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TORUS EQUIVARIANT ALGEBRAIC MODELS AND
COMPACT REALIZATION

by Leopold ZOLLER (*)

Abstract. — Let T be a compact torus. We prove that, up to equivariant ratio-
nal equivalence, the category of T -simply connected, T -finite type T -spaces with
finitely many isotropy types is completely described by certain finite systems of
commutative differential graded algebras with consistent choices of degree 2 coho-
mology classes. We show that the algebraic systems corresponding to finite T -CW-
complexes are exactly those which satisfy the necessary condition imposed by the
Borel localization theorem along with certain finiteness conditions. We derive an
algebraic characterization of when an algebra over a polyonmial ring is realized as
the rational equivariant cohomology of a finite T -CW-complex. As further appli-
cations we prove that any GKM graph cohomology is realized by a finite T -CW-
complex and classify equivariant cohomology algebras of finite S1-CW-complexes
with discrete fixed points.

Résumé. — Soit T un tore compact. Nous prouvons que, jusqu’à l’équivalence
rationnelle équivariante, la catégorie des espaces T -simplement connectés, de type
T -fini avec un nombre fini de types d’isotropie est complètement décrite par cer-
tains systèmes finis d’algèbres graduées différentielles commutatives avec des choix
cohérents de classes de cohomologie de degré 2. Nous montrons que les systèmes
algébriques correspondant aux complexes T -CW finis sont exactement ceux qui
satisfont la condition nécessaire imposée par le théorème de localisation de Borel
ainsi que certaines conditions de finitude. Nous dérivons une caractérisation algé-
brique pour savoir quand une algèbre sur un anneau polyonmial est réalisée comme
la cohomologie rationnelle équivariante d’un T -CW-complexe fini. Comme applica-
tions supplémentaires, nous prouvons que toute cohomologie de graphe GKM est
réalisée par un complexe T -CW fini et nous classifions les algèbres de cohomologie
équivariante de complexes S1-CW finis avec des points fixes discrets.

1. Introduction

A core question in algebraic topology is whether a given ring is realizable
as the cohomology ring of a space. While this is a widely open question for
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ogy, Finite T -CW complex, Realization.
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2 Leopold ZOLLER

integral cohomology, it was proved in [16] that any nonnegatively graded,
finite type, commutative algebra A over Q with A0 = Q, A1 = 0 is re-
alizable as A ∼= H∗(X;Q) for some simply connected space X. A main
motivation for this article is to answer the question of which algebras are
realizable as the equivariant cohomology H∗

T (X;Q) of a T -space X, where
T is a compact torus. Naturally these algebras come equipped with a map
R → H∗

T (X), where R := H∗(BT ;Q) is the cohomology of the classifying
space. Hence the question should be asked for R-algebras. It is not hard to
deduce from nonequivariant realization that any finite type R-algebra A is
realizable as H∗

T (X) for some free T -action on a simply connected space
X provided A1 = 0 and R2 ⊗ A0 → A2 is injective (see e.g. [10, Proposi-
tion 4.2]). While at first glance this solves the problem, the answer is a little
unsatisfactory: one can check that outside of the case where dimQH

∗
T (X)

is finite –which it is usually not– such a free realization X has to be infinite
dimensional. In fact, finding nice realizations has to be much harder, as
for sufficiently nice spaces, there is powerful machinery linking algebraic
properties of H∗

T (X) to geometric properties of the action. One of the most
prominent theorem in this direction is the Borel localization theorem which
requires the T -space to be compact or satisfy certain other finiteness con-
ditions (cf. [1, Section 3.2]). Consequently the interesting question to ask
is: when is an R-algebra realized as the equivariant cohomology of a com-
pact T -space or even a finite T -CW-complex? This turns out to be a more
sophisticated problem as is illustrated e.g. by the fact that for T = S1,
R ∼= Q[x], c ∈ Q, the graded Q[x]-algebra Q[x, a]/(a2 − cx2) is realizable
by a finite S1-CW-complex if and only if c is a square (see Example 6.3).
Hence the above realizability question relies heavily on the multiplicative
structure, to the point that the outcome might change when passing to
R-coefficients.

In the nonequivariant case, the realization question for cohomology al-
gebras was solved by giving an algebraic description of the category of
simply connected, finite Q-type spaces up to rational equivalence. In the
same vein, to attack this question we first give an algebraic description of
the category of T -simply connected, T -finite Q-type T -spaces up to equi-
variant rational equivalence. Here a T -space X is called T -simply connected
(resp. T -finite Q-type) if every path component of XH is simply connected
(resp. if dimHk(XH ;Q) < ∞ for k ⩾ 0) for all H ⊂ T . An equivariant
rational equivalence is an equivariant map X → Y such that H∗(XH ;Q)→
H∗(Y H ;Q) is an isomorphism for all H ⊂ T . Mostly for technical reasons,
we restrict to spaces with finitely many orbit types (see Remark 2.8).

ANNALES DE L’INSTITUT FOURIER



EQUIVARIANT MODELS AND COMPACT REALIZATION 3

Of course, this algebraization of the equivariant rational homotopy cat-
egory is of interest independently of the cohomology realization problem.
In fact, an algebraic description of this category has already been achieved
in [14] using the following approach (in slightly greater generality): define
S to be the set of pairs (U,H) of subgroups of T , with U ⊂ H and U con-
nected. Then consider the functor which maps a T -space X to the diagram
of cochain algebras, with entries APL(XH

T/U ) for any (U,H) ∈ S, where
APL denotes the polynomial de Rham algebra and XH

T/U is the Borel con-
struction of the T/U -action on the H-fixed points. Formally this diagram
is itself a functor S → cdga⩾0 with values in the category of commutative
cochain algebras, when regarding S as a category in a suitable fashion. We
call this an S-system. Denoting the S-system of a T -space X by APL(X),
we obtain a map APL(∗)→ APL(X) induced by the constant map. At the
(U,H)-position of APL(∗) we have APL(B(T/U)). Thus objectwise (i.e. at
every object of S), this captures the algebraic data of the respective Borel
fibrations. Choosing a nice model P → APL(∗) we obtain a functor from
T -spaces to systems of cochain algebras under P , i.e. morphisms of systems
P → A. Through this functor, the authors of [14] achieve an algebraic de-
scription of the T -equivariant rational homotopy category. However, as is
stated in [14], the object P is hard to describe explicitly. The reason for
this is that P → APL(∗) has to respect the strict commutativity of the dia-
grams. Thus one can not freely choose Sullivan models for B(T/U) object-
wise, which would in general just produce homotopy commutative systems.

In this paper we seek to overcome this problem by showing that the
datum of the P -algebra structure is only relevant on the cohomological
level and, in particular, the specific choice of P is irrelevant. This enables
applications and lets us choose simpler algebraic models, which – in the
right setting – can be written down explicitly. More precisely, we use the
functor X → APL(X) as above but at each entry (U,H) of the diagram
we only consider the additional datum H∗(B(T/U)) → H∗(XH

T/U ) on the
cohomological level instead of the cochain level. We call this a cohomology
R-structure, where R = H∗(APL(∗)) is the system of all cohomologies of
the classifying spaces B(T/U). We prove (see Theorem 5.5)

Theorem. — Let C be a finite collection of subgroups of T and D ⊂ S
be the stable subset generated by C. Let A be a D-system with a coho-
mology R-structure. Then there is a T -simply connected, T -finite Q-type
T -CW-complex X with isotropies contained in C such that APL(X) is con-
nected to A via quasi isomorphisms of systems respecting the cohomology
R-structures if and only if A satisfies the triviality condition, is spacelike,

TOME 0 (0), FASCICULE 0



4 Leopold ZOLLER

of finite type, H1(A) = 0, and R2 ⊗ H0(A) → H2(A) is injective. The
space X can be chosen as a finite T -CW-complex if and only if A satis-
fies the localization condition and H∗(A(U,H)) is finitely generated as an
RT/U -module for any (U,H) ∈ D.

The localization condition in the second half of the theorem is just the
necessary condition for realization by a sufficiently nice space, which is
imposed by the Borel localization theorem. Thus this can be seen as a sort
of “converse to Borel localization”. This is the key to attacking the compact
cohomology realization problem discussed in the beginning.

We point out that the first half of the above theorem can be obtained by
drawing upon the results of [14] to obtain realizations for systems under P
(as above) and, on the algebraic side, transition to cohomology R-structures
by the means given in this article. The key ingredient in this realization
is Elmendorf’s work from [4]. The statements on the occurring isotropy
groups and realization through finite CW-complexes then become separate
problems of approximating T -spaces up to rational homotopy within the
equivariant world. However, in the present article we give a different, rather
self contained proof, which we believe to be of independent value. While
behaving less nicely with respect to functoriality, our realization procedure
allows us close control over the realizations. The idea is that the equivari-
ant approximation procedure hinted at above can be applied outside of
the equivariant world to approximate a space as the Borel construction
of a T -space. Thus starting with a system of cochain algebras, we take
(nonequivariant) geometric realizations through the standard realization
functors. Then we transfer this realization to the equivariant world by ap-
proximating the spaces as homotopy quotients of a T -CW-complex via an
induction over the isotropy groups.

With regards to the compact realization problem of equivariant coho-
mology algebras, we arrive at the following criterion (Theorem 6.1). We
identify H∗(BT ) = Q[V ] for some vector space V generated in degree 2.

Theorem. — Let A be a graded Q[V ]-algebra. Then A is isomorphic to
the equivariant cohomology algebra of a T -simply connected finite T -CW-
complex if and only if there is a finite collection V0, . . . , Vk ⊂ V of vector
spaces, Q[Vi]-algebras Ai for i = 0, . . . , k, and for each inclusion Vi ⊃ Vj
a map fij : Ai → Q[Vi]

⊗
Q[Vj ] Aj of Q[Vi]-algebras satisfying the following

properties:

(i) V0 = V , Vk = 0, and for any i, j we have Vi + Vj = Vl for some
0 ⩽ l ⩽ k.

ANNALES DE L’INSTITUT FOURIER
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(ii) A0 = A, each Ai is spacelike, finitely generated as Q[Vi]-module,
A1
i = 0, and Vi ⊗A0 → A2 is injective for 0 ⩽ i ⩽ k.

(iii) We have (idQ[Vi]
⊗

Q[Vj ] fjl)◦fij = fil. Furthermore for any subspace
W ⊂ V and the maximal Vj ∈ {V0, . . . , Vk} with the property that
Vj ⊂ W , the map f0j becomes an isomorphism when localized at
the multiplicative subset S(W ) ⊂ Q[V ] generated by V \W .

We give two more specific applications. The first is a simplified classifi-
cation of the equivariant cohomology algebras of finite S1-CW-complexes
with discrete fixed points (Corollary 6.2). Note that this can also be used
to show nonrealizability of certain algebras (see Example 6.3). We identify
H∗(BS1) ∼= Q[x].

Corollary. — Let A be a Q[x]-algebra which is finitely generated as
a Q[x]-module, spacelike, A1 = 0, and ⟨x⟩Q ⊗ A0 → A2 is injective. As-
sume further that for S = {xk | k ⩾ 0}, the localized graded algebra
S−1A has no nilpotent elements. Then A is isomorphic as a Q[x]-algebra
to the equivariant cohomology of a finite S1-CW-complex if and only if
(S−1A)0 ∼= Q × · · · × Q as Q-algebras. In this case the realization can be
chosen with discrete fixed point set and S1-simply connected. Conversely
any equivariant cohomology algebra of such a space is of the above type.

As a second application we show (Theorem 6.6, Remark 6.7) that the
cohomology of an abstract GKM graph in the sense of [9] is always realiz-
able by a finite T -CW-complex whose one-skeleton is given by the graph.
In fact, as we do not use those parts of the definition of an abstract GKM
graph which model the combinatorial behaviour of T -manifolds, we work
in a simplified setting, which we call T -graphs.

Theorem. — Let (Γ, α) be a T -graph. Then there is a finite T -CW-
complex X with H∗

T (X) = H∗(Γ) and whose one-skeleton X1 = {x ∈
X | codimTx ⩽ 1} is the graph of two-spheres defined by (Γ, α) if and
only if for any codimension 1 subtorus H ⊂ T , the graph ΓH is a disjoint
union of trees. In this case X can be chosen to be T -simply connected. In
particular, any abstract GKM graph is realizable by a T -simply connected
finite T -CW-complex.

Besides realization problems, there remains the question how much our
algebraic models know about the T -spaces. It turns out that they contain
all information needed to reconstruct the T -space up to equivariant rational
equivalence. We obtain (cf. Corollary 7.5)

TOME 0 (0), FASCICULE 0



6 Leopold ZOLLER

Theorem. — Let C be a finite collection of subgroups and D ⊂ S be the
subset generated by D. The functor X 7→ APL(X) embeds the homotopy
category of T -simply connected, T -finite Q-type T -spaces with isotropies in
C as a full subcategory of the homotopy category of D-diagrams of cdgas
with cohomology R-structures.

For the proof we draw upon the corresponding statement for the algebraic
models in [14]. The above theorem then comes down to showing that no
information is lost when restricting to finite diagrams and keeping track
of the Borel fibrations only on the cohomological level as opposed to the
cochain level.

The article is structured as follows: Section 2 is an introduction to the
main machinery and key definitions. As an example we discuss an explicit
algebraic model describing a T 2-action on S6. Section 3 deals with nice
choices of models for the systems of algebras introduced in Section 2. It is
the most technical of the sections and mainly serves as a compendium for
the rest of the paper. In Section 4 we study the relation between cohomology
R-structures and morphisms P → A of (strictly commutative) systems
whenever P is a nice model for the system APL(∗) of classifying spaces.
We postpone the discussion on implications on the homotopy categories
until the final Section 7 as this is not needed for the rest of the paper. The
goal of Section 5 is to prove the realization results of algebraic systems
by T -spaces. Section 6 is devoted to applications of the realization result.
Finally, as already mentioned, Section 7 serves to reformulate the results
of Sections 4 and 5 in the language of homotopy categories.

We expect the reader to be familiar with the basics of nonequivariant ra-
tional homotopy theory and Sullivan models. We recommend [5] as an ex-
position. Furthermore, general familiarity with the concepts of equivariant
cohomology and equivariant cell complexes is assumed, for which we point
the reader towards [1, 19]. Knowledge of model categories (see e.g. [12]) is
assumed only in the last section. For any missing explanations of terminol-
ogy, we refer to the above sources.

Acknowledgements

The author wants to thank Oliver Goertsches an Panagiotis Konstantis
for their comments on Section 6.2 and Michael Mandell for sharing his
insight.
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2. The stratified cochains of a T -space

Throughout the article, coefficients will be taken in the field Q (un-
less stated otherwise) and will be suppressed from the notation. This con-
cerns cohomology as well as all occurring cdgas (commutative differential
graded algebras). The latter are all assumed to be unital and non-negatively
graded. They will also be referred to as (commutative) cochain algebras.
Diagrams of cochain algebras, i.e. cochain algebra valued functors, will be
written with underlines to distinguish them from cochain algebras.

2.1. Basic definitions

For any topological group G let EG → BG denote the universal G-
bundle. We fix the construction of universal bundles from [15]. It is func-
torial with respect to homomorphisms of groups. For a G-space X define
XG to be the quotient (EG × X)/G with respect to the diagonal action.
The projection XG 7→ BG onto the first component will be referred to
as the Borel fibration. The construction X 7→ XG is functorial in the fol-
lowing sense: consider a group homomorphism φ : G → H with induced
map φ̃ : EG → EH, an H-space Y , and a map f : X → Y satisfying
f(g · x) = φ(g) · f(x) for any g ∈ G, x ∈ X. Then φ̃× f descends to a map
XG → YH . Note that the Borel fibration is induced by the constant map
X 7→ ∗ of G-spaces (with φ = idG).

Now let T be a compact torus. We denote by S the category consisting
of all pairs of subgroups (U,H) of T such that U is connected and U ⊂ H.
We turn this into a partially ordered set by writing (U,H) ⩽ (U ′, H ′) if and
only if U ⊃ U ′ and H ⊂ H ′. It will be convenient to regard S as a category,
in which there is a unique morphism (U,H)→ (U ′, H ′) whenever (U,H) ⩽
(U ′, H ′). For a fixed T -space X and (U,H) ⩽ (U ′, H ′) ∈ S, the projection
T/U 7→ T/U ′ and the inclusion XH′ → XH induce maps XH′

T/U ′ → XH
T/U .

Thus a T -space induces a contravariant functor from S into the category
Top of topological spaces. Clearly equivariant maps between these T -spaces
induce natural transformations between the induced functors on S.

Remark 2.1. — The idea of regarding a G-space as a functor can be
traced back to Elmendorf [4]. The specific functor

{T -spaces} −→ {Functors: S −→ Top}

was introduced in [14, Section 4]. We point out that we only need to consider
(U,H) ∈ S with U connected, due to the fact that we work over Q.

TOME 0 (0), FASCICULE 0



8 Leopold ZOLLER

Definition 2.2. — Any subset D ⊂ S inherits the partial ordering and
we regard it as a full subcategory of S. A D-system (of cochain algebras) is
a covariant functor from D into the category of unital cochain algebras. A
morphism of D-systems is a natural transformation between them. A quasi
isomorphism is a morphism that is objectwise (i.e. for any fixed (U,H) ∈ D)
a quasi isomorphism.

Example 2.3.

• The fundamental bridge between geometry and algebra is the func-
tor

{T -spaces} −→ {S-systems}, X 7−→ APL(X)

where APL(X)(U,H) = APL(XH
T/U ). If it is clear from the con-

text that we work in a setting of D-systems, we occasionally write
APL(X) for the restriction APL(X)|D.

• We set R = H∗(APL(∗)). Thus R(U,H) = H∗(B(T/U)) =: RT/U .
Any T -space X comes with a morphism R→ H∗(APL(X)) defined
by the Borel fibration. A T -equivariant map X → Y induces a
commutative diagram

H∗(APL(X)) H∗(APL(Y ))oo

R

OO 66

Remark 2.4. — For U ⊂ H, the datum of the T -action on XH and
the induced T/U -action on XH are essentially the same. On the algebraic
side this is reflected by the fact that, using the RT - and RT/U -module
structures, one can reconstruct algebras APL(XH

T/U ) and APL(XH
T ) from

each other up to quasi isomorphism. Thus the system APL(X) is more
or less determined by its entries in the ({1}, H)-positions. However, the
value of considering diagrams with varying first component (instead of just
fixing T as the acting group) becomes apparent when formulating neces-
sary conditions for systems to be realizable up to quasi isomorphism as
APL(X). As an example, APL(XT

T ) is up to quasi isomorphism of the form
RT ⊗APL(XT

{1}) which is a nontrivial restriction (see the discussion on the
triviality condition below).

Definition 2.5. — We call a subset D ⊂ S stable if it is of the form
{(U,H) ∈ DL ×DR | U ⊂ H} where

ANNALES DE L’INSTITUT FOURIER



EQUIVARIANT MODELS AND COMPACT REALIZATION 9

• DR is a collection of subgroups of T which is stable under intersec-
tion and contains {1}, T .

• DL is a collection of subtori of T which is stable under intersection
and for any H ∈ DR the identity component H0 is contained in DL.

Example 2.6. — A collection C of subgroups of T generates a stable
subset D(C) as follows: let DR be the set containing all finite intersections
of groups from C ∪ {{1}, T} and let DL be the set containing all identity
components of groups from DR.

Definition 2.7. — We call a subset D ⊂ S bounded if the length of
strictly ascending chains within the partially ordered set D is bounded. We
say a collection C of subgroups of T is bounded if D(C) is bounded.

Remark 2.8. — The subset given by all pairs of subtori is an example of a
stable bounded subset. The definition essentially excludes certain scenarios
where there occur groups with arbitrarily many connected components.
For us it is important because it enables the inductive approach which is
prevalent throughout the article. When approaching the main results we
will occasionally restrict further and only consider finite systems. We do
this since it conveniently simplifies some arguments as well as the notion of
homotopy and aligns with the general spirit of the article. Generalizations
beyond the finite case are oftentimes possible.

For a stable subset D ⊂ S and a subgroup H ⊂ T we set mD(H) ∈ DR
to be the intersection over all subgroups in DR which contain H. Note that
for (U,H) ∈ D we have (U,mD(H)) ∈ D. Now assume additionally that DL
consists of all subtori. Then for any (U,H) ∈ S the element (U,mD(H))
lies in D. This defines a functor S → D. We denote by

rD : {S-systems}−→{D-systems} and iD : {D-systems}−→{S-systems}

the restriction and induction functors defined by D ⊂ S and mD : S → D.
We have rD ◦ iD = id and a natural transformation φD : id → iD ◦ rD
provided by (U,H) ⩽ (U,mD(H)).

Lemma 2.9. — Let X be a T -space, C be the collection of all occurring
isotropy groups of X and D ⊂ S a stable subset containing D(C). Then
for any K ⊂ T we have XK = XmD(K). If additionally DL consists of all
subtori of T , then (iD ◦ rD)(APL(X)) = APL(X).

Proof. — Define L as the intersection of all isotropy groups of X which
contain K. We have K ⊂ mD(K) ⊂ L. Thus XK = XL implies XK =
XmD(K). □

TOME 0 (0), FASCICULE 0



10 Leopold ZOLLER

Example 2.10. — Consider T = T 2 and the T -space X = S6 ⊂ C3 ⊕ R
with the action (s, t)·(v, w, z, h) = (sv, tw, st−1z, h). The occurring isotropy
groups are

C = {T, S1 × 1,∆S1, 1× S1, {1}},
where ∆S1 is the diagonal circle. In view of the above discussion (and the
main results of the paper), the equivariant rational homotopy information
on X is contained in the D(C)-system APL(X)|D(C). We give an explicit
description of a modelM→ APL(X)|D(C). As a diagram of algebrasM is
given by

Λ(x1, x2, x3, v)2

Λ(x1, x2, x3, v, a1, t1)

Λ(x1, x2, x3, v, a2, t2)

Λ(x1, x2, x3, v, a3, t3)

Λ(x1, x2, x3, v, b, s)

Λ(x1, a1, t1)

Λ(x2, a2, t2)

Λ(x3, a3, t3)

Λ(x1)2

Λ(x2)2

Λ(x3)2

Q2

{1} S1 × 1 ∆S1 1× S1 D(C)

{1}

1× S1

∆S1

S1 × 1

T

T

where the groups at the top and right indicate which entry of the diagram
the respective algebra belongs to (e.g. Λ(x1, x2, x3, v)2 =M({1}, T ), where
the exponent in the first algebra denotes the Cartesian product). The de-
grees are |v| = 1, |xi| = 2 = |ai|, |b| = 6, |ti| = 3, and |s| = 11. The
differentials are dv = x1 − x2 − x3, dxi = 0 = dai = db, dti = a2

i − xiai,
and ds = b2−x1x2x3b. The horizontal maps are the obvious inclusions. For
the vertical maps in the middle row we specify xi 7→ (xi, xi), v 7→ (v, v),
ai 7→ (0, xi), and ti 7→ 0. Finally the three arrows leaving M({1}, {1}) are
defined by b 7→ x2x3a1, x1x3a2, x1x2a3 and s 7→ x2

2x
2
3t1, x2

1x
2
3t2, x2

1x
2
2t3

respectively.
Let us briefly verify that this is in fact a model for APL(X). We focus on

the diagram aspects, leaving some objectwise verifications to the reader.
We begin in the bottom row. The space XT consists of two discrete

points so Q2 is a model for APL(XT ). Denote the groups S1 × 1, ∆S1,
and 1 × S1 by H1, H2, H3 respectively. Each quotient T/Hi is a circle
and we choose minimal models Λ(xi) → APL(B(T/Hi)). Taking the two-
fold product then gives the desired maps M(Hi, T ) → APL(XT

T/Hi
). If

ANNALES DE L’INSTITUT FOURIER



EQUIVARIANT MODELS AND COMPACT REALIZATION 11

we scale the xi correctly, then their images [x1], [x2], [x3] in H∗(BT ) af-
ter composing with the respective maps H∗(B(T/Hi))→ H∗(BT ) can be
checked to satisfy [x1] = [x2] + [x3]. Thus we can choose an image of v
in A1

PL(BT ) that is compatible with the differentials and yields the Sulli-
van model Λ(x1, x2, x3, v)→ APL(BT ) extending the previous maps. This
finishes considerations for the bottom row.

In the middle row we have XHi = S2 for each of the Hi with the T/Hi-
action corresponding to standard rotation. We leave it to the reader to
verify the existence of the dashed quasi isomorphism in a commutative
diagram

Λ(xi, ai, ti) //

��

APL(XHi

T/Hi
)

��

Λ(xi)× Λ(xi) // APL(XT
T/Hi

)

where the image of xi is given by Λ(xi)→ APL(B(T/Hi))→ APL(XHi

T/Hi
)

and all solid arrows are the previously described maps. We just note that
strict commutativity of the square can be achieved using the surjectiv-
ity of the right hand vertical map. To obtain compatible extensions to
maps M({1}, Hi) → APL(XHi

T ), we use the compositions Λ(xi, ai, ti) →
APL(XHi

T/Hi
)→APL(XHi

T ) and Λ(x1, x2, x3, v)→APL(BT )→APL(XHi

T ),
which in fact agree on xi and thus piece together to a quasi isomorphism.

Finally, we sketch how to construct the remaining map M({1}, {1}) →
APL(XT ) such that it is compatible with all other maps. We write
D({1}, {1}) the subset of D(C) consisting of the ({1}, Hi) and ({1}, T ). We
have given maps M({1}, {1})→ limD({1},{1})M→ limD({1},{1}) APL(X).
By standard theory (cf. Lemma 3.14) there is a surjective quasi isomor-
phism APL(YT ) → limD({1},{1}) APL(X), where YT is the union over all
subcomplexes in the limit. Here Y ⊂ X is just the one-skeleton of the ac-
tion, consisting of three copies of S2, joined at the poles. We can now lift to
a mapM({1}, {1})→ APL(YT ) and we are done if we can lift this through
the map APL(XT )→ APL(YT ). On the xi and v this lift is just given by

Λ(x1, x2, x3, v) −→ APL(BT ) −→ APL(XT ).

On b, s this lift can be constructed by hand, using that APL(XT ) →
APL(YT ) is surjective and an isomorphism on cohomology in higher de-
grees.
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2.2. Cohomology R-structures

In Example 2.10, at each point (U,H) ∈ D(C) of the diagram, there
is a map RT/U → M(U,H), which is a model for the Borel fibration.
To obtain an explicit description, e.g. identify RT/Hi

∼= Λ(xi), RT ∼=
Λ(x1, x2, x3)/(x1 − x2 − x3) ∼= Λ(x1, x2) and take the obvious inclusions
(diagonal in the bottom row). However for the whole system this does not
piece together to a morphism R → M. The reason is that w.r.t. these
identifications the map RT/H3 → RT is defined by x3 7→ x1 − x2, while
in M the equality x3 = x1 − x2 does not hold on the cochain level. This
causes problems with respect to strict commutativity. Note however that
there are no problems to define R → H∗(M) on the level of cohomology,
leading us to the following

Definition 2.11. — A cohomology R-structure on a D-system A is a
morphism R|D → H∗(A).

Definition 2.12. — Let A be a D-system with a cohomology
R-structure. We say that A satisfies the triviality condition (TC) if the map

RT/K
⊗
RT/U

H∗(A(U,H)) −→ H∗(A(K,H))

is an isomorphism for every (U,H), (K,H) ∈ D with K ⊂ U .

Remark 2.13. — This condition reflects the fact that the Borel fibration
of a trivial action is just a product: let X be a T -space and U ⊂ T a
subtorus which acts trivially. Then let L ⊂ T be a complementary torus to
U , i.e. T = U × L and L ∼= T/U . Then ET ≃ EU × EL, XT ≃ BU ×XL,
and RT ∼= RU ⊗RL ∼= RU ⊗RT/U . We obtain

H∗
T (X) = H∗(BU)⊗H∗

L(X) = RU ⊗H∗
T/U (X) = RT

⊗
RT/U

H∗
T/U (X).

In particular the canonical cohomology R-structure of APL(X) satisfies
(TC).

Definition 2.14. — For any (U,H) ∈ S let ST/U (H) ⊂ RT/U be the
multiplicative subset generated by R2

T/U\V , with V = ker(H2(B(T/U))→
H2(B(H/U))). Let A be a D-system with a cohomology R-structure. We
say that A satisfies the localization condition (LC) if for any (U,H) ∈ D
and any torus K ⊃ H, the localized map

ST/U (K)−1H∗(A(U,H)) −→ ST/U (K)−1H∗(A((U,mD(K)))

is an isomorphism.
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Remarks 2.15.
(i) Note that mS(H) = H for any H ⊂ T . Thus over Q, the Borel

localization theorem can be rephrased as follows: for a suitably nice
T -space X the S-system APL(X) together with R→ H∗(APL(X))
satisfies (LC). For the precise meaning of suitably nice we refer
to [1, Theorem 3.2.6]. We note however that it includes the case of
a finite T -CW-complex.

(ii) Let X be a finite T -CW-complex, C be the collection of its isotropy
groups, and D ⊂ S be a stable subset which contains D(C). It
follows Lemma 2.9 that the restricted system APL(X)|D satisfies
(LC).

The following lemma is a crucial ingredient for the connection between
(LC) and compact realization of systems.

Lemma 2.16. — Let f : M → N be a map between finitely generated
graded RT/U -modules and assume that it induces an isomorphism when
localized at ST/U (K) for any torus K ⊋ U . Then the kernel and cokernel
of f are finite dimensional over Q.

Proof. — Let p ⊂ RT/U be a prime ideal with p ∩ R2
T/U ⊊ R2

T/U .
Then there is a subtorus K ⊋ U such that the kernel of H∗(B(T/U)) →
H∗(B(K/U)) is equal to p ∩ R2

T/U . Then ST/U (K) ⊂ RT/U\p. It follows
from the assumptions that the kernel A of f vanishes when localized at p.

Now in case A ̸= 0, let p ⊂ RT/U be a prime ideal which contains the
annihilator ann(A). Note that A is finitely generated since M is and RT/U
is Noetherian. It follows that Ap ̸= 0. By what we have seen, above this
implies p∩R2

T/U = R2
T/U and thus p = R+

T/U is the maximal homogeneous
ideal. Hence the radical is given by

√
ann(A) = R+

T/U . As a vector space,
A is generated over Q by elements myi where the m ∈ R+

T/H is a monomial
and the yj are a finite RT/H -generating set of A. By what we have just
seen, these expressions vanish when the degree of m passes a certain point.
It follows that A is finite dimensional and the same argument works for the
cokernel of f . □

3. Models for systems of cochain algebras

The goal of this section is to lay the technical foundation for the rest of
the paper by studying nice representatives of the quasi isomorphism types
of the systems introduced in the previous section. The reader may notice

TOME 0 (0), FASCICULE 0



14 Leopold ZOLLER

relations to the notions of fibration and cofibration in the sense of model
categories. In fact, conditions related to the surjectivity condition from
Section 3.2 appear in similar context in [17, 20] and have been interpreted
in model categorial terms in [18] in the setting of finite group actions. We
will however not delve into the details of this viewpoint in this paper. We
just point out that the properties studied in this section do not correspond
to the projective model structure which occurs briefly as a tool in Section 7:
in the projective model structure every system is fibrant and being a system
of Sullivan cdgas is not sufficient to be cofibrant.

3.1. The disconnected Sullivan condition

Definition 3.1. — We say a cochain algebra A is
• connected if A0 = Q. It is cohomologically connected if H∗(A) is

connected.
• simply connected if A1 = 0. It is cohomologically simply connected

if H∗(A) is simply connected.
• spacelike if H0(A) = Q× · · · ×Q as algebras.

A system of cochain algebras is said to be (cohomologically) connected,
simply connected, or spacelike, if it satisfies the respective conditions ob-
jectwise, i.e. at any fixed position (U,H) ∈ D.

We recall some terminology which we try to keep consistent with [5, 6].
• A morphism of the form (B, d) → (B ⊗ ΛZ,d), b 7→ b ⊗ 1 with
Z = Z⩾0 will be called a free extension.

• We say that a free extension satisfies the nilpotence condition (also
called Sullivan condition), if B is cohomologically connected and
Z =

⋃
r⩾0 Z(r) is a union of graded subspaces with d: Z(0) → B

and d: Z(r) → B ⊗ ΛV (r − 1) for r ⩾ 1. We also just call this a
free nilpotent extension.

• A relative Sullivan algebra is a free nilpotent extension as above
such that Z = Z⩾1. If additionally d: 1 ⊗ Z → (Q ⊕ B⩾1) ⊗ ΛZ
then we call it a Sullivan extension (the latter notion was introduced
in [6] and is in practice not more restrictive than the first one cf. [5,
Lemma 14.8]).

• A free nilpotent algebra (resp. a Sullivan algebra) is a free nilpotent
(resp. Sullivan) extension of Q. An almost Sullivan algebra is a
product (ΛZ,d)⊗(Λ(U⊕dU),d), where (ΛZ,d) is a Sullivan algebra
and (Λ(U ⊕ dU),d) is contractible, generated in degree 0.
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• We say a morphism of D-systems (resp. a D-system) is a free (nilpo-
tent)/Sullivan extension (resp. free (nilpotent)/(almost) Sullivan) if
the respective condition is fulfilled objectwise.

Rather frequently we will deal with free nilpotent cdgas (ΛZ,d) which
have Z0 ̸= 0 and are thus not quite Sullivan algebras (but usually almost
Sullivan algebras). A reason for this is that oftentimes bigger models are
needed in order to achieve strict commutativity of diagrams (an example
being Proposition 3.4 below). In [6] there is the notion of a Λ-cdga which
allows generators in degree 0. Unfortunately it has a built in minimality
condition which we usually neither have nor need and is thus also not our
notion of choice. We want to point out that the theory for relative Sullivan
cdgas in [5] and Λ-extensions in [6] is developed rather analogously and
many proofs carry over verbatim to the less restrictive case of free nilpotent
extensions (usually the essential ingredient is the “lifting lemma”, which
holds equally in the general free nilpotent case). A summary of the technical
statements we will need in this paper is given in Remark 3.7.

While many standard references focus mainly on cohomologically con-
nected cochain algebras, the theory extends rather seamlessly to spacelike
ones. The reason for this is the following Lemma (see e.g. [13, Theorem B,
Principle 3.2] for proofs and a deeper treatment of disconnected rational
homotopy theory) which shows that the category of spacelike cochain al-
gebras is completely described in terms of products in the cohomologically
connected category.

Lemma 3.2. — Let A be a spacelike cochain algebra. There is a finite
product decomposition A =

∏
iAi with Ai cohomologically connected and

which is unique up to permutation of the factors. If B =
∏
Bj is another

spacelike cochain algebra with cohomologically connected Bj , then there is
a bijection between homomorphisms φ : A→ B and matrices of homomor-
phisms φij : Ai → Bj such that for each j only a single φij is nonzero.

The product decomposition in the Lemma is also referred to as the de-
composition into the path components of a spacelike cochain algebra.

Proof. — Since Qr ∼= H0(A,d) = ker d|A0 we obtain a unique collection
of idempotent cocycles 11, . . . , 1r such that 1 = 11 + · · · + 1r. The factors
in the product decomposition A =

∏
Ai are given by Ai = 1i · A. The

remaining properties are easily verified. □

Definition 3.3. — A disconnected free extension of B is a morphism
(B, d) →

∏k
i=1(B ⊗ ΛZi,d) where each B → B ⊗ ΛZi is a free extension.

We say that it satisfies the nilpotence condition (resp. is a disconnected
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16 Leopold ZOLLER

Sullivan extension) if each of the B → B ⊗ ΛZi satisfies the nilpotence
condition (resp. is a Sullivan extension).

Proposition 3.4. — Let P ,A be D-systems of cochain algebras. As-
sume that P is cohomologically connected and A is spacelike. Then for
any morphism P → A such that H1(P ) → H1(A) is injective, there is a
natural factorization P → M → A where the first map is a disconnected
free nilpotent extension and the second map is a quasi isomorphism.

Proof. — This is just a consequence of the functorial construction of
free nilpotent extensions given e.g. in [3, Section 4.7]. We briefly recall the
construction (in a slightly adapted version) in order to demonstrate that
it has the claimed properties. Consider first a morphism (P,d) → (A,dA)
between cohomologically connected cochain algebras such that H1(P ) →
H1(A) is injective. Then we setM0 = P ⊗ΛV0 where V0 ∼= ker(dA)⩾1. We
set the differential of M0 to be trivial on V0 and define ψ0 : M0 → A in
the obvious way. Thus ψ0 is surjective on cohomology and an isomorphism
on H0.

Now for k ⩾ 1 and each pair (x, y) ∈ Ak−1 × Mk
0 with dy = 0 and

dx = ψ0(y), introduce a generator v(x,y) in degree k − 1 with dv(x,y) = y

and ψ1(v(x,y)) = x. We obtain a commutative diagram

M0 //

ψ0

��

M0 ⊗ ΛV1

ψ1
yy

A

where V1 is defined as follows: in degrees ⩾ 1, a basis of V is given by
the v(x,y) for all possible choices of pairs (x, y) as above, while in degree
0 we choose a collection (xi, yi) such that the yi descend to a basis of
ker(ψ∗

0 : H1(M0)→ H1(A)). We set M1 :=M0 ⊗ ΛV1.
A cocycle inM1

0 is of the form a+v with v ∈ V 1
0 , a ∈ P 1. It follows from

the injectivity of H1(P )→ H1(A) that we may write yi = ai+vi such that
the vi are linearly independent in V 1

0 . Denote by L0 ⊂ V 1
0 the span of the

vi and by W0 a complement of L0 in V ⩾1
0 . Let ϕ be an automorphism of

M1 which is the identity on P , W0, and V1 and is defined as vi 7→ vi−ai on
L0. Then d′ = ϕ−1dϕ defines a differential onM1 and ϕ is an isomorphism
of cdgas with respect to the two differentials d and d′. Now d′ maps V 0

1
isomorphically onto L0 and we can write the inclusion P ⊗ Λ(V 0

1 ⊕ L0)→
M1 as a relative Sullivan algebra. This implies that still H0(M1,d) = Q.

We observe that regarding representatives of ker(ψ∗
1 : H1(M1)→ H1(A))

we are in the same situation as before: settingM′
0 =M0⊗ΛV 0

1 , a d-cocycle
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in M1
1 is of the form a + v with v ∈ V 1

1 , a ∈ M′
0. Furthermore, if ai + vi

are representatives of a basis of ker(H1(M1) → H1(A)), then the vi are
linearly independent in V 1

1 . This is due to the fact that an element of the
kernel which is represented in M′

0 is also represented in M0 and is hence
exact in M1 by construction.

We iterate this procedure of constructing the extension M0 ⊂ M1 and
obtain a factorization P →M =

⋃
i⩾0Mi → A in which the first map is a

free nilpotent extension and the second map is easily checked to be a quasi
isomorphism.

Now this construction is functorial in the following sense: for a commu-
tative diagram of solid arrows

P

��

//M

��

σ // A

f

��

P ′ //M′ σ′
// A′

with M, M′ constructed as above, there is a canonical choice for the
dashed arrow M→M′ such that the diagram commutes and this choice
is compatible with compositions. This can be seen inductively: given a
map φ : Mi → M′

i which is compatible with the factorizations, we ex-
tend it to Mi+1 by sending v(x,y) ∈ V ki+1 to v(f(x),φ(y)) ∈ V ′

i+1 whenever
k ⩾ 1. For some v(x,y) ∈ V 0

i+1, the element v(f(x),φ(y)) is not necessarily
in V ′

i+1. However, there is some v ∈ M0
i+1

′ with dv = φ(y). Furthermore
any element with this property is of the form v + α · 1M′

i
due to the fact

that H0(M′
i) = Q. Setting φ(v(x,y)) = v + α · 1M′

i
we find that the ele-

ment f(σ(v(x,y)))−σ′(φ(v(x,y))) is a cocycle in A′0. Thus there is a unique
choice of α such that it vanishes, which is the unique admissible choice of
φ such that the diagram above commutes. This proves functoriality of the
factorization.

Now given P → A where P is cohomologically connected and A is space-
like, we have a canonical product decomposition into morphisms P → Ai
between cohomologically connected cochain algebras. We apply the above
construction to each of these factors to obtain a factorization P →M→ A

in which the first map is a disconnected free nilpotent extension and the
second map is a quasi isomorphism. Functoriality carries over to this case
and yields the proposition. □

Remark 3.5. — Applied to Q → APL(∗) we obtain a free nilpotent ap-
proximation of the system APL(∗) of classifying spaces. We observe for
later use that we in fact have an almost Sullivan approximation (parts
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of the following discussion are rather analogous to the proof of [5, The-
orem 14.7]): we apply the construction from the proof of Proposition 3.4
to Q → APL(B(T/U)) for some subgroup U ⊂ T . This yields a quasi
isomorphism (ΛV,d) → APL(B(T/U)). With notation as in the proof of
Proposition 3.4, we may rewrite (ΛV,d) ∼= ((ΛV 0 ⊕ L)⊗ ΛW, d′) where d′

maps V 0 =
⊕

i V
0
i isomorphically onto L =

⊕
i Li ⊂ V 1 and W = W⩾1 is

a complement of V 0⊕L in V . Furthermore the inclusion (Λ(V 0⊕L),d′)→
(Λ(V 0 ⊕ L)⊗ ΛW, d′) is a relative Sullivan algebra. It thus follows (cf. [5,
Proposition 6.7]) that dividing by the ideal generated by (V 0⊕L) yields a
surjective quasi isomorphism

(ΛV,d) −→ (ΛW, d′).

By the lifting Lemma the morphism admits a section. Tensoring this sec-
tion with the inclusion of Λ(V 0 ⊕ L) ∼= Λ(V 0 ⊕ dV 0) gives the desired
isomorphism

Λ(W, d′)⊗ (Λ(V 0 ⊕ dV 0),d) −→ (ΛV,d)

with (ΛW, d′) a Sullivan algebra.

The following technical Lemma will prove helpful at several occasions.

Lemma 3.6. — For U ⊂ H ⊂ T , consider a homotopy commutative
diagram

P (H) //

��

P (U)

��

APL(BT/H) // APL(BT/U)

where vertical maps are quasi isomorphisms and P (H), P (U) are free nilpo-
tent. Let MH = (P (H) ⊗ ΛV,d) be a free nilpotent extension and let
MU = P (U)

⊗
P (H)MH = (P (U)⊗ΛV,d) be the pushout. Then the map

H∗(P (U))
⊗

H∗(P (H))

H∗(MH) −→ H∗(MU )

is an isomorphism.

Proof. — We choose a minimal model RT/H → APL(BT/H) which in-
duces the identity on cohomology. Let φH : P (H)→ RT/H be a quasi iso-
morphism which is, up to homotopy, compatible with the chosen models. It
admits a section ψH . Define φU analogously. We note that the given map
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ϕ : P (U) → P (H) is homotopic to ϕ′ = ϕ ◦ ψH ◦ φH . Now any homotopy
between maps f, g : P (H)→ P (U)⊗ (t, dt) induces morphisms

P (U)
⊗
P (H)

MH ←− (P (U)⊗ (t, dt))
⊗
P (H)

MH −→ P (U)
⊗
P (H)

MH

where the outer tensor products are with respect to f and g. By [5, The-
orem 6.10] these are quasi isomorphisms. Two more applications of the
theorem yield that p : MH → RT/H

⊗
P (H)MH =:M′

H as well as

ϕU ⊗ p : P (U)
⊗
P (H)

MH −→ RT/U
⊗
RT/H

M′
H

are quasi isomorphisms, where the first tensor product is taken with respect
to ϕ′ on the left and RT/H → RT/U is understood via φU ◦ϕ ◦ψH . Clearly
H∗(RT/U

⊗
RT/H

M′
H) = RT/U

⊗
RT/H

H∗(M′
H). □

Remark 3.7. — Using Lemma 3.2, the theory surrounding free nilpotent
cdgas carries over to the disconnected realm. We collect here a couple of
facts which we will use throughout the paper. They follow immediately from
the standard theory by considering individual components in the canonical
product decompositions.

• Any morphism B → C, with B cohomologically connected and C

spacelike, factors as B → B ⊗ ΛZ → C, where the first map is
a disconnected Sullivan extension and the second map is a quasi
isomorphism (cf. [6, Theorem 3.1]).

• Let P be cohomologically connected. A morphism from a discon-
nected free nilpotent extension P → M lifts through a surjective
quasi isomorphism of spacelike cochain algebras relative to an ini-
tial lift of P . In case the quasi isomorphism is not surjective there is
still a lift up to homotopy relative to P . Furthermore the homotopy
class relative to P of the lift is unique (cf. [5, Lemma 14.4, Proposi-
tion 14.6]; note that results are formulated for the more restrictive
relative Sullivan case, but the extra assumptions are not used; see
also [6, Lemma 1.2]).

For a cochain algebra A the associated simplicial set, its so-called Sullivan
realization, is denoted by ⟨A⟩ (cf. [5, p. 247]). The spatial realization of
⟨A⟩ will be denoted by |A|. Note that directly from the definitions and
Lemma 3.2 we obtain ⟨

∏
Ai⟩ =

∐
⟨Ai⟩ and |

∏
Ai| =

∐
|Ai|. Thus the basic

facts on realization carry over by considering path components separately.
We will use:
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• LetM be a disconnected free nilpotent algebra. Then the canonical
map APL(|M|) → APL(⟨M⟩) is a surjective quasi isomorphism
(this is stated e.g. in [5, p. 249] and [6, p. 28] for Sullivan algebras
and Λ-algebras respectively but the proofs apply equally in the more
general setting).

• Let M be an almost Sullivan algebra. If H1(M) = 0 and M is of
finite type, then |M| is componentwise simply connected. Further-
more the canonical map M → APL(|M|) is a quasi isomorphism
(the realization of an almost Sullivan cdga, i.e. a tensor product of
a contractible cdga and a Sullivan cdga, splits into the product of
the realization of the latter and a contractible space, as shown in [5,
Section 17 (c) Examples 1,2]; then use [5, Theorem 17.10]).

• If P → M is a disconnected Sullivan extension, then the map
|M| → |P | is a fibration (cf.[5, Proposition 17.9]).

3.2. The surjectivity condition

Definition 3.8. — Let D ⊂ S be a subset.
• For some (U,H) ∈ D let D(U,H) denote the subset of all (U ′, H ′) >

(U,H). Also denote by D+(U,H) ⊂ D(U,H) the subset of those
(U ′, H ′) > (U,H) with U ′ ⊊ U and by D−(U,H) the subset of all
(U ′, H ′) > (U,H) with H ′ ⊋ H.

• We say a D-system A satisfies the surjectivity condition (SC) if for
any (U,H) ∈ D the map A(U,H)→ limD(U,H) A is surjective.

• For a D-system A and (U,H) ∈ D, we denote by KA(U,H) the
kernel of A(U,H) → limD(U,H) A. We say a morphism A → B

satisfies the surjectivity condition for morphisms (SCM) if A and B
satisfy (SC) and the maps KA(U,H)→ KB(U,H) are all surjective.

Proposition 3.9. — Let D ⊂ S be bounded.
(i) Let A be a D-system. Then there is a free extension A→ B which

is objectwise given by taking the tensor product with a contractible
free cdga, and which satisfies the following properties: B satisfies
(SC). Furthermore, if f : A → C is a morphism of D-systems and
C satisfies (SC), then f extends to a morphism B → C.

(ii) A given morphism A → C between two systems satisfying (SC)
factors as A → B → C such that the first map is as in (i) and the
second map satisfies (SCM).
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Proof. — In (i), consider the filtration D =
⋃
nDn where Dn consists of

all those elements (U,H) such that any maximal chain (e, T ) > · · · >
(U,H) is of length ⩽ n. We note that the filtration is exhaustive be-
cause D is bounded and that for (U,H) ∈ Dn we have D(U,H) ⊂ Dn−1.
Assume for some n that we have constructed free nilpotent extensions
A|Dn

→ Bn of Dn-systems, such that Bn satisfies (SC). Now for ev-
ery (U,H) ∈ Dn+1\Dn we define Bn+1(U,H) = A(U,H) ⊗ Λ(V ⊕ dV )
where Λ(V ⊕ dV ) is a contractible free cdga which maps surjectively onto
limD(U,H) Bn. By construction, the map

Bn+1(U,H) −→ lim
D(U,H)

Bn+1 = lim
D(U,H)

Bn

is surjective for (U,H) ∈ Dn+1. Iterating this procedure inductively yields
the desired extension A → B in the limit. Now assume f : A → C is
a morphisms and an extension of f to Bn → C has been constructed.
Then for (U,H) and Λ(V ⊕ dV ) as above we extend f to Bn+1(U,H) =
Bn(U,H)⊗ Λ(V ⊕ dV ) by choosing any lift of the morphism

Λ(V ⊕ dV ) −→ lim
D(U,H)

Bn −→ lim
D(U,H)

C

through the surjection C(U,H)→ limD(U,H) C. This extends f to Bn+1 as
a morphism of diagrams.

For the proof of (ii), at the (U,H)-position choose a contractible free cdga
Λ(W ⊕dW ) which maps surjectively onto KC(U,H). Then set A′(U,H) =
A(U,H) ⊗ Λ(W ⊕ dW ) and map Λ(W ⊕ dW ) to 0 in A′(U ′, H ′) for any
(U ′, H ′) > (U,H). The obvious extension A′ → C has the desired proper-
ties except A′ does not necessarily satisfy (SC). Now apply (i). □

Lemma 3.10. — Let D ⊂ S and let F ⊂ S be a subset with the property
that every element of F is maximal in D ∪ F . Let A be a D ∪ F-system
satisfying (SC). Then the projection limD∪F A→ limD A is surjective.

Proof. — Let x ∈ limD A. For any (U,H) ∈ F let x(U,H) denote the
image of x in limD(U,H) A. Note that D(U,H) = (D ∪ F)(U,H) and let
y(U,H) ∈ A(U,H) be a preimage of x(U,H). Then a preimage of x is given
by the element y ∈ limD∪F A which is y(U,H) in the (U,H)-component for
(U,H) ∈ F and agrees with x on the other components. □

Proposition 3.11. — Let D ⊂ S be a bounded subset and let A→ B

be a quasi isomorphism of D-systems which satisfy (SC). Then limD A →
limD B is a quasi isomorphism. If moreover A → B satisfies (SCM) then
limD A→ limD B is surjective.
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Proof. — As D is bounded, any chain in D is of length ⩽ n for some
n ⩾ 0. Assume inductively that we have shown the proposition for diagrams
whose maximal chain length is bounded by n− 1.

Let Dn−1 ⊂ D be the subset of those (U,H) ∈ D such that any chain
(U,H) < · · · in D is of length ⩽ n − 1. By the induction hypothesis,
limDn−1 A→ limDn−1 B is a quasi isomorphism. Observe that the require-
ments of Lemma 3.10 are fulfilled when writing D = Dn−1∪F as a disjoint
union. By Lemma 3.10 we obtain a diagram of complexes

0 // KA
//

��

limD A //

��

limDn−1 A //

��

0

0 // KB
// limD B // limDn−1 B

// 0

in which the rows are exact. Note that for (U,H) ∈ F we have D(U,H) ⊂
Dn−1. Thus the left hand map between the kernels is given by

KA
∼=

∏
(U,H)∈F

KA(U,H) −→
∏

(U,H)∈F

KB(U,H) ∼= KB

withKA(U,H) andKB(U,H) as defined above. We claim thatKA(U,H)→
KB(U,H) induces an isomorphism in cohomology for any (U,H) ∈ D. If
this holds, then the same is true for KA → KB and thus also the middle
vertical morphism in the diagram above, which finishes the induction. To
prove the claim consider the diagram

0 // KA(U,H) //

��

A(U,H) //

��

limD(U,H) A //

��

0

0 // KB(U,H) // B(U,H) // limD(U,H) B // 0

with exact rows. The central vertical map is a quasi isomorphism by hy-
pothesis and the right hand vertical map is a quasi isomorphism by the
induction hypothesis. Thus the claim and the first part of the proposition
follow. If KA(U,H) → KB(U,H) is surjective for all (U,H) ∈ D, then in
the induction above KA → KB is surjective. Assuming inductively that
limDn−1 A→ limDn−1 B is surjective, then the first diagram above implies
surjectivity of limDn

A→ limDn
B □
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Proposition 3.12. — Let D ⊂ S be a bounded subset. Consider a
commutative diagram of solid arrows of D-systems

P

��

// A

��

M //

??

B

in which the left hand vertical map is a disconnected free nilpotent ex-
tension and the right hand vertical map is a quasi isomorphism between
spacelike systems satisfying (SCM). Then the dashed arrow exists such
that the diagram commutes.

Proof. — Let D =
⋃
nDn as in the proof of Proposition 3.11. Assume

that we have constructed the lift when restricting to Dn−1-systems. Let
(U,H) ∈ Dn\Dn−1. Consider the pullback square

Q //

��

limD(U,H) A

��

B(U,H) // limD(U,H) B

with the compatible P (U,H)-actions. By Proposition 3.11 the right hand
vertical map is a surjective quasi isomorphism so the same holds for Q →
B(U,H). In particular it follows that A(U,H)→ Q is a quasi isomorphism.
It follows from the (SCM) condition that A(U,H) → Q is also surjective.
Note that D(U,H) ⊂ Dn−1. Thus by induction we have a mapM(U,H)→
Q, compatible with the P (U,H)-actions. We lift this relative to P (U,H)
to a map M(U,H) → A(U,H). This defines the desired lift on Dn and
finishes the proof. □

Proposition 3.13. — Let D ⊂ S be a stable bounded subset and A be
a D-system satisfying (SC). Let (U,H) ∈ D.

(i) The projections

lim
D(U,H)

A −→ lim
D+(U,H)

A

and

lim
D(U,H)

A −→ lim
D−(U,H)

A

are surjective.
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(ii) If H0 (A(U ′, H))→ H0(A({1}, H)) is an isomorphism and we have
H1(A(U ′, H)) = 0 for any (U,H) ⩽ (U ′, H) ∈ D then

H1
(

lim
D+(U,H)

A

)
= 0.

(iii) If in addition to the conditions of (ii) the map H2(A(U ′, H)) →
H2(A({1}, H)) is injective for every U ′ ⊊ U , then

H2
(

lim
D+(U,H)

A

)
−→ H2(A(e,H))

is injective.

Proof. — We prove only the surjectivity of the first map in (i). The
proof for the second map is completely analogous with the roles of the
two components swapped. We have D(U,H) = D+(U,H) ∪ F , where F =
{(U,H ′) ∈ D | H ⊊ H ′}. We filter F =

⋃
Fn where Fn consists of those

(U,H ′) such that the length of any maximal chain (U, T ) > · · · > (U,H ′)
in D is of length ⩽ n. The map

lim
D+(U,H)∪Fn+1

A −→ lim
D+(U,H)∪Fn

A

is surjective by Lemma 3.10 and the surjectivity of

lim
D(U,H)

A −→ lim
D+(U,H)

A

follows inductively.
Now, for the proof of (ii), suppose H0(A(U,H)) → H0(A(U ′, H)) is

an isomorphism and H1(A(U ′, H)) = 0 for any U ⊃ U ′ ∈ DL. For any
(K,L) ∈ S, let D(K,L) = {(K ′, L) ∈ D | K ′ ⊊ K}. We claim that the
projection

lim
D+(U,H)

A −→ lim
D(U,H)

A

is an isomorphism. Any element (K,L) ∈ D+(U,H) has the predecessor
(K,H) ∈ D(U,H). Thus the projection map is an injection. On the other
hand every element of limD(U,H) A extends to one of limD+(U,H) A by set-
ting the (K,L) component to be the image of the (K,H) component.

We show now that H1(limD(U,H) A) = 0. Define a filtration D(U ,H) =⋃
nEn where En consists of those (U ′, H) where the length of any maximal

chain ({1}, H) > · · · > (U ′, H) in D is ⩽ n. We claim that limEn+1 A →
limEn A is surjective. The composition

A(K,H) −→ lim
D(K,H)

A −→ lim
D+(K,H)

A ∼= lim
D(K,H)

A
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is surjective by (SC) and the first part of the proposition. Thus A|
D(U,H)

satisfies (SC) and the claim follows from Lemma 3.10.
The algebra limE0 A = A(e,H) is simply connected. Now assume induc-

tively that limEn
A is simply connected. Let B be the kernel fitting in the

exact sequence

0 −→ B −→ lim
En+1

A −→ lim
En

A −→ 0

of complexes. By the long exact cohomology sequence and the induction
hypothesis H1(B)→ H1(limEn+1 A) is surjective. We observe that

B ∼=
∏

(K,H)∈En+1\En

B(K,H)

as complexes, where

0 −→ B(K,H) −→ A(K,H) −→ lim
D(K,H)

A −→ 0

is exact. It suffices to show that all the B(K,H) are cohomologically simply
connected. As H1(A(K,H)) = 0 it suffices to show that H0(A(K,H)) →
H0(lim

D(K,H) A) is an isomorphism. To see this, recall that by hypothesis
H0(A(U ′, H)) → H0(A({1}, H)) is an isomorphism for all U ⊃ U ′ ∈ DL.
Since all algebras are nonnegatively graded, degree 0 cohomology is just the
kernel of the differentials. But then clearly the projection limD(K,H) A →
A({1}, H) maps the degree 0 kernels of the differentials isomorphically to
each other.

For the proof of (iii) we note that limE0 A = A({1}, H) and proceed by
showing that the maps H2(limEn+1 A)→ H2(limEn

A) are injective for all
n. For this it suffices that H2(B) = 0, which is equivalent to H2(B(K,H)) =
0 for all (K,H) ∈ En+1\En. For any such (K,H), the map H2(A(K,H))→
H2(limD(K,H) A) is injective because the composition with the projection
onto H2(A({1}, H)) is. But then H2(B(K,H)) = 0 follows from the long
exact sequence of 0 −→ B(K,H) −→ A(K,H) −→ limD(K,H) A −→ 0 using
that H1(limD(K,H) A) = 0 by (ii). □

Lemma 3.14. — Let X be a T -CW-complex with isotropies contained in
a bounded collection C of subgroups of T . Set D = D(C). For some H ∈ C
we define D−(H) ⊂ D to be the subset of elements of the form (H0,K)
with K ⊋ H. Also set Y to be the union over all XK for T ⊃ K ⊋ H.
Then APL(X)|D−(H) satisfies (SC) and APL(YT/H0)→ limD−(H) APL(X)
is a surjective quasi isomorphism.
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Proof. — We begin with the surjectivity of the map APL(YT/H0) →
limD−(H) APL(X). In what follows, Sing(−) denotes the simplicial set given
by the singular simplices of a space. The map corresponds to the morphism
APL(Sing(YT/H0)) → APL(colim Sing(XK

T/H0
)) induced by the morphism

of simplicial sets colim Sing(XK
T/H0

)) → Sing(YT/H0) and the colimit is
formed over all (H0,K) ∈ D−(H). For (H0,K), (H0,K

′) ∈ D−(H) we have
XK
T/H0

∩ XK′

T/H0
= XK′′

T/H0
for some (H0,K

′′) ∈ D−(H). From this we de-
duce that the colimit can be identified with the subset of singular simplices
which respect the cover YT/H0 =

⋃
(H0,K)∈D−(H) X

K
T/H0

. The inclusion of
simplicial sets induces a surjection on APL(−) (see [5, Proposition 10.4]).
The same argument shows that APL(X)|D−(H) satisfies (SC).

To show that APL(YT/H0)→ limD−(H) APL(X) is a quasi isomorphism,
we first replace the XK

T/H0
by open neighbourhoods. For a fixed 0 < ε < 1

and T -subcomplex A ⊂ X we define an equivariant open neighbourhood
as follows: inductively assume we have constructed a neighbourhood Un
of An in Xn. Then for each (n + 1)-cell ϕ : T/K × Dn+1 → Xn which
is not in An+1 we radially thicken up ϕ−1(Un) by length ε into the inte-
rior of T/K × Dn+1. This construction gives neighbourhoods U(H0,K) ⊂
YT/H0 for every (H0,K) ∈ D−(H) which deformation retract onto XK

T/H0
.

For any (H0,K) ⩽ (H0,K
′) we have U(H0,K) ⊃ U(H0,K′) and we have

U(H0,K) ∩ U(H0,K′) = U(H0,K′′) whenever XK
T/H0

∩XK′

T/H0
= XK′′

T/H0
. Then

limD−(H) APL(X)→ lim(H0,K)∈D−(H) APL(U(H0,K)) is a quasi isomorphism
since this holds objectwise and both systems satisfy (SC). As before, the
right hand algebra can be understood as APL(−) applied to the subset of
Sing(YT/H0) which respects the open cover given by the U(H0,K).

In order to show that APL(YT/H0) → lim(H0,K)∈D−(H) APL(U(H0,K)) is
a quasi isomorphism, by [5, Theorem 10.9], it suffices to prove that the
inclusion of the corresponding simplicial sets induces a quasi isomorphism
on the standard singular cochain algebras. This is a standard result which
follows via barycentric subdivision. □

4. Strictification

The goal of this section is to show that the notion of homotopy of systems
reduces to objectwise considerations in the specific case of models for the
Borel fibration on T -simply connected spaces.

By (t,dt) we denote the free contractible cdga on the generators t in
degree 0 and dt in degree 1, where the differential sends t to dt. There
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are two evaluation morphisms i0 and i1 to Q given by t 7→ 0 and t 7→ 1
respectively and dt 7→ 0. Recall that a homotopy between two morphisms
f, g : A→ B, is a morphism H : A→ B⊗(t,dt) with i0 ◦H = f , i1 ◦H = g,
where we write ij for the map idB ⊗ ij by abuse of notation. For a system
A of cdgas we form the system A⊗ (t,dt) by taking the objectwise tensor
product and extending maps via the identity on the right hand side. We
obtain morphisms i0, i1 : A⊗ (t,dt) → A of systems. We point out that if
D ⊂ S is finite, then limD A⊗ (t, dt) = limD A⊗ (t,dt).

Definition 4.1. — A homotopy between morphisms f, g : A → B of
systems of cdgas is a morphism H : A → B ⊗ (t, dt) satisfying i0 ◦H = f

and i1 ◦H = g.

The following standard lemma is the key to passing from homotopy com-
mutative diagrams to strictly commutative ones.

Lemma 4.2. — Let P be cohomologically connected and A,B be space-
like cochain algebras. Consider a diagram

P //

��

A

π

��

M

φ
>>

ψ
// B

in which P → M is a disconnected free nilpotent extension, the outer
square as well as the upper left triangle commute, and the lower right
triangle commutes up to homotopy relative to P . If π is surjective, then we
find a morphism φ′ homotopic to φ relative to P , such that ψ = π ◦ φ′.

Proof. — Let H : M → B ⊗ (t,dt) be a homotopy with i0 ◦ H = ψ,
i1 ◦H = π ◦ φ. Denote by Q the pullback of B ⊗ (t,dt) i1−→ B

π←− A. Then
we have a map (π⊗ id(t,dt))× i1 : A⊗ (t,dt)→ Q. One checks that this is a
surjective quasi isomorphism. Now consider the map H × φ : M→ Q. We
lift this through (π⊗ id(t,dt))× i1 relative to P , where we use the constant
homotopy P → A ⊗ (t,dt) as an initial lift. The result is a homotopy
H̃ : M→ A⊗ (t, dt) relative to P which satisfies i1 ◦ H̃ = φ. On the other
hand π ◦ i0 ◦ H̃ = i0 ◦ (π ⊗ id(t,dt)) ◦ H̃ = i0 ◦H = ψ □

Lemma 4.3. — Let T be a torus, P → APL(BT ) a free nilpotent model
and A any cochain algebra. Then two maps P → A are homotopic if and
only if they induce the same map on cohomology.
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Proof. — Let f, g : P → A be two maps which induce the same map on
cohomology. Choose a minimal model φ : (Λ(x1, . . . , xr), 0) → P with xi
generators of degree 2. It suffices to show that f ◦ φ and g ◦ φ are homo-
topic since composition with φ induces a bijection on homotopy classes. By
assumption there are y1, . . . , yr ∈ A1 such that f(φ(xi))− g(φ(xi)) = dyi.
Then the desired homotopy is defined by H : R → A ⊗ (t, dt), xi 7→
f(φ(xi)) + (g(φ(xi))− f(φ(xi)))t+ yidt. □

Proposition 4.4. — Let P → APL(BT ) be a free nilpotent model. Let

A

π

��

P

f̃
??

f
// B

and A

π

��

P

g̃
??

g
// B

be two commutative diagrams of spacelike cochain algebras in which π is
surjective and H1(B) = 0. Suppose further that H : P → B ⊗ (t, dt) is a
homotopy from f to g and that f̃ , g̃ are homotopic as well. Then there is
a homotopy H̃ : P → A⊗ (t, dt) from f̃ to g̃ such that H = π⊗ id(t,dt) ◦ H̃.

Proof. — Consider the commutative diagram

P

f̃×g̃

$$

H

%%

A⊗ (t, dt)

��

// B ⊗ (t, dt)

��

A×A // B ×B

and let G be some homotopy from f̃ to g̃. Let Q denote the pullback of
A×A→ B×B ← B⊗(t,dt). Then the above diagram induces the diagram

A⊗ (t, dt)

α

��

P

G
::

β
// Q

which we claim to be homotopy commutative. If this is true then by
Lemma 4.2, we can homotope G to a map H̃ which makes the diagram
strictly commutative and thus gives the desired homotopy.
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Let x ∈ P 2 be closed. Writing Q ⊂ (A × A) × (B ⊗ (t,dt)), we find
that the difference β − α ◦ G maps x to an element ((0, 0), y) where y ∈
ker(B ⊗ (t, dt)→ B ×B). It follows that y = dz is exact. Let z′ ∈ A1 ×A1

be an element whose image in B ×B agrees with that of z. It follows that
dz′ ∈ K = ker(A × A → B × B). The long exact cohomology sequence
of K → A × A → B × B together with the fact that H1(B) = 0 implies
that H2(K) → H2(A × A) is injective. Thus there is some a ∈ K1 with
da = dz′. The element (z′−a, z) lies in Q and thus β(x)−α◦G(x) is exact
in Q. The claim now follows from Lemma 4.3. □

Definition 4.5. — A weak morphism f : A→ B of D-systems is a mor-
phism A(U,H)→ B(U,H) for every (U,H) ∈ D, such that the diagrams

A(U,H) //

��

B(U,H)

��

A(K,L) // B(K,L)

commute up to homotopy. We also refer to such a morphism as a weak
A-structure on B. If the diagrams commute strictly (i.e. f is a morphism
of D-systems) we also refer to f as a strict morphism and say B has a
(strict) A-structure.

Remark 4.6. — There is a weak morphism R → APL(∗) which is an
objectwise minimal Sullivan model. Thus if P → APL(∗) is a weak quasi
isomorphism which is objectwise a free nilpotent model, then there are
weak quasi isomorphisms P ≃ R in both directions. This establishes a
correspondence between weak P -structures and cohomology R-structures
on A in the following fashion.

Clearly every weak morphism P → A induces a cohomology R-structure
via H∗(P ) ∼= R. Conversely, by Lemma 4.3, choosing cocycle representa-
tives produces a weak morphism R → A from a cohomology R-structure
on A. Composing with the weak morphism P → R gives a weak morphism
P → A. These two constructions are inverse to one another up to object-
wise homotopy on the side of weak P -structures. We extend the conditions
(TC) and (LC) to (weak) P -structures in the obvious fashion.

Theorem 4.7. — Let D be stable and finite. Let P be a free nilpotent
D-system satisfying P (U,H) = P (U, T ) for all (U,H) ∈ D and which
admits a weak quasi isomorphism P → APL(∗). Let A be a spacelike D-
system satisfying H1(A) = 0, (SC), and (TC).
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(i) For every weak morphism P → A, there is a objectwise homotopic
strict morphism P → A.

(ii) For any two strict morphisms f, g : P → A which are objectwise
homotopic to one another, there is a strict morphism H : P →
A⊗ (t,dt) which is a homotopy from f to g.

(iii) Let P → M be a disconnected free nilpotent extension and let
f, g : M → A be two morphisms whose restrictions to P agree.
Then if f and g are homotopic, they are connected by a chain of
homotopies relative to P .

Proof. — Let f : P → A a weak morphism. We construct a strict mor-
phism g : P → A which is objectwise homotopic to f . We filter D =

⋃
nDn

where Dn consists of those (U,H) ∈ D where U is of dimension ⩽ n.
Assume we have constructed g : P |Dn

→ A|Dn
which is objectwise homo-

topic to f . Let U ∈ DL of dimension n + 1 and recall that mD(U) is the
intersection of all groups in DR which contain U . Thus (U,mD(U)) ∈ D and
(U,mD(U)) ⩽ (U,H ′) for any (U,H ′) ∈ D. We have D+(U,mD(U)) ⊂ Dn
and a diagram

A(U,mD(U))

π

��

P (U,mD(U))
g̃
//

f(U,mD(U))
66

limD+(U,mD(U)) A

which we claim commutes up to homotopy. By assumption the two maps
are homotopic after composing with the map to A({1},mD(U)). Note that
(TC) assures that the requirements of Proposition 3.13(i), (ii), and (iii) are
all satisfied. Thus H2(limD+(U,mD(U)) A) → H2(A({1},mD(U))) is injec-
tive and it follows that π ◦ f and g̃ induce the same map on cohomology.
By Lemma 4.3 this implies homotopy commutativity. Then by Lemma 4.2
we can homotope f(U,mD(U)) to a map g(U,mD(U)) which makes the diagram
strictly commutative. For any (U,H) ∈ Dn+1 we define g(U,H) as the com-
position P (U,H) = P (U,mD(U)) → A(U,mD(U)) → A(U,H). Doing this
for all U completes the induction and the proof of (i).

The proof of (ii) proceeds via induction over the Dn as well. Suppose
we have a strict morphism H : P |Dn

→ A⊗ (t, dt)|Dn
which is objectwise

a homotopy between f and g. Let U ∈ DL be a fixed (n + 1)-dimensional
subtorus. Then H induces the second map in the composition

ϕU : P (U,mD(U)) −→ lim
D+(U,mD(U))

P −→ lim
D+(U,mD(U))

A⊗ (t,dt)
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and defines a homotopy between the two maps

P (U,mD(U)) −→ lim
D+(U,mD(U))

A

induced by f and g. By Proposition 4.4 we find a homotopy

HU : P (U,mD(U)) −→ A(U,mD(U))

between the (U,mD(U))-positions of f and g, such that (π ⊗ id(t,dt)) ◦
HU = ϕU , where π is the map A(U,mD(U)) → limD+(U,mD(U)) A. This
induces homotopies P (U,H) = P (U,mD(U)) → A(U,mD(U)) ⊗ (t,dt) →
A(U,H)⊗ (t,dt) for all (U,H) ∈ D. Doing this for all U ∈ DL of dimension
n+ 1 we can extend the homotopy H to a map P |Dn+1 → A⊗ (t, dt)|Dn+1

which finishes the induction.
Now for the proof of (iii), let G : M→ A⊗ (t, dt) be a homotopy from

f to g. The first step is to homotope G|P relative to the endpoints to
a constant homotopy. Consider two models for the interval (s,ds) and
(t,dt) together with the usual evaluation maps es=0, es=1 : (s,ds) → Q
and et=0, et=1 : (t,dt)→ Q. Consider the subalgebra

S ⊂ (t,dt)× (s,ds)× (t, dt)× (s,ds)

consisting of those (a, b, c, d) with et=1(a) = es=0(b), es=1(b) = et=1(c),
et=0(c) = es=1(d), and es=0(d) = et=0(a). This a model for the bound-
ary of the square, i.e. for S1, with the four factors corresponding to the
line segments. For i = 0, 1, let qs=i (resp. qt=i) denote the map es=i ⊗
id : (s,ds) ⊗ (t, dt) → (t, dt) (resp. id ⊗ et=i : (s,ds) ⊗ (t, dt) → (s,ds)).
The map qs=0× qt=1× qs=1× qt=0 defines a surjection (s,ds)⊗ (t,dt)→ S

which corresponds to the inclusion of the boundary into the square. The
qs=i, qt=i factor through S. The induced maps A⊗ S → A⊗ (t, dt) and
A⊗ S → A⊗ (s,ds) are denoted ps=i and pt=i.

There is a unique map F : P → A⊗ S such that ps=0◦F = G|P , ps=1◦F
is the constant homotopy in t, and pt=0 ◦F as well as pt=1 ◦F are constant
homotopies in s. We want to lift F to a map P → A⊗ (s,ds)⊗ (t, dt). We
do this inductively over the Dn as above. Assume we have constructed the
lift on P |Dn

. Again, let U ∈ DL be a fixed subtorus of dimension n+ 1. We
consider the pullback square

Q

��

p1
// A(U,mD(U))⊗ S

p3

��

limD+(U,mD(U)) A⊗ (s,ds)⊗ (t, dt)
p2
// limD+(U,mD(U)) A⊗ S
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and we want to find the dashed lift in the diagram

A(U,mD(U))⊗ (s,ds)⊗ (t,dt)

p4

��

P (U,mD(U))

44

// Q

where all solid arrows are induced by the given maps. Doing this for
any choice of U then yields the desired extension to Dn+1 by choosing
the maps P (U,H) = P (U,mD(U)) → A(U,mD(U)) ⊗ (s,ds) ⊗ (t, dt) →
A(U,H) ⊗ (s,ds) ⊗ (t, dt) for any (U,H) ∈ Dn+1. This will finish the
induction. As for the existence of the lift, it suffices to show that p4 is
surjective on degree 2 cohomology. Then the existence of a lift up to
homotopy follows from Lemma 4.3 and this can be made strictly com-
mutative by Lemma 4.2 since p4 is surjective. Note that A(U,mD(U))
and limD+(U,mD(U)) A are cohomologically simply connected by Proposi-
tion 3.13. As H∗(S) = H∗(S1), we deduce that p2 is an isomorphism on
H2. Furthermore, since A(U,mD(U)) → limD+(U,mD(U)) A is an isomor-
phism on H0, it follows that p3 is an isomorphism on H1. Using that p3 is
surjective, one deduces that p1 is injective on H2. But this implies that p4
gives an isomorphism on H2 since this holds for the composition p1 ◦ p4.
This finishes the construction of the lift F̃ : P → A⊗ (s,ds)⊗ (t, dt).

Now consider the commutative diagram of solid arrows

P

��

F̃ // A⊗ (s,ds)⊗ (t, dt)

ps=0

��

M H //

88

A⊗ (t, dt)

and note that ps=0 satisfies (SCM). It follows from Propostion 3.12 that
the dashed extension of F̃ exists. By construction pt=0 ◦ F̃ , ps=1 ◦ F̃ , and
pt=1 ◦ F̃ are homotopies relative to P which connect f to g. □

Note that if A carries a cohomology R-structure (or a P -structure) and
A→ B is a morphism of systems, then B inherits such a structure from A.
Theorem 4.7, Proposition 3.9, and Remark 4.6 combine to give the following

Corollary 4.8. — Let D ⊂ S be a finite stable subset and P a free
nilpotent D-system satisfying P (U,H) = P (U, T ) for all (U,H) ∈ D to-
gether with a weak quasi isomorphism P → APL(∗). Let A be a spacelike
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D-system with H1(A) = 0 and a cohomology R-structure satisfying (TC).
Then there is a quasi isomorphism A ≃ A′ such that A′ satisfies (SC)
and a strict P -structure on A′ which induces the homology R-structure
coming from A. Furthermore this P -structure is unique up to homotopy of
D-systems.

Example 4.9. — To illustrate the stepwise strictification procedure of
Theorem 4.7 and Corollary 4.8 let us revisit the Example 2.10 of the
model of T 2 acting on S6. We continue the notation introduced in Ex-
ample 2.10. Recall that for the subgroups H1 = S1 × 1, H2 = ∆S1, and
H3 = 1×S1 we have chosen a minimal model Λ(xi)→ APL(B(T/Hi)) such
that the images of the generators in APL(BT ) satisfy [x1] = [x2] + [x3]
on the level of cohomology. Using this basis we may depict the system
R as

Λ(x1, x3)

Λ(x1)

Λ(x2)

Λ(x3)

Q

{1} S1 × 1 ∆S1 1× S1 D(C)T

T

where we have displayed only the bottom row of the D-system and the
(not displayed) vertical maps are taken as the identity. The generator
x2 ∈ R(H2, T ) maps to x1 − x3 on the left and all differentials are trivial.
Mapping the xi to the APL(B(T/Hi)) via our chosen models and com-
posing further with the map to APL(BT ) defines a weak quasi morphism
R→ APL(∗). On the modelM of S6 constructed in Example 2.10 we con-
sider the cohomology R-structure defined by the obvious inclusion R→M.
Note that this is not a strict morphism of D-systems since the equation
x2 = x1 − x3 does not hold on the cochain level in the left hand {1}-
column of M. In fact the weak morphism R →M can not be homotoped
to a strict R-structure.

We apply Corollary 4.8 with P = R. It tells us that we may extend the
system M to a quasi isomorphic system on which the weak R-structure
can be homotoped to a strict one. The first step is to tensor M with con-
tractible cdgas at every entry in order to obtain a system satisfying (SC)
as described in Proposition 3.9. Most of the generators added to achieve
(SC) are not relevant for our purpose. Hence for the sake of simplicity
we consider an extension M′ that sits in between M and the extension

TOME 0 (0), FASCICULE 0



34 Leopold ZOLLER

constructed in Proposition 3.9 but contains the necessary generators in
order for the strictification procedure to work. We define the D-system
M′ as

Λ(x1, x2, x3, v)2

Λ(x1, x2, x3, v, a1, t1)

Λ(x1, x2, x3, v, a2, t2)

Λ(x1, x2, x3, v, a3, t3)

Λ(x1, x2, x3, v, b, s)

Λ(x1, a1, t1)

Λ(x2, a2, t2)⊗ Λ(v,dv)

Λ(x3, a3, t3)

Λ(x1)2

Λ(x2)2 ⊗ Λ(v,dv)

Λ(x3)2

Q2

{1} S1 × 1 ∆S1 1× S1 T D(C)

{1}

1× S1

∆S1

S1 × 1

T

where on the subsystemM the maps and differentials are defined as before.
The differentials on Λ(v,dv) are as indicated by the notation with |v| = 1
and |dv| = 2. The vertical map on the Λ(v,dv) factor is the identity and
the horizontal maps are defined by v 7→ v and dv 7→ x1 − x2 − x3. Clearly
the inclusion M→M′ is a quasi isomorphism.

In order to construct the strictification of the weak morphism R →
M′ we start, following the inductive procedure from the proof of Theo-
rem 4.7, by choosing a homotopy representative of the existing morphism
R({1}, {1}) → M′({1}, {1}). We choose to keep the initial map which is
just the inclusion of Λ(x1, x3). This induces compatible maps to the whole
left hand column of M′ by composing with the vertical maps. The next
step is to modify the maps R(Hi, Hi) → M′(Hi, Hi) such that they are
compatible with the Λ(x1, x3)-module structure on the left hand column.
At the (H1, H1)- and the (H3, H3)-positions we can keep the given map,
which are just the inclusions of x1 and x3. However at the (H2, H2)-position
we run into a problem: the diagram

Λ(x1, x2, x3, v, a2, t2) Λ(x2, a2, t2, )⊗ Λ(v,dv)oo

Λ(x1, x3)

OO

Λ(x2)oo

OO

is not commutative if the vertical maps are just the standard inclusions
since the bottom horizontal arrow R(H2, H2) → R({1}, H2) maps x2 7→
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x1 − x3. Thanks to the extension we can however replace the inclusion
Λ(x2)→ Λ(x2, a2, t2, )⊗ Λ(v,dv) by the homotopic map defined via x2 7→
x2 + dv. With these choices, the R-structures at the (Hi, Hi)-positions be-
come compatible with the prior choices on the left hand column and we can
extend the R-structure to the three central columns by just composing with
the vertical maps. Finally we repeat this step for the (T, T )-position, where
it turns out that the given map R(T, T )→M′(T, T ) is already compatible
with the rest of the diagram. This finishes the strictification of R → M′.
As a final observation we note that the success of the strictification pro-
cedure above depended on making the right choices due to the fact that
M′ does not fully satisfy (SC). e.g. we may have chosen the homotopic
map R({1}, {1}) → M′({1}, {1}) defined by x1 7→ x1 and x3 7→ x1 − x2
as our starting point. This would have led to the necessity of additional
generators elsewhere in the diagram, which are not in M′ but would have
been present in an extension satisfying (SC).

5. Realization

Before we get to the technical details of the realization process, let us give
a brief overview of the main idea, which is in fact rather simple. Lemma 5.1
below shows that gluing a free equivariant k-cell to a T -space X, changes
XT (up to homotopy) by gluing in a nonequivariant k-cell. Thus as long
as we glue free T -cells we have close control over what is happening on the
Borel construction. Using this, Proposition 5.2 shows that given a suitable
cochain algebra M and a T -space X, we can modify X by gluing free T -
cells until M becomes a model for XT . Of course in the end, we are not
interested in only gluing free cells but rather want to apply the previous
approximation process inductively to tori T/H, with H running through
all isotropy groups. This is done in Theorem 5.4, which achieves our goal
of realizing whole systems of algebras.

Lemma 5.1. — Let X be a T -space and i : X → XT be the inclusion
x 7→ [e0, x] for some e0 ∈ ET . For a map Sn → X denote by φ̃ : Sn×T → X

the equivariant extension. Furthermore consider Dn+1 ∼= Dn+1 × {1} ⊂
Dn+1 × T ⊂ (Dn+1 × T )T as a subspace. Then the inclusion

XT ∪i◦φ Dn+1 −→ XT ∪φ̃T
(Dn+1 × T )T ∼= (X ∪

φ̃
Dn+1 × T )T

admits a deformation retraction.
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Proof. — The map (Dn+1 × T )T = (ET ×Dn+1 × T )/T → ET ×Dn+1

given by [x, v, t] 7→ (xt, v) is a homeomorphism. Note that our choice of
ET (see [15]) is a CW-complex. The inclusion of the subcomplex A :=
(ET ×Sn)∪ ({e0}×Dn+1)→ ET ×Dn+1 is a homotopy equivalence since
both spaces are contractible. Thus ET ×Dn+1 deformation retracts onto
A (e.g. by [11, Lemma 4.6]). This gives the desired deformation retraction
XT∪i◦φDn+1 = XT∪φ̃T

A← XT∪φ̃T
(Dn+1×T )T , where φ̃T : (Sn×T )T →

XT is the induced map on Borel constructions. □

The next step is to approximate an algebraic model by gluing free T -cells
to a T -space. The key to this is the following

Proposition 5.2. — Let X be a finite type T -space and assume that
either X = ∅ or that π2(XT )→ π2(BT ) is surjective and π1(X) is finitely
generated on every path component. Consider a diagram

M
ϕ
// APL(XT )

P

OO

// APL(BT )

OO

in which P → M is a disconnected Sullivan extension of cohomolog-
ically simply connected, finite type, disconnected almost Sullivan alge-
bras. Assume further that P → APL(BT ) is a quasi isomorphism and
H2(P ) ⊗ H0(M) → H2(M) is injective. Then there is a componentwise
simply connected T -space Y , which arises from X by gluing free T -cells,
such that ϕ factorizes as

M−→ APL(YT ) −→ APL(XT )

where the first map is a quasi isomorphism and commutes with the P -
actions. If X is a T -CW-complex, then Y can be chosen as a T -CW-
complex. If the kernel and cokernel of ϕ∗ : H∗(M) → H∗(XT ) are finite
dimensional, then one can choose Y such that it arises from X by gluing
finitely many T -cells.

Before we get to the proof, let us give a brief overview on the approxima-
tion step and sort out some technicalities. For an in depth treatment of the
nonequivariant realization process of cochain algebras we refer e.g. to [5,
Chapter 17], [6, Section 1.6]. A collection of the needed results with more
specific references was given in Remark 3.7. There are two pairs of functors

{cochain algebras}⇆ {simplicial sets}⇆ {topological spaces}.

ANNALES DE L’INSTITUT FOURIER



EQUIVARIANT MODELS AND COMPACT REALIZATION 37

The simplicial set of a cochain algebra A is denoted ⟨A⟩. The space asso-
ciated to a simplicial set L is the Milnor realization and denoted |L|. We
also write |A| = |⟨A⟩| for the spatial realization of a cochain algebra. The
simplicial set associated to a space is the set Sing(X) of its singular sim-
plices. The cochain algebra of a simplicial set is denoted APL(L). Recall
that APL(X) = APL(Sing(X)) by definition.

The canonical map |Sing(X)| → X is always a weak equivalence. On
the side of algebras, there is a similar phenomenon: the functors ⟨−⟩ and
APL(−) are adjoint to one another and there is the canonical morphism
A→ APL(⟨A⟩) which is adjoint to the identity on ⟨A⟩. IfA is a disconnected
almost Sullivan algebra of finite type and H1(A) = 0, then this is a quasi
isomorphism (cf. Remark 3.7). In this case, also the map APL(|A|) →
APL(⟨A⟩) induced by the inclusion ⟨A⟩ → Sing(|A|) is a surjective quasi
isomorphism, such that A is in fact a model for its realization |A|.

Now in the situation of Proposition 5.2, the cdga morphisms M →
APL(XT ), P → APL(BT ) are adjoint to morphisms ⟨M⟩ ← Sing(XT ),
⟨P ⟩ ← Sing(BT ) and we obtain an induced commutative diagram

|M|

��

|Sing(XT )|

��

f
oo

g
// XT

��

|P | |Sing(BT )|oo // BT

of spaces. The right hand horizontal maps are the canonical weak equiva-
lences and the left hand vertical map is a fibration (cf. Remark 3.7). We
want f to become a weak equivalence. This can be achieved as in stan-
dard CW-approximation by gluing (nonequivariant) cells to |Sing(XT )|
and XT accordingly. To make this precise, we consider a section s of
|Sing(Sk−1)| → Sk−1 induced by a triangulation of Sk−1. Now given some
φ : Sk−1 → XT let φ′ := s ◦ φ : Sk−1 → |Sing(XT )| the corresponding lift.
We have φ = g ◦ φ′. Then for some extension ψ : Dk → |M| of f ◦ φ′ we
obtain continuous maps

|M| ←− |Sing(XT )| ∪φ′ Dk −→ XT ∪φ Dk

where the right hand map is still a weak equivalence and the left hand
map might be closer to a weak equivalence than before, depending on the
choice of φ,ψ. This is essentially the same as taking a homotopy inverse of g
(in case XT is a simply connected CW-complex) and applying usual CW-
approximation to the resulting composition |M| ← XT . However doing
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things as above makes it easier to keep track of strict commutativity of
diagrams.

Now the idea is to go through this nonequivariant approximation pro-
cedure for the Borel constructions while gluing free T -cells to X. This is
done as follows: fix a base point in ET and identify X ⊂ XT with the
fiber at that point. Now with φ,ψ as above, assume additionally that φ
takes image in X and ψ maps Dk to a single fibre of |M| → |P |. The
assumption on ψ makes sense since in this case the image of φ′ maps to a
single point in |Sing(BT )|. Denote by Y the T -space obtained from X by
attaching a free Dk × T -cell along the equivariant extension of φ. Recall
from Lemma 5.1 that XT ∪φ Dk ⊂ YT is a deformation retract. Then the
following technical Lemma tells us that the above approximation step may
be carried out while maintaining the setup of Proposition 5.2.

Lemma 5.3. — With the setup above, there is a map M → APL(YT )
fitting into the commutative diagram

M // APL(YT )

��

// APL(XT )

xx

P

OO

// APL(BT )

as well as into the homotopy commutative diagram

M

��

// APL(YT )

��

APL(|M|) // APL(|Sing(XT )| ∪φ′ Dk)

in which the vertical maps are quasi isomorphisms.

Proof. — For a space Z, a morphism of cochain algebras φ : A→ APL(Z)
induces a commutative diagram

A //

##

APL(⟨A⟩)

��

APL(|A|)oo

��

APL(Z) APL(|Sing(Z)|)oo

of cochain algebras. Here the horizontal maps in the square are induced by
the canonical inclusions of simplicial sets which, for some simplicial set L,
is the morphism L → Sing(|L|) adjoint to id|L|. The vertical maps in the
square are induced by the simplicial morphism Sing(Z)→ ⟨A⟩ adjoint to φ.
In the case of A =M, P we may lift A→ APL(⟨A⟩) through the surjective
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quasi isomorphism APL(⟨A⟩)← APL(|A|). Doing this for P first and then
lifting to APL(|M|) relative to P , we obtain the commutative diagram

APL(|Sing(XT )| ∪φ′ Dk)

**

APL(|Sing(XT ∪φ Dk)|)oo

��

// APL(XT ∪φ Dk)

��

M // APL(|M|)

OO

// APL(|Sing(XT )|) // APL(XT )

P

OO

// APL(|P |) //

OO

APL(|Sing(BT )|) //

OO

hh

APL(BT )

OO

hh

in which the compositions of the bottom rows are the given maps M →
APL(XT ) and P → APL(BT ). All morphisms within and between the two
central columns as well as within the right hand column are induced by
respective continuous maps. Of those, onlyXT∪Dk → BT and |Sing(XT )|∪
φ′Dk → |Sing(X ∪φ Dk)| need further specification. The first map just
extends XT → BT by mapping Dk to the basepoint. The second map
is the obvious inclusion on |Sing(X)| and on Dk it is induced by a fixed
choice of triangulation of Dk extending the previous choice of triangulation
of Sk−1. Now commutativity of the diagram can be checked on the level of
continuous maps, using that the discs in the top row map to single points
in the spaces corresponding to the bottom row.

Every algebra in the above diagram comes with a compatible morphism
from P and the morphisms in the top row are quasi isomorphisms. Thus
we can lift up to homotopy relative to P to obtain a morphism M →
APL(XT ∪φ Dk) and we can further lift this through APL(XT ∪φ Dk) ←
APL(YT ) up to homotopy relative to P . The map APL(YT ) → APL(XT )
is surjective so the lemma follows from Lemma 4.2. □

Proof of Proposition 5.2. — We first treat the case whenX ̸= ∅. Further-
more, we begin under the assumption that XT is path connected, simply
connected and M is connected. These assumptions will be justified in the
end in a fashion which is analogous to the following induction step.

Assume inductively that we have a T -space Y ⊃ X and a factorization
M→ APL(YT )→ APL(XT ) of P -cdgas such that for some k ⩾ 2 the map
H∗(M) → H∗(YT ) is an isomorphism in degrees < k − 1 and injective in
degree k − 1.

For a space Z set Z̃ := |Sing(Z)|. Furthermore, whenever a choice
of map ϕ : Z → Z ′ is clear from the context, we denote by H∗(Z ′, Z)
(resp. π∗(Z ′, Z)) the relative homology (resp. homotopy) groups of (Mϕ, Z),
where Mϕ denotes the mapping cylinder of ϕ. This construction is clearly
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functorial with respect to commutative squares of continuous maps. Con-
sider the diagram

F

��

Ỹ

��

oo // Y

��

|M|

��

ỸT

��

f
oo // YT

��

|P | B̃Too // BT

where F denotes the fiber of |M| → |P |. Dualizing the assumptions we
obtain that on homology, f∗ : H∗(ỸT ) → H∗(|M|) is an isomorphism in
degrees < k−1 and surjective in degree k. In other words, Hi(|M|, ỸT ) = 0
for i < k. Choose some nontrivial x ∈ Hk(|M|, ỸT ). We want to glue a free
T -cell to Y and extend f such that x becomes trivial.

The rational Hurewicz theorem provides an isomorphism Hk(|M|, ỸT ) ∼=
πk(|M|, ỸT ) ⊗ Q. The first step is to show that x comes from an element
in πk(F, Ỹ ) ⊗ Q. We do this by showing surjectivity of the arrow marked
as α in the diagram

πk(Ỹ )

��

// πk(F )

��

// πk(F, Ỹ )

α

��

// πk−1(Ỹ )

��

// πk−1(F )

i

��

πk(ỸT )

p

��

// πk(|M|)

��

// πk(|M|, ỸT )

��

// πk−1(ỸT )

��

// πk−1(|M|)

��

πk(B̃T ) // πk(|P |) // πk(|P |, B̃T ) // πk−1(B̃T ) // πk−1(|P |)

after tensoring everything with Q. Note that for k = 2 the second to
right column becomes zero and we only need to use the left hand part
of the diagram, where consequently all groups are Abelian. The proof is a
straight forward diagram chase using the following facts: rows are exact, all
columns except the central one are known to be exact, πk(|P|, B̃T )⊗Q = 0,
i is injective, and p is surjective. Surjectivity of p holds by assumption and
πk(|P|, B̃T )⊗Q = 0 holds since B̃T → |P | is a rational equivalence. Finally,
injectivity of i is equivalent to surjectivity of πk(|M |)⊗Q→ πk(|P |)⊗Q.
This is only an issue for k = 2 where the injectivity of i is in fact not needed
for the argument, as explained above.

We have shown that x ∈ Hk(|M|, ỸT ) comes from an element y ∈
πk(F, Ỹ )⊗Q. Possibly modifying x and y up to nonzero scalars, we choose
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a representative ϕ : (Dk, Sk−1) → (Mf , Ỹ ) for y, where f : Ỹ → F is the
restriction of f . In doing this, we may assume that ϕ|Sk−1 is of the form φ′

for some φ : Sk−1 → Y with notation as above Lemma 5.3. Now we glue an
equivariant cell Dk×T to Y along the equivariant extension of φ, resulting
in the T -space Y ′. Furthermore set ψ to be the compositionDk →Mf → F .
It extends the map f ◦ φ′ and defines an extension of f to ỸT ∪φ′ Dk. By
Lemma 5.3 we have a factorizationM→ APL(Y ′

T )→ APL(YT ) of P -cdgas
such that on cohomology the first map is given by

H∗(M) ∼= H∗(|M|) f∗

−→ H∗(ỸT ∪φ′ Dk) ∼= H∗(Y ′
T ).

We claim that the total dimension of the kernel and cokernel of this ex-
tended f∗ has been reduced by 1. Indeed, one checks that by construction,
the map H∗(|M|, ỸT ) → H∗(|M|, ỸT ∪φ′ Dk) is an isomorphism in all de-
grees except in degree k, where

Hk(|M|, ỸT ∪φ′ Dk) = Hk(|M|, ỸT )/⟨x⟩Q.

By iterating this procedure we may assumeHk(|M|, Ỹ ′
T ) = 0, which finishes

the induction.
To justify the initial assumption of path connectedness and simply con-

nectedness, we proceed as in the induction with few modifications. De-
compose M =

∏
iMi into path components. For a component Mi which

maps trivially to APL(X), we choose a simply connected realization Yi and
a quasi isomorphism Mi → APL((Yi)T ) as in the X = ∅ case described
below. Then we replace X with X ⊔ Yi and extend M→ APL(X ⊔ Yi) =
APL(X)×APL(Yi) accordingly. Thus we may assume H0(M)→ H0(XT )
to be injective. Then we glue free 1-cells to X in order to obtain a T -space
Y ⊃ X and M→ APL(YT ) which induces an isomorphism on H0. This is
done as in the induction above by killing H1(|M|, ỸT ) (note that for k = 1,
the surjectivity of α can be shown directly and tensoring with Q is neither
needed nor sensical).

Having an isomorphism on H0, we may consider path components sep-
arately and thus assume M and X to be path connected. We continue to
make spaces simply connected. This is done as before, the difference being
that we do not start with an element in homology which needs to be killed
but directly with a nontrivial element x ∈ π1(YT ). By assumption, the
composition π2(XT ) → π2(YT ) → π2(BT ) is surjective. Hence the second
map is surjective as well proving that π1(Y )→ π1(YT ) is an isomorphism.
Thus we may choose a representative φ : S1 → Y . We claim that π1(F ) = 0
and hence the composition f ◦ φ′ is nullhomotopic. To see this, we use the
fact that |M| → |P | induces an injection on H2, or dually a surjection
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in H2 with rational coefficients. But the spaces are simply connected and
rational so π2(|M|) → π2(|P |) is surjective and thus indeed π1(F ) = 0. It
follows that f ◦ φ′ extends to a map ψ : D2 → F and we proceed as in the
induction by gluing a free 2-cell along φ. Repeating this we can achieve
that π1(YT ) = π1(Y ) = 0.

We now consider the case X = ∅ and assume M to be cohomologically
connected by considering path components separately. We essentially use
the procedure for realizing algebraic models by free actions as described
e.g. in [10, Proposition 4.2]. The need for a slightly different argument is
due to the fact that the approximation in the X ̸= ∅ case relies on the
surjectivity of π2(XT ) → π2(BT ) in order for the resulting space to be
simply connected.

Start by taking a nonequivariant rational CW approximation Z → |M|,
i.e. a rational equivalence where Z is a simply connected CW-complex.
Note that – as in the more complicated, equivariant argument above –
we may take Z to be a finite CW-complex if H∗(M) is finite dimen-
sional. LetX1, . . . , Xr be cohomology classes inH∗(P ) ∼= H∗(BT ;Q) which
correspond to a basis of the integral cohomology H2(BT ;Z). Using that
H2(P ) → H2(|M |) is injective, we see that Z → |M| can be chosen in a
way such that the images of the Xi in H2(Z,Q) come from integral co-
homology classes which are part of a basis of H2(Z;Z). Now use these
classes to define a map f : Z → K(Zr, 2) = BT and pull back the univer-
sal T -bundle T → ET → BT along f . The result is a principal T -bundle
T → Y → Z. Using the Hurewicz theorem and dualizing we obtain that the
map π2(Z) → π2(BT ) is surjective. An argument using the naturality of
the long exact homotopy sequence then shows that Y is simply connected.
Note that the (finite) CW-structure on Z translates cellwise to a (finite)
T -CW-structure on Y . It remains to show that P → M is a model for
YT → BT . For this we refer to [7, Proposition 7.17], [2, Proposition 2.7].

Finally note that if, by abuse of notation, Y now denotes result of the
procedure above, then APL(YT ) is the limit over the APL(−) in the inter-
mediate steps. Thus we obtain the desired factorizationM→ APL(YT )→
APL(XT ). Clearly, if the kernel and cokernel of the initial map H∗(M)→
H∗(XT ) are finite dimensional, then the process is finished after gluing
finitely many cells. □

Theorem 5.4. — Let C be a bounded collection of subgroups of T
and D ⊂ S be the stable subset generated by C. Let P → APL(∗) be an
almost Sullivan model and let P → A be a D-system under P . Then there
is a T -simply connected, T -finite Q-type T -CW-complex X with isotropies
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contained in C such that APL(X) is connected to A via quasi isomorphisms
of systems under P if and only if A satisfies (TC), is spacelike, of finite
type, H1(A) = 0, and H2(P )⊗H0(A)→ H2(A) is injective. If C is finite,
then X can be chosen as a finite T -CW-complex if and only if A satisfies
(LC) and H∗(A(U,H)) is finitely generated as an H∗(P (U,H))-module for
any (U,H) ∈ D.

Proof. — For a T -simply connected, T -finite Q-type, T -space X, the
system APL(X) has the described algebraic properties (cf. Remark 2.13).
Conversely, let A be such a system under P . LetDn consist of all (U,H) ∈ D
such that the length of any maximal chain (H0, H) < · · · < (H0, T ) is ⩽ n.
Suppose inductively that we have a T -space X such that each occurring
isotropy group H satisfies (H0, H) ∈ Dn, XH is componentwise simply
connected for any (H0, H) ∈ Dn, and there is a chain of quasi isomorphisms

A|Dn
←− B1 −→ · · · −→ Bk ←− APL(X)|Dn

of systems under P |Dn . By Proposition 3.9 we may assume that A and the
Bi satisfy (SC).

Now fix (H0, H) ∈ Dn+1\Dn. Define subsets C(H) := D−(H0, H) =
Dn ∩ D(H0, H), C(H)+ := C(H) ∪ {(H0, H)}, and C̃(H) := D(H0, H) ∪
{(H0, H)}. We construct a space Y (H) by gluing T/H-cells to XH , as
well as a chain of quasi isomorphisms linking A|C̃(H) to APL(Y (H))|C̃(H).
Doing this for all choices of H and piecing together the chains of quasi
isomorphisms will then complete the induction step.

We start by extending the Bi|C(H)-systems to C+(H)-systems. Consider
the decomposition A(H0, H) =

∏
iA(H0, H)i into cohomologically con-

nected cochain algebras. Set P (H0) = P (H0, H) and let (P (H0)⊗ΛVi,d)→
A(H0, H) be a quasi isomorphism from a Sullivan extension, compatible
with the P (H0)-actions. We may write P (H0) as a tensor product of RT/H
and a contractible cdga and construct the extensions such that d(Vi) ⊂
RT/H ⊗ ΛVi. Then (P (H0)⊗ ΛVi,d) is clearly an almost Sullivan algebra.
Set M(H0, H) =

∏
i(P (H0) ⊗ ΛVi,d). The map limC(H) B1 → limC(H) A

is a quasi isomorphism by Proposition 3.11. Thus we may lift M(H0, H)
through this quasi isomorphism up to homotopy relative to P (H0). This
yields a strictly commutative diagram

A(H0, H)

��

M(H0, H)oo

�� &&vv

limC(H) A limC(H) A⊗ (t,dt)oo // limC(H) A limC(H) B1oo
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which is compatible with the canonical P (H0)-actions. Setting the (H0, H)-
positions to beM(H0, H) we obtain extensions of A, A⊗ (t, dt), and B1 to
C+(H)-diagrams, as well as quasi isomorphisms between these extensions.
Using the fact that limC(H) Bi−1 ← limC(H) Bi are quasi-isomorphisms as
well, we may continue this procedure to form a chain of quasi isomorphisms
of extended C(H)+-diagrams which are the identity in the (H0, H)-position.

We claim that limC(H) Bk ← limC(H) APL(X) is a quasi isomorphism
as well. Let D−(H) ⊂ C(H) denote the category given by all (H0,K) ∈
D with H ⊊ K. Then the projections limC(H) Bk → limD−(H) Bk and
limC(H) APL(X) → limD−(H) APL(X) are isomorphisms. By Lemma 3.14,
APL(X)|D−(H) satisfies (SC). The system Bk|D−(H) satisfies (SC) as well
since Bk(H0,K)→ limD−(H0,K) Bk ∼= lim(D−(H))(H0,K) Bk is surjective for
any (H0,K) ∈ C(H) by Proposition 3.13. Thus

lim
D−(H)

Bk ←− lim
D−(H)

APL(X)

is a quasi isomorphism by Proposition 3.11.
With the claim proved, it follows that we obtain a chain of quasi isomor-

phisms of C+(H)-systems linking A|C+(H) to APL(X)+ where the latter
is defined to be APL(X) on C(H) and M(H0, H) at (H0, H). Also by
Lemma 3.14, the map APL(XH

T/H0
) → limD−(H) APL(X) is a surjective

quasi isomorphism. Thus by relative lifting we obtain a mapM(H0, H)→
APL(XH

T/H0
) which is compatible with the P (H0)-action.

Note that either XH = ∅ or there is some H ′ ⊋ H for which XH′

is nonempty and componentwise simply connected. In the latter case, we
know that π2(XH′) → π2(XH) → π2(BT ) is surjective on each compo-
nent, which also implies surjectivity of the second map in the composition.
In this case furthermore π1(XH) is finitely generated. We can now apply
Proposition 5.2 to obtain a simply connected T -CW-complex Y (H) which
arises from X by gluing T/H-cells and a factorization

M(H0, H)

��

//

))

APL(Y (H)T/H0)

��

limD−(H) APL(X) APL(XH
T/H0

)oo

in which the top horizontal map is a quasi isomorphism of P (H0)-cdgas.
Thus A|C+(H) and APL(Y (H))|C+(H) are linked by a chain of quasi isomor-
phisms compatible with the (P |C(H)+)-actions.
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We extend this to a chain of quasi isomorphisms of C̃(H)-systems. The
extensions of the starting and ending systems A and APL(Y ) are predeter-
mined. For the systems in between recall that the (H0, H)-position is always
M(H0, H). For those systems we set the (U,H)-positions, U ⊂ H0, to be
M(U,H) := P (U,H)

⊗
P (H0)M(H0, H) =

∏
i(P (U,H)⊗ ΛVi,d) with the

obvious differentials and maps between them. Note that the quasi isomor-
phisms of systems extend naturally as well, providing us with the desired
chain of C̃(H)-system morphisms linking A|C+(H) to APL(Y (H)|C+(H). It
remains to see that these are quasi isomorphisms. Since we have quasi
isomorphisms at the (H0, H)-positions, this follows from the fact that all
systems satisfy (TC). This holds by assumption at the start and the end
of the chain and follows from Lemma 3.6 for the intermediate systems.

Having done this for every choice of H we define Y =
⋃
H∈Dn+1\Dn

Y (H).
For H1, H2 ∈ Dn+1\Dn, the quasi isomorphisms chains between the A|C̃(Hi)

and APL(Y )|C̃(Hi) agree when restricted to C̃(H1) ∩ C̃(H2). Thus they all
piece together to form a quasi isomorphism chain from the system A|Dn+1

to APL(Y )|Dn+1 . This finishes the induction.
Finally, assume that C is finite, A satisfies (LC), and the modules R→

H∗(A) are objectwise finitely generated. We claim that in the construction
above, the kernel and cokernel of H∗(M(H0, H))→ H∗(XH

T/H0
) are finite

dimensional and one can therefore choose Y (H) as in Proposition 5.2 such
that it arises from XH by gluing a finite number of cells. To verify the
claim let U ⊋ H be a torus. When localizing the commutative diagram

H∗(M(H0, H)) //

''

H∗(XH
T/H0

)

��

H∗(XU
T/H0

)

at ST/H(U), the diagonal map is an isomorphism by (LC) as H∗(XU
T/H0

) ∼=
H∗(A(H0,mD(U))) (see Lemma 2.9). The vertical map is an isomorphism
by the Borel Localization theorem (cf. Remark 2.15). In particular the hor-
izontal map becomes an isomorphism after localization. Furthermore [1,
Proposition 3.10.1] implies that H∗(XH

T/H0
) is finitely generated as an

RT/H0 module and the claim follows from Lemma 2.16. Conversely, if X is
a finite T -CW-complex, then [1, Proposition 3.10.1] as well as Borel local-
ization ensure that H∗(APL(X)) is finitely generated over R and satisfies
(LC). □
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Combining Theorem 5.4 with Corollary 4.8 now yields

Theorem 5.5. — Let C be a finite collection of subgroups of T and
D ⊂ S be the stable subset generated by C. Let A be a D-system with a
cohomology R-structure. Then there is a T -simply connected, T -finite Q-
type T -CW-complex X with isotropies contained in C such that APL(X)
is connected to A via quasi isomorphisms of systems respecting the coho-
mology R-structures if and only if A satisfies (TC), is spacelike, of finite
type, H1(A) = 0, and R2 ⊗H0(A)→ H2(A) is injective. The space X can
be chosen as a finite T -CW-complex if and only if A satisfies (LC) and
H∗(A(U,H)) is finitely generated as an RT/U -module for any (U,H) ∈ D.

6. Applications

6.1. Realization of equivariant cohomology algebras

We want to apply Theorem 5.5 to derive an algebraic criterion of when
a given algebra is the equivariant cohomology algebra of a finite T -CW-
complex. Recall that RT := H∗(BT ) ∼= Q[V ] for some finite dimensional
vector space V in degree 2. We aim to give a formulation which is devoid of
the internal terminology of this article and which uses a simplified version
of the localization condition.

Theorem 6.1. — Let A be a graded Q[V ]-algebra. Then A is isomor-
phic to the equivariant cohomology algebra of a T -simply connected finite
T -CW-complex if and only if there is a finite collection V0, . . . , Vk ⊂ V

of vector spaces, Q[Vi]-algebras Ai for i = 0, . . . , k, and for each inclusion
Vi ⊃ Vj a map fij : Ai → Q[Vi]

⊗
Q[Vj ] Aj of Q[Vi]-algebras satisfying the

following properties:
(i) V0 = V , Vk = 0, and for any i, j we have Vi + Vj = Vl for some

0 ⩽ l ⩽ k.
(ii) A0 = A, each Ai is spacelike, finitely generated as Q[Vi]-module,

A1
i = 0, and Vi ⊗A0 → A2 is injective for 0 ⩽ i ⩽ k.

(iii) We have (idQ[Vi]
⊗

Q[Vj ] fjl)◦fij = fil. Furthermore for any subspace
W ⊂ V and the maximal Vj ∈ {V0, . . . , Vk} with the property that
Vj ⊂ W , the map f0j becomes an isomorphism when localized at
the multiplicative subset S(W ) ⊂ Q[V ] generated by V \W .
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Proof. — Let C be the collection of subgroups H0, . . . ,Hk where Hi is
the subtorus such that ker(H∗(BT ) → H∗(BHi)) = Vi. Then RT ∼= Q[V ]
induces natural identifications RT/Hi

∼= Q[Vi]. For later use we also note
that ST (Hi) as in the definition of (LC) coincides with S(Vi) as defined
in (iii) above. Furthermore if Vi + Vj = Vl, then Hi ∩ Hj = Hl. Thus
D(C) consists of all tuples (Hk, Hi) with Hk ⊂ Hi. Set A(Hk, Hi) =
Q[Vk]

⊗
Q[Vi] Ai together with the trivial differential. Thus the A(Hk, Hi)

and the maps induced by the fij define a D(C)-system A with an R-
structure. Clearly (TC) is fulfilled. If we can show that A satisfies (LC),
then the statement follows from Theorem 5.5.

Let (Hk, Hi) ∈ D and K ⊃ Hi a torus. Then mD(C)(K) = Hj where Hj

is the minimal group in C containing K. It corresponds to the maximal
vector space Vj contained in W = ker((H∗(BT )→ H∗(BK)). We need to
show that

A(Hk, Hi) = Q[Vk]
⊗
Q[Vi]

Ai −→ Q[Vk]
⊗
Q[Vj ]

Aj = A(Hk, Hj)

becomes an isomorphism after localizing at ST/Hk
(K). We split Q[V ] =

Q[Vk] ⊗ Q[V ⊥
k ] for some decomposition V = Vk ⊕ V ⊥

k . By assumption, in
the commutative diagram

A0
f0i
//

f0j
##

A(T,Hi)

��

Q[V ⊥
k ]⊗A(Hk, Hi)

∼=oo

��

A(T,Hj) Q[V ⊥
k ]⊗A(Hk, Hj)

∼=oo

f0j becomes an isomorphism when localised at ST (K) which is the set of
all monomials generated in V \W . Also f0i is an isomorphism when local-
ized at ST (Hi) ⊂ ST (K). Consequently the vertical maps become isomor-
phisms when localized at ST (K). Let M denote the kernel of A(Hk, Hi)→
A(Hk, Hj). Then we have shown that there is a monomial f ∈ ST (K)
which annihilates Q[V ⊥

k ]⊗M . We can write f =
∏
i(xi + yi) with xi ∈ Vk,

yi ∈ V ⊥
k . Let f ′ be the product over all xi for which yi = 0. It follows from

the bigrading on Q[V ⊥
k ]⊗M that it is also annihilated by f ′. By assumption

xi+yi ∈ V \W for all i and in particular xi ∈ Vk\W whenever yi = 0. Thus
f ′ ∈ ST/Hk

(K) and ST/Hk
(K)−1M = 0. For the cokernel one argues analo-

gously, thus proving that ST/Hk
(K)−1A(Hk, Hi)→ ST/Hk

(K)−1A(Hk, Hj)
is an isomorphism. □
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Corollary 6.2. — Let A be a Q[x]-algebra which is finitely generated
as a Q[x]-module, spacelike, A1 = 0, and ⟨x⟩Q ⊗ A0 → A2 is injective.
Assume further that for S = {xk | k ⩾ 0}, the localized graded algebra
S−1A has no nilpotent elements. Then A is isomorphic as a Q[x]-algebra
to the equivariant cohomology of a finite S1-CW-complex if and only if
(S−1A)0 ∼= Q × · · · × Q as Q-algebras. In this case the realization can be
chosen with discrete fixed point set and S1-simply connected. Conversely
any equivariant cohomology algebra of such a space is of the above type.

Proof. — For such an A we set A1 = (S−1A)0 ∼= Q×· · ·×Q and V1 = 0.
Note that the map f01 : A → (S−1A)⩾0 = Q[x] ⊗ A1 induces an isomor-
phism when localized at S. Then by Theorem 6.1 there is a finite S1-simply
connected S1-CW-complex which realizes A. Clearly the realization can be
chosen with a finite number of fixed points.

Conversely assume X is a finite S1-CW-complex such that S−1H∗
S1(X)

contains no nilpotent elements. By Borel localization we have S−1H∗
S1(X)∼=

S−1H∗
S1(XS1)∼= Q[x, x−1]⊗H∗(XS1). Thus the nonequivariant cohomol-

ogy H∗(XS1) must not contain any nilpotent elements. This means that it
is isomorphic to Q × · · · × Q. Furthermore the equivariant cohomology of
any finite S1-simply connected S1-CW-complex with discrete fixed points
fulfils these algebraic requirements. □

Example 6.3. — Consider the graded Q[x]-algebra Ac := Q[x, a]/(a2 −
cx2) for some scalar c ∈ Q and x, a of degree 2. Then (S−1Ac)0 = ⟨1, ax ⟩Q
with the Q-algebra structure defined by the relation

(
a
x

)2 = c · 1. If c is
not a square, then this is isomorphic to Q[

√
c] and it follows that Ac is not

realizable by a finite S1-CW-complex. Note that it is still realizable by an
infinite S1-CW-complex. In case c is a square, sending the Q-basis 1

2 + 1
2

√
c
a
x ,

1
2 −

1
2

√
c
a
x to (1, 0), (0, 1) ∈ Q×Q gives a Q-algebra isomorphism. Thus Ac

is realizable by a finite S1-CW-complex. In fact Ac can be checked to be
isomorphic to the equivariant cohomology algebra of the standard S1-action
on S2. We observe that while e.g. A1, A2 behave differently with respect
to finite realization, we have A1

⊗
Q R ∼= A2

⊗
Q R as (R

⊗
Q R)-algebras.

Thus finite realization relies on the choice of coefficient field.

6.2. Realization of graph cohomology

A GKM manifold is a smooth, compact, orientable manifold M with
Hodd(M) = 0 together with a smooth action of a torus T with discrete
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fixed points, such that the one skeleton M1 = {x ∈ M | dim(T · x) ⩽ 1}
is a finite union of copies of S2 (some sources also require the manifold to
be almost complex). These manifolds are named after the authors of [8]
and their main appeal comes from the fact that M1 can be encoded in a
labelled graph, from which H∗

T (M) can be computed via the purely com-
binatorial notion of graph cohomology. On the combinatorial side, a no-
tion of an abstract GKM graph has been defined in [9]. The definition,
which we will not review in detail, encompasses several necessary condi-
tions for a labelled graph to be realizable by a GKM manifold. However,
currently there is no general answer to the question whether a given ab-
stract GKM graph is in fact realizable by a GKM manifold. The aim of
this section is to solve the realization problem in absence of the manifold
condition while appropriately relaxing the conditions on the combinatorial
side.

For a graph Γ we denote by E(Γ) the set of edges and by V (Γ) the set
of vertices. We consider edges to be nonoriented. Motivated by the notion
of GKM graphs, we work with the following more general objects.

Definition 6.4. — A T -graph is a finite graph Γ together with a la-
belling function α : E(Γ) → H2(BT ;Z)\{0}. Considering H∗(BT ;Z) ⊂
RT , we define the (rational) graph cohomology to be the RT -algebra de-
fined as

H∗(Γ) =
{
x : V (Γ) −→ RT

∣∣∣∣ x(p)− x(q) ∈ (α(e)) for any
e ∈ E(Γ) connecting p, q ∈ V (Γ)

}
.

Any T -graph Γ defines a T -space as follows: take a copy of S2 for every
edge e ∈ E(Γ) and endow it with the following T -action: up to sign, there is
a unique homomorphism φe : T → S1 such that α(e) generates the image of
H2(BS1;Z)→ H2(BT ;Z) and we pull back the standard rotation S1 ↷ S2

along φe. Note that the equivariant homeomorphism type of the result
does not depend on the sign choice. This action on S2 has two fixed points
(the two poles) which we identify with the two vertices associated to the
edge e. Now glue the copies of S2 together at the fixed points in the way
prescribed by Γ. The resulting space is denoted by R(Γ). We note that for
GKM manifold M , we have M1 = R(Γ) for a T -graph Γ. It is unique up to
the signs of the labels.

Lemma 6.5. — Let Γ be a T -graph which is a tree. Then H∗
T (R(Γ))→

H∗
T (R(Γ)T ) is injective.
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Proof. — Since Γ is a tree it follows that R(Γ) is (non-equivariantly)
homotopy equivalent to a wedge of two-spheres. In particular cohomology
is concentrated in even degrees. Thus the Serre spectral sequence of the
Borel fibration collapses at the E2 page and consequently H∗

T (R(Γ)) is a
free RT -module. Since the kernel of H∗

T (R(Γ))→ H∗
T (R(Γ)T ) is RT -torsion

by Borel localization, it needs to vanish. □

For a T -graph (Γ, α) and a subgroup H ⊂ T , we denote by ΓH the sub-
graph with the same vertex set and whose edge set consists of those edges
e ∈ E(Γ) such that α(e) lies in the kernel of H2(BT ;Z)→ H2(BH;Z).

Theorem 6.6. — Let (Γ, α) be a T -graph. Then there is a finite T -
CW-complex X with H∗

T (X) = H∗(Γ) and whose one-skeleton X1 = {x ∈
X | codimTx ⩽ 1} is equivariantly homeomorphic to R(Γ) if and only if
for any codimension 1 subtorus H ⊂ T , the graph ΓH is a disjoint union
of trees. In this case X can be chosen to be T -simply connected.

Proof. — For a given T -graph Γ, let X be a finite T -CW-complex with
X1 = R(Γ). Assume that for some subtorus H ⊂ T the graph ΓH is not a
tree. Since XH = R(ΓH), it follows that H1

T (XH) ̸= 0. By (TC) we deduce
that ST (H)−1H∗

T (XH) does not vanish in odd degrees. Borel localization
(LC) implies that Hodd

T (X) ̸= 0. Thus we can not have H∗
T (X) ∼= H∗(Γ).

For the converse direction, let C consist of all isotropy groups of R(Γ)
and set D := D(C) ⊂ S. The D-system H∗(APL(R(Γ))) satisfies (TC),
(LC), and H∗(R(Γ)HT/U ) is finitely generated as an RT/U -module for all
(U,H) ∈ D. But then clearly the same holds for the D-system A :=
Heven(APL(R(Γ))) where we have set the odd-dimensional degrees equal
to 0. A Mayer-Vietoris argument shows that indeed H∗(Γ) = Heven

T (R(Γ)).
Thus at this point realizability of H∗(Γ) follows from Theorem 5.5. Follow-
ing the realization procedure, one can check that the realization can be
chosen with X1 = R(Γ). A slightly less direct but maybe faster way to see
this is the following. Let P → APL(∗) be as in Theorem 5.4 and consider
the subset C ⊂ D of those (U,H) ∈ D with H of codimension 1 or less.
Furthermore let A→ A′ be a quasi isomorphism such that A′ satisfies (SC)
and fix a strictification P → A′ of the cohomology R-structure on A as in
Corollary 4.8.

We claim that A′|C is connected to APL(R(Γ))|C by a chain of quasi
isomorphisms of systems with P -structures. If this holds, then the induc-
tive realization procedure in the proof of Theorem 5.4 can be continued
by gluing cells of isotropy codimension ⩾ 2 to R(Γ), extending the quasi
isomorphism of C-systems to one of D-systems. This yields the desired re-
alization.
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Let Y be any T -space such that APL(Y ) is quasi isomorphic to A (as
provided by Theorem 5.4). Via the quasi isomorphism, the vertices of R(Γ)
correspond to the path components of Y T and we choose an image of
each vertex in the respective component. Any S2 in R(Γ) with principal
isotropy H can be seen as a 1-cell [0, 1] × T/H glued to the respective
vertices. The existence of the quasi isomorphism implies that two vertices
lie in the same component of R(Γ)H if and only if their images lie in the
same path component of Y H . Thus we can extend the map over the 1-cells
to obtain an equivariant map R(Γ)→ Y . This induces for each (U,H) ∈ C
a commutative diagram

H∗
T/U (R(Γ)H)

��

H∗
T/U (Y H)

��

oo

H∗
T/U (R(Γ)T ) H∗

T/U (Y T )oo

in which the bottom horizontal map is the identity when identifying the
algebras H∗

T/U (Y T ) ∼= A(U, T ) = Heven
T/U (R(Γ)T ) via the given quasi iso-

morphisms. The images of the vertical maps agree since H∗
T/U (R(Γ)T ) is

concentrated in even degrees. By Lemma 6.5, the vertical maps are injec-
tive and thus the top horizontal map is an isomorphism. This proves the
claim. □

Remark 6.7. — For a T -graph to be an abstract GKM graph in the sense
of [9], it is in particular required that two adjacent edges have linearly
independent labels. In this case, the subgraphs ΓH in the requirements of
Theorem 6.6 are disjoint unions of single vertices and single edge graphs.
Thus the theorem is applicable and all abstract GKM graphs are realizable
by finite T -CW-complexes.

Recall that in the definition of a GKM manifoldM we requireHodd(M) =
0. With respect to this condition our realizations behave as follows: under
the assumption that the fixed point set of a T -space X is discrete, the
condition Hodd(X) = 0 is equivalent to the fact that H∗

T (X) is free as an
RT -module (observe that the Serre spectral Sequence of the Borel fibration
degenerates at E2 if and only if Hodd(X) = 0; then use [1, Corollary 4.2.3]).
Consequently, any of our realizations from Theorem 6.6 will fulfil the con-
dition of vanishing odd cohomology if and only if the graph allows such a
realization, i.e. if the graph cohomology is free over RT .
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7. The equivariant rational homotopy category

An equivariant rational equivalence is an equivariant map X → Y be-
tween T -spaces such that the induced maps XH → Y H are rational equiv-
alences for all H ⊂ T . The equivariant rational homotopy category is the
localization of the category of T -spaces at the equivariant rational equiva-
lences. The goal here is to find an algebraization of this category.

For some D ⊂ S, denote by AD the category of D-systems D → cdga⩾0.
For some P in AD let AD

P denote the category of D-systems under P , i.e.
objects are morphisms P → A and morphisms are morphisms of D-systems
which are compatible with the P -structures. The following algebraization
was achieved in [14, Theorem 4.4].

Theorem 7.1. — Let P → APL(∗) be a quasi isomorphism where P is
free nilpotent. Then the functor X 7→ APL(X) induces an embedding of
rational homotopy category of T -simply connected T -finite Q-type spaces
as a full subcategory of the homotopy category of AS

P .

We have adjusted the formulation slightly and restricted the result to tori
and Q-coefficients to fit the presentation of this paper. We note that a de-
scription of the image of this embedding (similar to the corresponding parts
of Theorem 5.4) is given in [14, Theorem 3.7]. This results in an algebraic
description of the T -equivariant rational homotopy category. As the authors
of [14] state in their introduction, a drawback of the algebraization above
lies in the fact that the object P is in general hard to describe explicitly.
We opt to simplify the algebraization by showing that instead of a specific
object P , we only need to keep track of cohomological data in the form of
cohomology R-structures. Let ÃD

R denote the category whose objects are D-
systems D → cdga⩾0 with cohomology R-structures and whose morphisms
are morphisms of systems which respect the cohomology R-structures.

Remark 7.2. — We wish to form the homotopy categories of Ho(AD
P ) and

Ho(ÃD
R) by localizing with respect to quasi isomorphisms. To do this, we fix

the following model structures. On the category of non-negatively graded,
unital cdgas we choose the model structure introduced in [3], whose weak
equivalences are quasi isomorphisms and whose fibrations are surjective
maps. Then by [12, Theorem 11.6.1] we have an induced model structure on
AD whose fibrations and weak equivalences are just defined as objectwise
surjections and quasi isomorphisms. The undercategory AD

P inherits this
model structure by defining morphisms to be fibrations and weak equiva-
lences if the forgetful morphisms in AD are ([12, Theorem 7.6.5]).
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This guarantees the existence of Ho(AD
P ). The category ÃD

R is not an
undercategory of AD. In fact, it is not technically a model category, e.g. due
to the lack of an initial object. Still, the localization Ho(ÃD

R) exists and can
be explicitly constructed as follows: let C,F denote cofibrant and fibrant
replacement functors on AD and let Q : ÃD

R → AD denote the forgetful
functor. Then the objects of Ho(ÃD

R) are defined to be the same as those of
ÃD
R . Morphisms A→ B are given by the homotopy classes in AD of those

morphisms in hom(FCQ(A), FCQ(B)) which respect the cohomology R-
structures inherited from A and B.

To see that this is indeed a localization at the quasi isomorphisms, we
make the following observation: as CQ(A) ≃ Q(A) inherits a cohomology
R-structure from A, we obtain an endofunctor C̃ on ÃD

R with QC̃ = CQ

and a natural quasi isomorphism C̃A→ A in ÃD
R . Analogously, F lifts to a

functor F̃ . Now the claim can be proved analogously to [12, Theorem 8.3.5]
while replacing the roles of C,F with C̃, F̃ in the appropriate places.

The following theorem is in essence a translation of Theorem 4.7. In
the theorem below, parts (i), (ii), and (iii) of Theorem 4.7 correspond to
essential surjectivity, fullness, and faithfulness respectively.

Theorem 7.3. — Let D ⊂ S be a finite stable subset. Let P → APL(∗)
be a weak quasi isomorphism where P (U,H) is a free nilpotent cdga and
P (U,H) = P (U,H ′) for all U ⊂ H ⊂ H ′. Then the functor Ho(AD

P ) →
Ho(ÃD

R) induces an equivalence between the full subcategories on the space-
like and cohomologically simply connected objects satisfying (TC).

Proof. — By Corollary 4.8, for any spacelike object A of ÃD
R with

H1(A) = 0 and (TC), we have a quasi isomorphism A → Â such that
Â satisfies (SC) and a morphism P → Â which induces the cohomology
R-structure induced by A. In particular Â is an object of AD

P whose im-
age in Ho(ÃD

R) is isomorphic to that of A. Thus we have shown essential
surjectivity.

We fix such a preimage for every object. If B is another such object of
ÃD
R and A→ B is a morphism in homÃD

R

(A,B), then as in Proposition 3.9

we can extend to a map of systems Â → B̂. This map is not necessarily
compatible with the fixed chosen P -actions but it is so up to objectwise ho-
motopy. Let B̂

′
be the same as B̂ but with the P -action induced by Â→ B̂.

Then by part (ii) of Theorem 4.7 we obtain a homotopy P → B̂ ⊗ (t, dt)
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such that in the commutative diagram

Â // B̂
′

B̂ ⊗ (t, dt)oo // B̂

A //

OO

B

OO

B ⊗ (t, dt)

OO

oo // B

OO

all morphisms in the top row are compatible with the fixed P -actions. Also
note that if we already have a (strict) P -action on A or B then the P -actions
on Â and B̂ can be chosen such that the respective outer vertical map is
compatible with the P -actions as well. Furthermore the string of maps from
A to B which goes through the top row and the outer vertical maps defines a
morphism in ho(ÃD

R) which is equivalent to the original morphism A→ B.
Now for A and B as above with a fixed P -action, any morphism in

Ho(ÃD
R) between them is represented by a string of morphisms in ÃD

R

through objects which are spacelike, cohomologically simply connected and
satisfy (TC) (cf. Remark 7.2). By what we have seen above, this string is
equivalent in Ho(ÃD

R) to a string of morphisms which comes from AD
P . This

shows fullness.
It remains to show that the functor between the homotopy categories

is faithful. It suffices to show that this holds for the forgetful functor
Ho(AD

P )→ Ho(AD).
Consider two morphisms f, g : A→ B between fibrant and cofibrant ob-

jects A,B of AD
P which map to the same morphism in Ho(AD). We need

to show that they also get identified in Ho(AD
P ). Let M → A be a quasi

isomorphism in AD
P where M is a free disconnected extension of P → A

(cf. Proposition 3.4). With the notation from above, Proposition 3.9 pro-
vides a commutative diagram

M //

��

A
f
// B

����

M̂
f̂

// B̂

where the vertical maps are quasi isomorphisms. Analogously we obtain a
map ĝ and it suffices to prove that f̂ and ĝ are the same in Ho(AD

P ). We
show that there is a homotopy M̂ → B̂ ⊗ (t, dt) between f̂ and ĝ. In this
case by part (iii) of Theorem 4.7 there is also a homotopy relative to P

which finishes the proof.
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To prove this, consider cofibrant replacements CM→ M̂ and CB̂ → B̂

in AD. We note that these are also fibrant since all objects are fibrant.
Then f̂ , ĝ lift to morphisms f̃ , g̃ : CM→ CB̂ which are homotopic in the
sense of the model structure on AD. We may use CB̂ ⊗ (t, dt) as a path
object. Again using Proposition 3.9 we obtain the commutative diagram of
solid arrows

ĈM
p
//

ϕ

))

M̂
f̂×ĝ

// B̂ × B̂ B̂ ⊗ (t,dt)oo

CM

aa OO

f̃×g̃
//

77
CB̂ × CB̂

OO

CB̂ ⊗ (t, dt)oo

OO

in which p satisfies (SCM). Applying Proposition 3.9 to CM→ B̂ ⊗ (t, dt),
we extend the homotopy to yield the dashed arrow ϕ. The extension may
be constructed such that it is compatible with the already exiting map
ĈM → B̂ × B̂, by using the fact that for any (U,H) ∈ D the morphism
from B̂(U,H)⊗ (t, dt) into the pullback of

B̂(U,H)× B̂(U,H) −→ lim
D(U,H)

B̂ × B̂ ←− lim
D(U,H)

B̂ ⊗ (t,dt)

is a surjection. Thus the whole diagram commutes. It follows from Propo-
sition 3.12 that p admits a section s. The desired homotopy is given by
ϕ ◦ s. □

Lemma 7.4. — Let D ⊂ S be a stable subset and define D′ as the
stable subset {(U,H) ∈ S | H ∈ DR}. With P as above, let B0 be the
full subcategory of Ho(AS

P ) on objects A which satisfy (TC) and for which
iD′ ◦ rD′(A) → A is a quasi isomorphism. Let B1 be the full subcategory
of Ho(AD

P ) on objects A which satisfy (TC). Then restriction defines an
equivalence of categories B0 → B1.

Proof. — The functors iD′ and rD′ induce an equivalence of categories
between B0 and the full subcategory B′ of Ho(AD′

P ) on systems satisfying
(TC). We construct a functor j : B1 → B′ which is inverse to the restriction
rD : B′ → B1.

The procedure from Proposition 3.4, which replaces a system under P
with a quasi isomorphic disconnected free nilpotent extension of P , is func-
torial. We denote the corresponding functor by ΓD′ : AD′

P → AD′

P . As the
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functor operates objectwise, we obtain a compatible functor ΓD on AD
P sat-

isfying rD ◦ΓD′ = ΓD ◦rD. For simplicity we just denote both funtors by Γ.
Let A be a D-system under P . For a subtorus U ⊂ T we denote by mL

D(U)
the intersection of all tori in DL which contain U . Now fix (U,H) ∈ D′.
The algebra ΓA(mL

D(U), H) is of the form
∏
i(P (mL

D(U), H)⊗ΛVi,d). We
set

j(A)(U,H) =P (U,H)
⊗

P (mL
D(U),H)

ΓA(mL
D(U), H) =

∏
i

(P (U,H)⊗ ΛVi,d).

For (U,H) ⩽ (U ′, H ′) ∈ D′ we have (mL
D(U), H) ⩽ (mL

D(U ′), H ′) in D so
j(A) naturally inherits the structure of a D′-system under P . It satisfies
(TC) by Lemma 3.6. We have rD ◦ j = Γ and a natural transformation
Γ→ idAD

P
consisting of quasi isomorphisms.

If we start with a D′-system B, then (mL
D(U), H) ⩽ (U,H) induces a

map
P (U,H)

⊗
P (mL

D(U),H)

ΓB(mL
D(U), H) −→ ΓB(U,H).

We obtain natural transformations j ◦ rD → Γ→ idAD′
P

. The second trans-
formation is a quasi isomorphism and the first transformation is a quasi
isomorphism due to (TC). This shows that j and rD descend to equivalences
of categories between B′ and B1. □

We sum up the results of this section in the following Corollary. We point
out that in (ii), we only require P → APL(∗) to be a weak morphism. Thus
we may choose e.g. P = R to obtain a description via systems with strict
R-structures.

Corollary 7.5. — Let C be a finite collection of subgroups and D =
D(C). The full subcategory on objects with isotropies in C of the equi-
variant rational homotopy category of T -simply connected, T -finite Q-type
T -spaces is equivalent to

(i) the full subcategory of Ho(ÃD
R) on objects A which satisfy (TC)

and for which R2 ⊗H0(A) → H2(A) is injective, H1(A) = 0, and
H∗(A) is finite type and spacelike.

(ii) the full subcategory of Ho(AD
P ) (with P as in Theorem 7.3) on ob-

jects A which satisfy (TC) and for which H2(P )⊗H0(A)→ H2(A)
is injective, H1(A) = 0, and H∗(A) is finite type and spacelike.

Proof. — Let P be a free nilpotent system with a quasi isomorphism
P → APL(∗) such that P (U,H) = P (U,H ′) for all U ⊂ H ⊂ H ′. Also let
the A0 be the full subcategory of Ho(AS

P ) on those objects A which satisfy
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(TC) and for which H2(P ) ⊗ H0(A) → H2(A) is injective, H1(A) = 0,
and H∗(A) is finite type and spacelike. By Theorem 7.1, T → A0 is fully
faithful, where T is the equivariant rational homotopy category T of T -
simply connected finite Q-type T -spaces.

By Lemma 2.9, restricting to the full subcategory T C of T on spaces
with isotropy groups in C, the image of the functor X 7→ APL(X) lies
in the full subcategory AC0 ⊂ A0 on those objects which also lie in B0 as
defined in Lemma 7.4.

Let A1 be the full subcategory of Ho(AD
P ) on those objects A which

satisfy (TC) and for which H2(P )⊗H0(A)→ H2(A) is injective, H1(A) =
0, and H∗(A) is of finite type and spacelike. Then rD : AC0 → A1 is fully
faithful by Lemma 7.4. It follows from Theorem 5.4 that the composition
T C → AC0 → A1 is essentially surjective. But as a composition of two fully
faithful functors this means it is an equivalence of categories. Then clearly
the equivalence between the two full subcategories of Ho(AD

P ) and Ho(ÃD
R)

from Theorem 7.3 restricts to an equivalence between A1 and the desired
category A2 described in (i). For some free nilpotent system P ′ with a weak
quasi isomorphism P ′ → APL(∗), the equivalence of the category described
in (ii) and A2 follows from Theorem 7.3 as well. □
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