We show there are no stacky heights on the moduli stack of stable elliptic curves in characteristic which induce the usual Faltings height, negatively answering a question of Ellenberg, Satriano, and Zureick-Brown.
Nous montrons qu’il n’existe pas de hauteur sur le champ de modules des courbes elliptiques en caractéristique 3 qui induit la hauteur de Faltings usuelle. Cela donne une réponse négative à une question posée par Ellenberg, Satriano et Zureick-Brown.
Revised:
Accepted:
Online First:
Keywords: heights, elliptic curves, stacks
Mot clés : hauteurs, courbes elliptiques, champs
@unpublished{AIF_0__0_0_A78_0, author = {Landesman, Aaron}, title = {Stacky heights on elliptic curves in characteristic 3}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3638}, language = {en}, note = {Online first}, }
Landesman, Aaron. Stacky heights on elliptic curves in characteristic 3. Annales de l'Institut Fourier, Online first, 14 p.
[1] Fibrés paraboliques et champ des racines, Int. Math. Res. Not. (2007) no. 16, rnm049, 38 pages | DOI | MR | Zbl
[2] Heights on stacks and a generalized Batyrev-Manin-Malle conjecture (2021) (https://arxiv.org/abs/2106.11340)
[3] Algebras and representation theory, Springer Undergraduate Mathematics Series, Springer, 2018, ix+298 pages | DOI | MR | Zbl
[4] Group description Dic3, https://people.maths.bris.ac.uk/~matyd/GroupNames/1/Dic3.html (Accessed: March 3, 2023)
[5] A thesis of minimal degree: two, Ph. D. Thesis, Stanford University (2021)
[6] Reduction of elliptic curves in equal characteristic 3 (and 2), Can. Math. Bull., Volume 48 (2005) no. 3, pp. 428-444 | DOI | MR | Zbl
[7] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994, xiv+525 pages | DOI | MR | Zbl
Cited by Sources: