[Groupes algébriques connexes agissant sur les surfaces algébriques]
Nous classifions les sous-groupes algébriques connexes maximaux de , quand est une surface
We classify the maximal connected algebraic subgroups of , when is a surface.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Algebraic groups, birational automorphisms, surfaces
Mot clés : groupes algébriques, automorphismes birationnels, surfaces
Fong, Pascal 1
@article{AIF_2024__74_2_545_0, author = {Fong, Pascal}, title = {Connected algebraic groups acting on algebraic surfaces}, journal = {Annales de l'Institut Fourier}, pages = {545--587}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {2}, year = {2024}, doi = {10.5802/aif.3595}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3595/} }
TY - JOUR AU - Fong, Pascal TI - Connected algebraic groups acting on algebraic surfaces JO - Annales de l'Institut Fourier PY - 2024 SP - 545 EP - 587 VL - 74 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3595/ DO - 10.5802/aif.3595 LA - en ID - AIF_2024__74_2_545_0 ER -
%0 Journal Article %A Fong, Pascal %T Connected algebraic groups acting on algebraic surfaces %J Annales de l'Institut Fourier %D 2024 %P 545-587 %V 74 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3595/ %R 10.5802/aif.3595 %G en %F AIF_2024__74_2_545_0
Fong, Pascal. Connected algebraic groups acting on algebraic surfaces. Annales de l'Institut Fourier, Tome 74 (2024) no. 2, pp. 545-587. doi : 10.5802/aif.3595. https://aif.centre-mersenne.org/articles/10.5802/aif.3595/
[1] Vector bundles over an elliptic curve, Proc. Lond. Math. Soc., Volume 7 (1957), pp. 414-452 | DOI | MR | Zbl
[2] Complex algebraic surfaces, London Mathematical Society Student Texts, 34, Cambridge University Press, 1996, x+132 pages (translated from the 1978 French original by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid) | DOI | MR
[3] The automorphism groups of the hyperelliptic surfaces, Rocky Mt. J. Math., Volume 20 (1990) no. 1, pp. 31-37 | DOI | MR | Zbl
[4] Sous-groupes algébriques du groupe de Cremona, Transform. Groups, Volume 14 (2009) no. 2, pp. 249-285 | DOI | MR | Zbl
[5] Connected algebraic groups acting on 3-dimensional Mori fibrations (2019) | arXiv
[6] Algebraic group actions on normal varieties, Trans. Mosc. Math. Soc., Volume 78 (2017), pp. 85-107 | DOI | MR | Zbl
[7] Notes on automorphism groups of projective varieties, 2019 (text available on http://www-fourier.univ-grenoble-alpes.fr/~mbrion/autos_final.pdf)
[8] Lectures on the structure of algebraic groups and geometric applications, CMI Lecture Series in Mathematics, 1, Hindustan Book Agency; Chennai Mathematical Institute, 2013, viii+120 pages | DOI | MR
[9] Sui gruppi continui di trasformazioni cremoniane nel piano, Rom. Acc. L. Rend. (5), Volume 2 (1893) no. 1, pp. 468-473 | Zbl
[10] Iitaka conjecture. An introduction, SpringerBriefs in Mathematics, Springer, 2020, 128 pages | DOI | MR
[11] Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Publ. Math., Inst. Hautes Étud. Sci. (1967) no. 32, p. 361 | Numdam | MR | Zbl
[12] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | DOI | MR
[13] Basic algebra. I, WH Freeman & Co, 1985, xviii+499 pages | MR
[14] Regularization of Rational Group Actions (2018) | arXiv
[15] Almost homogeneous varieties of Albanese codimension one (2020) | arXiv
[16] Desingularization of two-dimensional schemes, Ann. Math., Volume 107 (1978) no. 1, pp. 151-207 | DOI | MR | Zbl
[17] Actions of Cremona groups on CAT(0) cube complexes (2021) | arXiv
[18] Projective structures and projective bundles over compact Riemann surfaces, Differential equations and singularities (Astérisque), Volume 323, Société Mathématique de France, 2009, pp. 223-252 | Numdam | MR | Zbl
[19] On classification of ruled surfaces, Lectures in Mathematics, Department of Mathematics, Kyoto University, 3, Kinokuniya Book-Store Co., 1970, iv+75 pages | MR
[20] On automorphism groups of ruled surfaces, J. Math. Kyoto Univ., Volume 11 (1971), pp. 89-112 | DOI | MR | Zbl
[21] Representability of group functors, and automorphisms of algebraic schemes, Invent. Math., Volume 4 (1967), pp. 1-25 | DOI | MR | Zbl
[22] Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Hindustan Book Agency, 2008, xii+263 pages with appendices by C. P. Ramanujam and Yuri Manin, corrected reprint of the second (1974) edition | MR
[23] Infinite algebraic subgroups of the real Cremona group, Osaka J. Math., Volume 55 (2018) no. 4, pp. 681-712 | MR | Zbl
[24] Some basic theorems on algebraic groups, Am. J. Math., Volume 78 (1956), pp. 401-443 | DOI | MR
[25] Groupes algébriques et corps de classes, Publications de l’Institut de Mathématique de l’Université de Nancago, 7, Hermann, 1984, 207 pages (Actualités Scientifiques et Industrielles, 1264) | MR
[26] The Stacks project, https://stacks.math.columbia.edu, 2021
[27] On algebraic groups of transformations, Am. J. Math., Volume 77 (1955), pp. 355-391 | DOI | MR | Zbl
[28] Regularization of birational group operations in the sense of Weil, J. Lie Theory, Volume 5 (1995) no. 2, pp. 207-224 | MR | Zbl
Cité par Sources :