We show that every action of a finitely generated group on a finite-rank median algebra admits a nonempty “convex core”, even when no metric or topology is given. We then use this to deduce an analogue of the flat torus theorem for actions on connected finite-rank median spaces. We also prove that isometries of connected finite-rank median spaces are either elliptic or loxodromic.
Nous montrons que chaque action d’un groupe fini généré sur une algèbre médiane de rang fini admet un « cœur convexe » non vide, même en l’absence de métrique ou de topologie donnée. Nous utilisons ensuite cela pour déduire un analogue du théorème du tore plat pour les actions sur des espaces médians connectés de rang fini. Nous prouvons également que les isométries des espaces médians connectés de rang fini sont soit elliptiques, soit loxodromiques.
Revised:
Accepted:
Online First:
Keywords: Median algebra, median space, semisimple, flat torus, convex core.
Mot clés : Algèbre médiane, espace médian, semi-simple, tore plat, cœur convexe.
@unpublished{AIF_0__0_0_A79_0, author = {Fioravanti, Elia}, title = {Convex cores for actions on finite-rank median algebras}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3609}, language = {en}, note = {Online first}, }
Fioravanti, Elia. Convex cores for actions on finite-rank median algebras. Annales de l'Institut Fourier, Online first, 48 p.
[1] Median algebras, Discrete Math., Volume 45 (1983) no. 1, pp. 1-30 | DOI | MR | Zbl
[2] The zero-completion of a median algebra, Czech. Math. J., Volume 43(118) (1993) no. 3, pp. 409-417 | DOI | MR | Zbl
[3] Hierarchically hyperbolic spaces, I: Curve complexes for cubical groups, Geom. Topol., Volume 21 (2017) no. 3, pp. 1731-1804 | DOI | MR | Zbl
[4] Train tracks and automorphisms of free groups, Ann. Math., Volume 135 (1992) no. 1, pp. 1-51 | DOI | MR | Zbl
[5] Coarse median spaces and groups, Pac. J. Math., Volume 261 (2013) no. 1, pp. 53-93 | DOI | MR | Zbl
[6] Embedding median algebras in products of trees, Geom. Dedicata, Volume 170 (2014), pp. 157-176 | DOI | MR | Zbl
[7] Some properties of median metric spaces, Groups Geom. Dyn., Volume 10 (2016) no. 1, pp. 279-317 | DOI | MR | Zbl
[8] Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal., Volume 21 (2011) no. 4, pp. 851-891 | DOI | MR | Zbl
[9] Kazhdan and Haagerup properties from the median viewpoint, Adv. Math., Volume 225 (2010) no. 2, pp. 882-921 | DOI | MR | Zbl
[10] The median class and superrigidity of actions on cube complexes, J. Topol., Volume 9 (2016) no. 2, pp. 349-400 (with an appendix by Pierre-Emmanuel Caprace) | DOI | MR | Zbl
[11] Graphs of some complexes, Adv. Appl. Math., Volume 24 (2000) no. 2, pp. 125-179 | DOI | MR | Zbl
[12] Group actions on -trees, Proc. Lond. Math. Soc., Volume 55 (1987) no. 3, pp. 571-604 | DOI | MR | Zbl
[13] The Tits alternative for finite rank median spaces, Enseign. Math., Volume 64 (2018) no. 1-2, pp. 89-126 | DOI | MR | Zbl
[14] Roller boundaries for median spaces and algebras, Algebr. Geom. Topol., Volume 20 (2020) no. 3, pp. 1325-1370 | DOI | MR | Zbl
[15] Coarse-median preserving automorphisms (2022) (https://arxiv.org/abs/2101.04415v4)
[16] An index for counting fixed points of automorphisms of free groups, Duke Math. J., Volume 93 (1998) no. 3, pp. 425-452 | DOI | MR | Zbl
[17] The rank of actions on -trees, Ann. Sci. Éc. Norm. Supér., Volume 28 (1995) no. 5, pp. 549-570 | DOI | Numdam | MR | Zbl
[18] A dendrological proof of the Scott conjecture for automorphisms of free groups, Proc. Edinb. Math. Soc., II. Ser., Volume 41 (1998) no. 2, pp. 325-332 | DOI | MR | Zbl
[19] Median sets of isometries in cube complexes and some applications (2020) (https://arxiv.org/abs/1902.04883)
[20] Cœur et nombre d’intersection pour les actions de groupes sur les arbres, Ann. Sci. Éc. Norm. Supér., Volume 38 (2005) no. 6, pp. 847-888 | DOI | Numdam | MR | Zbl
[21] Isometries of cube complexes are semi-simple (2007) (https://arxiv.org/abs/0705.3386)
[22] On infinite soluble groups. III, Proc. Lond. Math. Soc., Volume 49 (1946), pp. 184-194 | DOI | MR | Zbl
[23] Median algebra, Trans. Am. Math. Soc., Volume 260 (1980) no. 2, pp. 319-362 | DOI | MR | Zbl
[24] Constructing free actions on -trees, Duke Math. J., Volume 69 (1993) no. 3, pp. 615-633 | DOI | MR | Zbl
[25] Sur les automorphismes extérieurs des groupes hyperboliques, Ann. Sci. Éc. Norm. Supér., Volume 30 (1997) no. 2, pp. 147-167 | DOI | Numdam | MR | Zbl
[26] Poc sets, median algebras and group actions. An extended study of Dunwoody’s construction and Sageev’s theorem (1998) (preprint, University of Southampton, available at https://arxiv.org/abs/1607.07747)
[27] Ends of group pairs and non-positively curved cube complexes, Proc. Lond. Math. Soc., Volume 71 (1995) no. 3, pp. 585-617 | DOI | MR | Zbl
[28] Trees. Translated from the French by John Stillwell, Springer, 1980, ix+142 pages | MR | Zbl
[29] Trees, lattices, order, and betweenness, Proc. Am. Math. Soc., Volume 3 (1952), pp. 369-381 | DOI | MR | Zbl
[30] A cubical flat torus theorem and the bounded packing property, Isr. J. Math., Volume 217 (2017) no. 1, pp. 263-281 | DOI | MR | Zbl
[31] A generalized axis theorem for cube complexes, Algebr. Geom. Topol., Volume 17 (2017) no. 5, pp. 2737-2751 | DOI | MR | Zbl
[32] Coarse median structures and homomorphisms from Kazhdan groups, Geom. Dedicata, Volume 180 (2016), pp. 49-68 | DOI | MR | Zbl
Cited by Sources: