

In the context of symbolic dynamics (cf. Remark 5.18) the construction
in the proof of the following lemma is known as “passing to a higher block
shift” ([19, Section 1.4]).

Lemma 6.35. — Let G be a σ-étale σ-algebraic group. Then there exists
a standard embedding of G.

Proof. — By Proposition 2.7 there exists an algebraic group H and a
σ-closed embedding G → [σ]kH of σ-algebraic groups. By Lemma 4.7 the
Zariski closures G[i]H of G in H are étale algebraic groups. Let Hi denote
the kernel of the projection πi : G[i]H → G[i−1]H. By Proposition 2.9 there
exists an m ⩾ 0 such that |Hm+1| = ld(G).

Set G = G[m]H. The inclusion k[G] ⊆ k{G} of k-algebras, induces
a surjective morphism k{G} = [σ]kk[G] → k{G} of k-σ-algebras. Since
k[G] ⊆ k{G} is an inclusion of Hopf algebras, k{G} → k{G} is a morphism
of k-σ-Hopf algebras (Lemma 2.5). Let ϕ : G → [σ]kG denote the corre-
sponding σ-closed embedding of σ-algebraic groups and for i ⩾ 0 let G[i]G
denote the i-th order Zariski closure of G in G. Then G[i]G = G[m+ i]H for
every i ⩾ 0. Let Gi denote the kernel of the projection πi : G[i]G → G[i−1]G .
Then Gi = Hm+i for i ⩾ 1. Therefore |ϕ|1 = |G1| = |Hm+1| = ld(G). So ϕ
is a standard embedding. □

Definition 6.36. — Let G be a σ-étale σ-algebraic group and G an
étale algebraic group. A morphism ϕ : G → [σ]kG of σ-algebraic groups is
a substandard embedding of G (into G) if

• ker(ϕ) is σ-infinitesimal,
• ϕ(G) is Zariski dense in G and
• ld(G) = |ϕ|1.

A substandard embedding G→ [σ]kG of G is minimal if |G| ⩽ |H| for any
substandard embedding G→ [σ]kH of G.

Note that, despite the name, a substandard embedding need not be a
σ-closed embedding. Since a standard embedding is a substandard embed-
ding it is clear from Lemma 6.35 that for any σ-étale σ-algebraic group
there exists a minimal substandard embedding.

Lemma 6.37. — Let G be a σ-étale σ-algebraic group and let
ϕ : G→ [σ]kG be a minimal substandard embedding. Then for every r ∈ N
the dimension of k[σr(k[G])] ⊆ k{G} as a k-vector space equals |G|.
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Proof. — First of all, note that k[G] can be identified with a k-Hopf
subalgebra of k{G} because ϕ(G) is Zarsiki dense in G. By Corollary 6.13
the σ-algebraic group [σ]kG is absolutely σ-reduced. It therefore follows
from Corollary 6.17 that

[σ]kG/([σ]kG)(r) = σr

([σ]kG) = [σ]k(σ
r

G).

The image of k[σrG] under the dual map of

ϕ̃ : G ϕ−→ [σ]kG → [σ]kG/([σ]kG)(r) = [σ]k(σ
r

G)

equals k[σr(k[G])]. Let G′ ⩽ σrG denote the Zariski closure of ϕ̃(G) in σrG.
Then k[G′] = k[σr(k[G])] and ϕ̃ induces a morphism ϕ′ : G → [σ]kG′ of
σ-algebraic groups.

We will show that ϕ′ is a substandard embedding. By construction,
ϕ′(G) is Zariski dense in G′. Because ker(ϕ) and ([σ]G)(r) are σ-infinitesimal
(Lemma 6.18), it follows from Lemma 6.8 that

ker(ϕ′) = ker(ϕ̃) = ϕ−1([σ]kG)(r))

is σ-infinitesimal.
Let ϕ(G)[1] ⩽ G × σG denote the first order Zariski closure of ϕ(G)

in G and let G1 denote the kernel of π1 : ϕ(G)[1] → G. Then |G1| = ld(G)
because ϕ is a substandard embedding. Similarly, let ϕ′(G)[1] ⩽ G′×σ(G′) ⩽
σrG × σr+1G denote the first order Zariski closure of ϕ′(G) in G′ and let
G′

1 denote the kernel of π1 : ϕ′(G)[1] → G′. The surjective morphism of
k-algebras

σr

(k[ϕ(G)[1]]) = k[k[G], σ(k[G])]⊗k k → k[σr(k[G]), σr+1(k[G])],
f ⊗ λ 7→ σr(f)λ

corresponds to a closed embedding ϕ′(G)[1] → σr(ϕ(G)[1]) of algebraic
groups, that maps G′

1 into σrG1. Therefore |G′
1| ⩽ |σ

rG1| = |G1| = ld(G). On
the other hand, |G′

1| ⩾ ld(ϕ′(G)) by Proposition 2.9 and

ld(ϕ′(G)) = ld(G/ ker(ϕ′)) = ld(G)
ld(ker(ϕ′)) = ld(G),

because ker(ϕ′) is σ-infinitesimal and therefore ld(ker(ϕ′)) = 1 by Corol-
lary 6.5. It follows that |G′

1| ⩾ ld(G) and thus |G′
1| = ld(G).

So ϕ′ is a substandard embedding. Because ϕ is a minimal substandard
embedding, it follows that |G′| ⩾ |G|. But G′ ⩽ σrG and so G′ = σrG.
Therefore k[σr(k[G])] = k[G′] = σr(k[G]) has dimension |G| over k. □

Finally, we are prepared for the proof of our decomposition theorem for
σ-étale σ-algebraic groups.
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Theorem 6.38. — Let G be a σ-étale σ-algebraic group. Then there
exists a subnormal series

(6.5) G ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn ⊇ 1

such that G1 = Gσo, Gn is σ-infinitesimal and Gi/Gi+1 ≃ [σ]kGi for some
σ-stably simple étale algebraic group Gi for i = 1, . . . , n− 1.

If

(6.6) G ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hm ⊇ 1

is another subnormal series such that H1 = Gσo, Hm is σ-infinitesimal and
Hi/Hi+1 ≃ [σ]kHi for some σ-stably simple étale algebraic group Hi for
i = 1, . . . ,m − 1, then m = n and there exists a permutation τ such that
Gi and Hτ(i) are σ-stably equivalent.

Proof. — We first handle the existence part. We will prove the exis-
tence of the required subnormal series by induction on ld(G). If ld(G) = 1,
then k{G} is finitely generated as a k-algebra by Lemma 2.10. Because G
is σ-étale, this implies that G is finite. Thus Gσo is a finite σ-connected
σ-étale σ-algebraic group and therefore σ-infinitesimal by Lemma 6.7. So
the subnormal series G ⊇ Gσo ⊇ 1 has the required properties.

We may thus assume that ld(G) > 1. Replacing G with Gσo, we may
also assume that G is σ-connected (Corollary 3.24).

Step 1. — Assume that there exists no normal σ-closed subgroup N of
G such that 1 < ld(N) < ld(G). We will show that there exists a normal
σ-infinitesimal σ-closed subgroup G2 of G such that G/G2 ≃ [σ]kG for a
σ-stably simple étale algebraic group G. (Thus the existence part is satisfied
with n = 2 and G1 = G.)

Let ϕ : G→ G be a minimal substandard embedding. We will eventually
show that

(6.7) ld(G) = |G|.

Let ϕ(G)[1] ⩽ G × σG denote the first order Zariski closure of ϕ(G) in G.
We have morphisms of algebraic groups

G × σG → G, (g0, g1) 7→ g0 and G × σG → σG, (g0, g1) 7→ g1

that induce morphisms π1 : ϕ(G)[1]→ G(= ϕ(G)[0]) and σ1 : ϕ(G)[1]→ σG.
Set G1 = ker(π1) and G′ = ker(σ1). Then G′G1 is a normal closed subgroup
of ϕ(G)[1] and we define H = ϕ(G)[1]/G′G1. We will next show that

(6.8) |G| = |H| · ld(G).
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Because G′G1 ≃ G′ × G1, it follows from |H| = |ϕ(G)[1]|
|G′G1| that

(6.9) |H| · |G1| =
|ϕ(G)[1]|
|G′|

= |ϕ(G)[1]/G′|.

As ϕ is a substandard embedding, |G1| = ld(G). Since k[ϕ(G)[1]/G′] =
k[σ(k[G])] ⊆ k{G}, it follows from Lemma 6.37 that |ϕ(G)[1]/G′| = |G|.
Thus (6.8) follows from (6.9).

We have k[ϕ(G)[1]/G1] = k[G] and k[ϕ(G)[1]/G′] = k[σ(k[G])]. Therefore

k[H] = k[G] ∩ k[σ(k[G])] ⊆ k{G}.

Since k[H] is a Hopf subalgebra of k{G}, we have an induced morphism
[σ]kk[H] = k{H} → k{G} of k-σ-Hopf algebras (Lemma 2.5) that corre-
sponds to a morphism ϕ′ : G → [σ]kH of σ-algebraic groups. Let N ⊴ G
denote the kernel of ϕ′. By our assumption on G, we have ld(N) = 1 or
ld(N) = ld(G). So we have to distinguish these two cases.

Case 1. — Let us first suppose that ld(N) = 1. Then ld(G/N) = ld(G).
We will show that ϕ′ is a substandard embedding. Because k[H] ⊆ k{G},
we see that ϕ′(G) is Zariski dense in H. Let ϕ′(G)[1] ⩽ H× σH denote the
first order Zariski closure of ϕ′(G) in H and let H1 denote the kernel of
π1 : ϕ′(G)[1]→ H. Using Proposition 2.9 we see that

(6.10) |ϕ′(G)[1]| = |H|·|H1| ⩾ |H|·ld(ϕ′(G)) = |H|·ld(G/N) = |H|·ld(G).

We will show that ϕ′(G)[1] = ϕ(G)[1]/G′. Because

k[ϕ′(G)[1]] = k[k[H], σ(k[H])] ⊆ k[σ(k[G])] = k[ϕ(G)[1]/G′],

it suffices to show that |ϕ′(G)[1]| = |ϕ(G)[1]/G′|. But using Lemma 6.37,
we find that

(6.11) |ϕ′(G)[1]| ⩽ |ϕ(G)[1]/G′| = dimk(k[σ(k[G])]) = |G| = |H| · ld(G).

The combination of equations (6.10) and (6.11) shows that |ϕ′(G)[1]| =
|H|·ld(G) and that |H1| = ld(ϕ′(G)). It also follows that k[k[H], σ(k[H])] =
k[σ(k[G])] and therefore

k{G/N} = k{k[H]} = k{σ(k[G])}.

We will next show that N = ker(ϕ′) is σ-infinitesimal. As k{k[G]} =
k{ϕ(G)} ⊆ k{G}, it follows that

k{σ(k[G])} = k[σ(k{ϕ(G)})] = k{ϕ(G)/ϕ(G)(1)} ⊆ k{G}.

So k{G/N} = k{ϕ(G)/ϕ(G)(1)} and therefore N is the kernel of

G
ϕ−→ ϕ(G)→ ϕ(G)/ϕ(G)(1).
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Thus N is σ-infinitesimal by Lemmas 6.18 and 6.8. Therefore

|H1| = ld(ϕ′(G)) = ld(G/N) = ld(G)
ld(N) = ld(G)

by Corollary 6.5. In summary, we have shown that ϕ′ is a substandard
embedding. But |H| < |H|·ld(G) = |G| because ld(G) > 1. This contradicts
the assumption that ϕ is a minimal substandard embedding. Thus the case
ld(N) = 1 cannot occur.

Case 2. — So we must have ld(N) = ld(G). Then ld(G/N) = 1 and
therefore G/N is finite (Lemma 2.10). Because G is σ-connected, also
G/N is σ-connected (Proposition 3.35). So G/N is a finite, σ-connected,
σ-étale difference algebraic group and must therefore be σ-infinitesimal by
Lemma 6.7. So by Lemma 6.4 there exists an r ∈ N such that σr(mG/N ) =
0. Since k{G/N} = k{k[H]}, we have mH ⊆ mG/N , in particular,
σr(mH) = 0.

On the other hand, mH ⊆ k[H] ⊆ k[G] and by Lemma 6.37 the dimension
of k[σr(k[G])] as a k-vector space equals |G|. So no non-zero element of k[G]
can map to zero under σr. Thus mH = 0. This means that H = 1. Thus
|G| = ld(G) by (6.8) and finally (6.7) is proved.

The σ-algebraic group G2 = ker(ϕ) is σ-infinitesimal because ϕ is a sub-
standard embedding and Lemma 6.33 applied to the induced embedding
G/G2 → [σ]kG shows that G/G2 ≃ [σ]kG is benign, because

ld(G/G2) = ld(G)
ld(G2) = ld(G) = |G|

by Corollary 6.5. It remains to show that G is σ-stably simple.
As ld(N) ∈ {1, ld(G)} for every normal σ-closed subgroup N of G, we

also have ld(N) ∈ {1, ld(G/G2)} for ever normal σ-closed subgroup N of
G/G2 by Theorem 2.20. Thus G is σ-stably simple by Lemma 6.31 and
G = G1 ⊇ G2 ⊇ 1 is the required subnormal series.

Step 2. — Assume that there exists a normal σ-closed subgroup N of G
such that 1 < ld(N) < ld(G). Because Nσo is a characteristic subgroup of
N (Theorem 3.31), it follows that Nσo also is a normal σ-closed subgroup
of G. We have ld(N) = ld(Nσo) by Proposition 3.32. Replacing N by Nσo,
we may thus assume that N is σ-connected.

Because ld(G/N) = ld(G)/ ld(N) < ld(G) we can apply the induction
hypothesis to G/N . As G is σ-connected, also G/N is σ-connected (Propo-
sition 3.35). So we obtain a subnormal series

G/N ⊇ G1/N ⊇ · · · ⊇ Gn/N
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for G/N , where G ⊇ G1 ⊇ · · · ⊇ Gn ⊇ N is a subnormal series for G such
that Gn/N is σ-infinitesimal and (Gi/N)/(Gi+1/N) = Gi/Gi+1 is σ-stably
simple benign for i = 0, . . . , n− 1, where G0 := G (Theorem 2.20).

As ld(N) < ld(G), we can also apply the induction hypothesis to N .
Since N is σ-connected, we obtain a subnormal series

N ⊇ N1 ⊇ · · · ⊇ Nm,

with Nm σ-infinitesimal and Ni/Ni+1 σ-stably simple benign for
i = 0, . . . ,m− 1 (N0 := N). By Proposition 6.32, the subnormal series

Gn ⊇ N ⊇ N1 ⊇ · · · ⊇ Nm

can be replaced by a subnormal series

Gn ⊇ H1 ⊇ · · · ⊇ Hm,

with Gn/H1 and Hi/Hi+1 σ-stably simple benign for i = 1, . . . ,m− 1 and
Hm σ-infinitesimal. Then

G ⊇ G1 ⊇ · · · ⊇ Gn ⊇ H1 ⊇ · · · ⊇ Hm

is a subnormal series for G of the required form.
We next address the uniqueness part. We may assume that G is σ-

connected, i.e., G = G1 = H1. By Theorem 2.21 the subnormal series (6.5)
and (6.6) have equivalent refinements. Let

(6.12) G = G1 ⊇ G1,1 ⊇ G1,2 ⊇ · · · ⊇ G1,r1

⊇ G2 ⊇ · · · ⊇ Gn ⊇ Gn,1 ⊇ · · · ⊇ Gn,rn
⊇ 1

be such a refinement (where all the inclusion are strict). Then, for i =
1, . . . , n − 1, the σ-algebraic group Gi,1/Gi+1 is a normal proper σ-closed
subgroup of Gi/Gi+1 ≃ [σ]kGi. By Corollary 6.30 we have ld(Gi,1/Gi+1) =
1. Thus ld(Gi,j/Gi+1) = 1 for j = 1, . . . , ri and so ld(Gi,1) = ld(Gi,2) =
· · · = ld(Gi,ri) = ld(Gi+1). Therefore, of the factor groups of the subnormal
series (6.12), there are exactly n−1 with limit degree > 1, namely Gi/Gi,1
for i = 1, . . . , n− 1.

The same argument applied to (6.6), instead of (6.5), shows that in the
refinement of (6.6), there are exactly m−1 factor groups with limit degree
> 1. Since the two refinements are equivalent, we deduce that n = m.

Moreover, Gi/Gi,1 ≃ [σ]kG′
i, where G′

i is σ-stably equivalent to Gi by
Proposition 6.29. A similar statement holds for the refinement of the sub-
normal series (6.6). The equivalence of the two refinements combined with
Proposition 6.20 yields the sought for permutation τ . □
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We conclude the article with some examples illustrating Theorem 6.38.
The following simple example shows that in the conclusion of Theorem 6.38
one cannot replace “σ-stably equivalent” with “isomorphic”.

Example 6.39. — Let G be a σ-stably simple étale algebraic group and
G = [σ]kG. For every r ⩾ 1 the normal σ-closed subgroup G(r) of G is σ-
infinitesimal and G/G(r) ≃ σr

G = [σ]kσ
rG (Lemmas 6.18, 6.14 and Corol-

lary 6.13). Thus, for every r the subnormal series G ⊇ G(r) ⊇ 1 is as
required by Theorem 6.38.

Example 6.40. — Let G be an étale algebraic group. We would like to
find a subnormal series for G = [σ]kG as in Theorem 6.38. There exists a
subnormal series G = G0 ⊇ G1 ⊇ · · · ⊇ Gm = 1 for G such that Gi/Gi+1 is
simple for i = 0, . . . ,m− 1. However, Gi/Gi+1 may not be σ-stably simple.
Since the length of such a decomposition series for σrG is bounded by |G|,
there exists an r ∈ N and a subnormal series σrG = G0 ⊇ G1 ⊇ · · · ⊇
Gn−1 = 1 for σrG such that Gi/Gi+1 is σ-stably simple for i = 0, . . . , n− 2.
Set Gi = (F rG)−1([σ]kGi−1) for i = 2, . . . , n. We claim that

G = G1 ⊇ G2 ⊇ · · · ⊇ Gn ⊇ 1

is a subnormal series as in Theorem 6.38.
First of all, note that G is σ-connected by Example 3.25. So G = G1

is justified. As F rG : G → σr

G is a quotient map (Lemmas 6.13, 6.14), we
see, using Theorem 2.20, that Gi/Gi+1 ≃ [σ]kGi−1/[σ]kGi = [σ]k(Gi−1/Gi)
is σ-stably simple benign for i = 1, . . . , n − 1. Moreover, Gn = G(r) is
σ-infinitesimal by Lemma 6.18.

Example 6.41. — Let G be the σ-algebraic group given by

G(R) = {g ∈ R× | g4 = 1, σ(g)2 = 1}

for any k-σ-algebra R. We assume that the characteristic of k is not equal
to 2, so that G is σ-étale. We already noted in Example 3.36 that G is
σ-connected. Let G2 be the σ-closed subgroup of G given by G2(R) = {g ∈
R× | g4 = 1, σ(g) = 1} for any k-σ-algebra R. Then G is σ-infinitesimal
and the quotient G/G2 is benign. Indeed, G/G2 = [σ]kG, where G is the
algebraic group given by G(T ) = {g ∈ T× | g2 = 1} for any k-algebra T .
(Cf. Example 3.36.) Since G is σ-stably simple, we see that

G = Gσo = G1 ⊇ G2 ⊇ 1

is a subnormal series as in Theorem 6.38.

The following example is inspired by [14, Example 4].
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Example 6.42. — Let G be the σ-closed subgroup of G2
m given by

G(R) =
{

(g, h) ∈ G2
m(R) | g4 = 1, h2 = 1, σ(h) = g2h

}
for any k-σ-algebra R. Let us assume that the characteristic of k is not
equal to two, so that G is σ-étale. Indeed, G is a Zariski dense σ-closed
subgroup of the étale algebraic group G = µ4 × µ2.

Define a σ-closed subgroup G2 of G by

G2(R) = {(g, h) ∈ G(R) | h = 1} = {(g, 1) ∈ G2
m(R) | g2 = 1}.

So G2 ≃ [σ]kµ2 is σ-stably simple benign. The morphism ϕ : G→ [σ]kGm,
(g, h) → h has kernel G2 and ϕ(G) = [σ]kµ2. Thus G/G2 ≃ [σ]kµ2 is also
σ-stably simple benign. So there exists a short exact sequence

(6.13) 1→ [σ]kµ2 → G→ [σ]kµ2 → 1.

By Proposition 3.35 and Example 3.25 the σ-algebraic group G is
σ-connected. So

G = G1 ⊇ G2 ⊇ G3 = 1

is a subnormal series as in Theorem 6.38.

Example 6.43. — Let G be the σ-algebraic group given by

G(R) =
{

(g1, g2, g3) ∈ (R×)3 | g4
1 = g4

2 = g2
3 = 1, σ(g1) = g2

2 , σ(g3) = g3
}

⩽ Gm(R)3

for any k-σ-algebra R. We assume that the characteristic of k is not equal
to 2, so that G is σ-étale. Let G1, G2 and G3 be the σ-closed subgroups of
G given by

G1(R) =
{

(g1, g2, 1) ∈ (R×)3 ∣∣ g4
1 = g4

2 = 1, σ(g1) = g2
2
}
⩽ G(R),

G2(R) =
{

(g1, g2, 1) ∈ (R×)3 ∣∣ g4
1 = g2

2 = 1, σ(g1) = 1
}
⩽ G(R)

and

G3(R) =
{

(g1, 1, 1) ∈ (R×)3 ∣∣ g4
1 = 1, σ(g1) = 1

}
⩽ G(R)

for any k-σ-algebra R. We will show that

G ⊇ G1 ⊇ G2 ⊇ G3 ⊇ 1

is a subnormal series for G as in Theorem 6.38.
The quotient map ϕ : G1 → [σ]kµ4 given by

ϕR : G1(R)→ µ4(R), (g1, g2, 1) 7→ g2
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has kernel G3. So G1/G3 ≃ [σ]kµ4 is benign. As ϕ(G2) = [σ]kµ2 ⩽ [σ]kµ4,
we see that G1/G2 ≃ [σ]kµ2 and G2/G3 ≃ [σ]kµ2 are σ-stably simple
benign.

Clearly G3 is σ-infinitesimal. So it remains to show that G1 = Gσo. We
have an exact sequence

1→ G3 → G1 → [σ]kµ4 → 1,

with G3 and [σ]kµ4 σ-connected (Corollary 6.5 and Example 3.25). There-
fore G1 is σ-connected by Proposition 3.35. To show that G1 = Gσo, it
suffices to show that G/G1 is strongly σ-étale (Proposition 3.33). Let H be
the σ-closed subgroup of Gm given by

H(R) = {h ∈ R× | h2 = 1, σ(h) = h}

for any k-σ-algebra R. The quotient map G → H, (g1, g2, g3) 7→ g3 has
kernel G1 and so G/G1 ≃ H is strongly σ-étale (Example 3.8).
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