[Groupes algébriques aux différences étales]
Les groupes algébriques aux différences étales sont des analogues aux différence des groupes algébriques étales. Le résultat principal de cet article est un théorème de décomposition de type Jordan–Hölder pour ces groupes. Nous montrons que tout groupe algébrique aux différences étale peut être construit à partir de groupes algébriques étales simples et de deux groupes algébriques aux différences étales finis. Les groupes algébriques étales simples apparaissant dans cette décomposition satisfont une certaine propriété d’unicité.
Étale difference algebraic groups are a difference analog of étale algebraic groups. Our main result is a Jordan–Hölder type decomposition theorem for these groups. Roughly speaking, it shows that any étale difference algebraic group can be build up from simple étale algebraic groups and two finite étale difference algebraic groups. The simple étale algebraic groups occurring in this decomposition satisfy a certain uniqueness property.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Difference algebraic group, étale algebraic group, expansive endomorphism, profinite group.
Mot clés : Groupe algébrique aux différences, groupe algébrique étale, endomorphisme expansif, groupe profini.
Wibmer, Michael 1
@article{AIF_2024__74_4_1451_0, author = {Wibmer, Michael}, title = {\'Etale difference algebraic groups}, journal = {Annales de l'Institut Fourier}, pages = {1451--1519}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {4}, year = {2024}, doi = {10.5802/aif.3621}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3621/} }
TY - JOUR AU - Wibmer, Michael TI - Étale difference algebraic groups JO - Annales de l'Institut Fourier PY - 2024 SP - 1451 EP - 1519 VL - 74 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3621/ DO - 10.5802/aif.3621 LA - en ID - AIF_2024__74_4_1451_0 ER -
%0 Journal Article %A Wibmer, Michael %T Étale difference algebraic groups %J Annales de l'Institut Fourier %D 2024 %P 1451-1519 %V 74 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3621/ %R 10.5802/aif.3621 %G en %F AIF_2024__74_4_1451_0
Wibmer, Michael. Étale difference algebraic groups. Annales de l'Institut Fourier, Tome 74 (2024) no. 4, pp. 1451-1519. doi : 10.5802/aif.3621. https://aif.centre-mersenne.org/articles/10.5802/aif.3621/
[1] Algebraic groups as difference Galois groups of linear differential equations, J. Pure Appl. Algebra, Volume 226 (2022) no. 2, 106854, 26 pages | DOI | MR | Zbl
[2] Galois theories, Cambridge Studies in Advanced Mathematics, 72, Cambridge University Press, 2001, xiv+341 pages | DOI | MR | Zbl
[3] Elements of Mathematics. Algebra. II. Chapters 4–7, Springer, 1990, vii+461 pages (translated from the French by P. M. Cohn and J. Howie) | MR | Zbl
[4] group shifts and Bernoulli factors, Ergodic Theory Dyn. Syst., Volume 28 (2008) no. 2, pp. 367-387 | DOI | MR | Zbl
[5] Differential algebraic groups of finite dimension, Lecture Notes in Mathematics, 1506, Springer, 1992, xvi+145 pages | DOI | MR | Zbl
[6] Contraction groups and passage to subgroups and quotients for endomorphisms of totally disconnected locally compact groups, Isr. J. Math., Volume 227 (2018) no. 2, pp. 691-752 | DOI | MR | Zbl
[7] An invariant for difference field extensions, Ann. Fac. Sci. Toulouse, Math., Volume 21 (2012) no. 2, pp. 217-234 | DOI | Numdam | MR | Zbl
[8] Difference algebra, Interscience Publishers, 1965, xiv+355 pages | MR | Zbl
[9] Difference Galois theory of linear differential equations, Adv. Math., Volume 260 (2014), pp. 1-58 | DOI | MR | Zbl
[10] Some results on the classification of expansive automorphisms of compact abelian groups, Ergodic Theory Dyn. Syst., Volume 16 (1996) no. 1, pp. 45-50 | DOI | MR | Zbl
[11] Topological entropy in totally disconnected locally compact groups, Ergodic Theory Dyn. Syst., Volume 37 (2017) no. 7, pp. 2163-2186 | DOI | MR | Zbl
[12] Expansive automorphisms of totally disconnected, locally compact groups, J. Group Theory, Volume 20 (2017) no. 3, pp. 589-619 | DOI | MR | Zbl
[13] Representations of algebraic groups, Pure and Applied Mathematics, 131, Academic Press Inc., 1987, xiv+443 pages | MR | Zbl
[14] Expansive dynamics on zero-dimensional groups, Ergodic Theory Dyn. Syst., Volume 7 (1987) no. 2, pp. 249-261 | DOI | MR | Zbl
[15] Symbolic dynamics. One-sided, two-sided and countable state Markov shifts, Universitext, Springer, 1998, x+252 pages | DOI | MR | Zbl
[16] Automorphisms of compact groups, Ergodic Theory Dyn. Syst., Volume 9 (1989) no. 4, pp. 691-735 | DOI | MR | Zbl
[17] Differential algebraic groups, Pure and Applied Mathematics, 114, Academic Press Inc., 1985, xvii+271 pages | MR | Zbl
[18] Difference algebra, Algebra and Applications, 8, Springer, 2008, xii+519 pages | DOI | MR | Zbl
[19] An introduction to symbolic dynamics and coding, Cambridge University Press, 1995, xvi+495 pages | DOI | MR | Zbl
[20] Algebraic groups. The theory of group schemes of finite type over a field, Cambridge Studies in Advanced Mathematics, 170, Cambridge University Press, 2017, xvi+644 pages | DOI | MR | Zbl
[21] -Galois theory of linear difference equations, Int. Math. Res. Not. (2015) no. 12, pp. 3962-4018 | DOI | MR | Zbl
[22] Endomorphisms of profinite groups, Groups Geom. Dyn., Volume 8 (2014) no. 2, pp. 553-564 | DOI | MR | Zbl
[23] Profinite groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 40, Springer, 2010, xvi+464 pages | DOI | MR | Zbl
[24] Dynamical systems of algebraic origin, Progress in Mathematics, 128, Birkhäuser, 1995, xviii+310 pages | MR | Zbl
[25] Expansive automorphisms on locally compact groups, New York J. Math., Volume 26 (2020), pp. 285-302 | MR | Zbl
[26] The Stacks project, 2022 (https://stacks.math.columbia.edu)
[27] Introduction to metric and topological spaces, Oxford University Press, 2009, xii+206 pages | DOI | MR | Zbl
[28] Galois groups and fundamental groups, Cambridge Studies in Advanced Mathematics, 117, Cambridge University Press, 2009, x+270 pages | DOI | MR | Zbl
[29] Strongly étale difference algebras and Babbitt’s decomposition, J. Algebra, Volume 504 (2018), pp. 10-38 | DOI | MR | Zbl
[30] Difference Galois theory and dynamics, Adv. Math., Volume 402 (2022), 108328, 61 pages | DOI | MR | Zbl
[31] Introduction to affine group schemes, Graduate Texts in Mathematics, 66, Springer, 1979, xi+164 pages | DOI | MR | Zbl
[32] Almost-simple affine difference algebraic groups, Math. Z., Volume 299 (2021) no. 1-2, pp. 473-526 | DOI | MR | Zbl
[33] Expansive dynamics on profinite groups, Fundam. Math., Volume 256 (2022) no. 1, pp. 77-112 | DOI | MR | Zbl
[34] Finiteness properties of affine difference algebraic groups, Int. Math. Res. Not. (2022) no. 1, pp. 506-555 | DOI | MR | Zbl
[35] The nub of an automorphism of a totally disconnected, locally compact group, Ergodic Theory Dyn. Syst., Volume 34 (2014) no. 4, pp. 1365-1394 | DOI | MR | Zbl
[36] The scale and tidy subgroups for endomorphisms of totally disconnected locally compact groups, Math. Ann., Volume 361 (2015) no. 1-2, pp. 403-442 | DOI | MR | Zbl
Cité par Sources :