[Modèles algébriques équivariants de tore et réalisation compacte]
Soit un tore compact. Nous prouvons que, jusqu’à l’équivalence rationnelle équivariante, la catégorie des espaces -simplement connectés, de type -fini avec un nombre fini de types d’isotropie est complètement décrite par certains systèmes finis d’algèbres graduées différentielles commutatives avec des choix cohérents de classes de cohomologie de degré . Nous montrons que les systèmes algébriques correspondant aux complexes -CW finis sont exactement ceux qui satisfont la condition nécessaire imposée par le théorème de localisation de Borel ainsi que certaines conditions de finitude. Nous dérivons une caractérisation algébrique pour savoir quand une algèbre sur un anneau polyonmial est réalisée comme la cohomologie rationnelle équivariante d’un -CW-complexe fini. Comme applications supplémentaires, nous prouvons que toute cohomologie de graphe GKM est réalisée par un complexe -CW fini et nous classifions les algèbres de cohomologie équivariante de complexes -CW finis avec des points fixes discrets.
Let be a compact torus. We prove that, up to equivariant rational equivalence, the category of -simply connected, -finite type -spaces with finitely many isotropy types is completely described by certain finite systems of commutative differential graded algebras with consistent choices of degree cohomology classes. We show that the algebraic systems corresponding to finite -CW-complexes are exactly those which satisfy the necessary condition imposed by the Borel localization theorem along with certain finiteness conditions. We derive an algebraic characterization of when an algebra over a polyonmial ring is realized as the rational equivariant cohomology of a finite -CW-complex. As further applications we prove that any GKM graph cohomology is realized by a finite -CW-complex and classify equivariant cohomology algebras of finite -CW-complexes with discrete fixed points.
Révisé le :
Accepté le :
Première publication :
Keywords: Equivariant rational homotopy theory, Torus actions, Equivariant cohomology, Finite $T$-CW complex, Realization.
Mot clés : Théorie de l’homotopie rationnelle équivariante, actions de tore, cohomologie équivariante, complexe $T$-CW fini, réalisation.
Zoller, Leopold 1
@unpublished{AIF_0__0_0_A93_0, author = {Zoller, Leopold}, title = {Torus equivariant algebraic models and compact realization}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3618}, language = {en}, note = {Online first}, }
Zoller, Leopold. Torus equivariant algebraic models and compact realization. Annales de l'Institut Fourier, Online first, 58 p.
[1] Cohomological methods in transformation groups, Cambridge Studies in Advanced Mathematics, 32, Cambridge University Press, 1993, xii+470 pages | DOI | MR | Zbl
[2] The Toral Rank Conjecture and variants of equivariant formality (2019) (https://arxiv.org/abs/1910.04746)
[3] On de Rham theory and rational homotopy type, Memoirs of the American Mathematical Society, 8, American Mathematical Society, 1976 no. 179, ix+94 pages | DOI | MR | Zbl
[4] Systems of fixed point sets, Trans. Am. Math. Soc., Volume 277 (1983) no. 1, pp. 275-284 | DOI | MR | Zbl
[5] Rational homotopy theory, Graduate Texts in Mathematics, 205, Springer, 2001, xxxiv+535 pages | DOI | MR | Zbl
[6] Rational homotopy theory. II, World Scientific Publishing Co. Pte. Ltd., 2015, xxxvi+412 pages | DOI | MR | Zbl
[7] Algebraic models in geometry, Oxford Graduate Texts in Mathematics, 17, Oxford University Press, 2008, xxii+460 pages | DOI | MR | Zbl
[8] Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math., Volume 131 (1998) no. 1, pp. 25-83 | DOI | MR | Zbl
[9] 1-skeleta, Betti numbers, and equivariant cohomology, Duke Math. J., Volume 107 (2001) no. 2, pp. 283-349 | DOI | MR | Zbl
[10] Rational homotopy and torus actions, Aspects of topology (London Mathematical Society Lecture Note Series), Volume 93, Cambridge University Press, 1985, pp. 293-306 | DOI | MR | Zbl
[11] Algebraic topology, Cambridge University Press, 2002, xii+544 pages | MR | Zbl
[12] Model categories and their localizations, Mathematical Surveys and Monographs, 99, American Mathematical Society, 2003, xvi+457 pages | DOI | MR | Zbl
[13] Disconnected rational homotopy theory, Adv. Math., Volume 283 (2015), pp. 303-361 | DOI | MR | Zbl
[14] Algebraic models for equivariant homotopy theory over abelian compact Lie groups, Math. Z., Volume 240 (2002) no. 2, pp. 261-287 | DOI | MR | Zbl
[15] Construction of universal bundles. II, Ann. Math., Volume 63 (1956), pp. 430-436 | DOI | MR | Zbl
[16] Rational homotopy theory, Ann. Math., Volume 90 (1969), pp. 205-295 | DOI | MR | Zbl
[17] Rational -equivariant homotopy theory, Trans. Am. Math. Soc., Volume 354 (2002) no. 1, pp. 1-45 | DOI | MR | Zbl
[18] A model category structure for equivariant algebraic models, Trans. Am. Math. Soc., Volume 360 (2008) no. 5, pp. 2505-2525 | DOI | MR | Zbl
[19] Transformation groups, De Gruyter Studies in Mathematics, 8, Walter de Gruyter & Co., 1987, x+312 pages | DOI | MR | Zbl
[20] Equivariant minimal models, Trans. Am. Math. Soc., Volume 274 (1982) no. 2, pp. 509-532 | DOI | MR | Zbl
Cité par Sources :