Stacky heights on elliptic curves in characteristic 3
Annales de l'Institut Fourier, Online first, 14 p.

We show there are no stacky heights on the moduli stack of stable elliptic curves in characteristic 3 which induce the usual Faltings height, negatively answering a question of Ellenberg, Satriano, and Zureick-Brown.

Nous montrons qu’il n’existe pas de hauteur sur le champ de modules des courbes elliptiques en caractéristique 3 qui induit la hauteur de Faltings usuelle. Cela donne une réponse négative à une question posée par Ellenberg, Satriano et Zureick-Brown.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/aif.3638
Classification: 11G05, 11G50
Keywords: heights, elliptic curves, stacks
Mot clés : hauteurs, courbes elliptiques, champs
Landesman, Aaron 1

1 Dept. of Mathematics, Harvard University, Cambridge, MA 02138 (USA)
@unpublished{AIF_0__0_0_A78_0,
     author = {Landesman, Aaron},
     title = {Stacky heights on elliptic curves in characteristic 3},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2024},
     doi = {10.5802/aif.3638},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Landesman, Aaron
TI  - Stacky heights on elliptic curves in characteristic 3
JO  - Annales de l'Institut Fourier
PY  - 2024
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3638
LA  - en
ID  - AIF_0__0_0_A78_0
ER  - 
%0 Unpublished Work
%A Landesman, Aaron
%T Stacky heights on elliptic curves in characteristic 3
%J Annales de l'Institut Fourier
%D 2024
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3638
%G en
%F AIF_0__0_0_A78_0
Landesman, Aaron. Stacky heights on elliptic curves in characteristic 3. Annales de l'Institut Fourier, Online first, 14 p.

[1] Borne, Niels Fibrés paraboliques et champ des racines, Int. Math. Res. Not. (2007) no. 16, rnm049, 38 pages | DOI | MR | Zbl

[2] Ellenberg, Jordan S.; Satriano, Matthew; Zureick-Brown, David Heights on stacks and a generalized Batyrev-Manin-Malle conjecture (2021) (https://arxiv.org/abs/2106.11340)

[3] Erdmann, Karin; Holm, Thorsten Algebras and representation theory, Springer Undergraduate Mathematics Series, Springer, 2018, ix+298 pages | DOI | MR | Zbl

[4] Group description Dic3, https://people.maths.bris.ac.uk/~matyd/GroupNames/1/Dic3.html (Accessed: March 3, 2023)

[5] Landesman, Aaron A thesis of minimal degree: two, Ph. D. Thesis, Stanford University (2021)

[6] Miyamoto, Roland; Top, Jaap Reduction of elliptic curves in equal characteristic 3 (and 2), Can. Math. Bull., Volume 48 (2005) no. 3, pp. 428-444 | DOI | MR | Zbl

[7] Silverman, Joseph H. Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994, xiv+525 pages | DOI | MR | Zbl

Cited by Sources: