The area is a good enough metric
[L’aire est une métrique suffisamment bonne]
Annales de l'Institut Fourier, Tome 74 (2024) no. 3, pp. 1017-1059.

Dans la première partie de cet article nous étendons aux k-différentielles la construction d’une compactification lisse avec un bord a croisements normaux des strates projectivisées de différentielles abéliennes introduite par Bainbridge, Chen, Gendron, Grushevsky et Moeller. Comme cette construction est très liée à la construction originale, nous ne présentons qu’un survol de celle-ci en soulignant les points qui nécessitent des modifications dans ce contexte plus général.

Dans la deuxième partie nous démontrons que l’aire fournit une métrique canonique hermitienne sur le fibré tautologique au-dessus des strates projectivisées dont la courbure représente la première classe de Chern. Ce résultat est utile pour pouvoir appliquer les outils de la théorie de Chern–Weyl. Ce résultat a déjà été utilisé comme une hypothèse dans les travaux de Sauvaget sur les différentielles abéliennes et dans les travaux de Chen, Moeller et Sauvaget sur les différentielles quadratiques.

In the first part we extend the construction of the smooth normal-crossing divisors compactification of projectivized strata of abelian differentials given by Bainbridge, Chen, Gendron, Grushevsky and Möller to the case of k-differentials. Since the generalized construction is closely related to the original one, we mainly survey their results and justify the details that need to be adapted in the more general context.

In the second part we show that the flat area provides a canonical hermitian metric on the tautological bundle over the projectivized strata of finite area k-differentials whose curvature form represents the first Chern class. This result is useful in order to apply Chern–Weil theory tools. It has already been used as an assumption in the work of Sauvaget for abelian differentials and is also used in a paper of Chen, Möller and Sauvaget for quadratic differentials.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/aif.3592
Classification : 14H99, 53C07
Keywords: Abelian differentials, multi-scale differentials, flat surfaces, Chern–Weil theory, hermitian metric.
Mot clés : Différentielles abéliennes, différentielles multi-échelles, surfaces planes, théorie de Chern–Weil, métrique hermitienne.

Costantini, Matteo 1 ; Möller, Martin 2 ; Zachhuber, Jonathan 2

1 Institut für Mathematik Universität Duisburg-Essen 45117 Essen (Germany)
2 Institut für Mathematik Goethe–Universität Frankfurt Robert-Mayer-Str. 6–8 60325 Frankfurt am Main (Germany)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2024__74_3_1017_0,
     author = {Costantini, Matteo and M\"oller, Martin and Zachhuber, Jonathan},
     title = {The area is a good enough metric},
     journal = {Annales de l'Institut Fourier},
     pages = {1017--1059},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {74},
     number = {3},
     year = {2024},
     doi = {10.5802/aif.3592},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3592/}
}
TY  - JOUR
AU  - Costantini, Matteo
AU  - Möller, Martin
AU  - Zachhuber, Jonathan
TI  - The area is a good enough metric
JO  - Annales de l'Institut Fourier
PY  - 2024
SP  - 1017
EP  - 1059
VL  - 74
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3592/
DO  - 10.5802/aif.3592
LA  - en
ID  - AIF_2024__74_3_1017_0
ER  - 
%0 Journal Article
%A Costantini, Matteo
%A Möller, Martin
%A Zachhuber, Jonathan
%T The area is a good enough metric
%J Annales de l'Institut Fourier
%D 2024
%P 1017-1059
%V 74
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3592/
%R 10.5802/aif.3592
%G en
%F AIF_2024__74_3_1017_0
Costantini, Matteo; Möller, Martin; Zachhuber, Jonathan. The area is a good enough metric. Annales de l'Institut Fourier, Tome 74 (2024) no. 3, pp. 1017-1059. doi : 10.5802/aif.3592. https://aif.centre-mersenne.org/articles/10.5802/aif.3592/

[1] Arbarello, Enrico; Cornalba, Maurizio; Griffiths, Phillip A. Geometry of algebraic curves. Volume II, Grundlehren der Mathematischen Wissenschaften, 268, Springer, Heidelberg, 2011, xxx+963 pages (with a contribution by Joseph Daniel Harris) | DOI | MR | Zbl

[2] Bainbridge, Matt; Chen, Dawei; Gendron, Quentin; Grushevsky, Samuel; Möller, Martin Compactification of strata of Abelian differentials, Duke Math. J., Volume 167 (2018) no. 12, pp. 2347-2416 | DOI | MR | Zbl

[3] Bainbridge, Matt; Chen, Dawei; Gendron, Quentin; Grushevsky, Samuel; Möller, Martin Strata of k-differentials, Algebr. Geom., Volume 6 (2019) no. 2, pp. 196-233 | DOI | MR | Zbl

[4] Bainbridge, Matt; Chen, Dawei; Gendron, Quentin; Grushevsky, Samuel; Möller, Martin The moduli space of multi-scale differentials (2019) (https://arxiv.org/abs/1910.13492)

[5] Chen, D.; Möller, M.; Sauvaget, A. Masur–Veech volumes and intersection theory: the principal strata of quadratic differentials (2019) (with an appendix by G. Borot, A. Giacchetto and D. Lewanski, to appear in Duke Math. J., https://arxiv.org/abs/1912.02267)

[6] Chen, D.; Möller, M.; Sauvaget, Adrien; Zagier, D. Masur–Veech volumes and intersection theory on moduli spaces of Abelian differentials, Invent. Math., Volume 222 (2020) no. 1, pp. 283-373 | DOI | MR | Zbl

[7] Costantini, Matteo; Möller, Martin; Zachhuber, Jonathan The Chern classes and Euler characteristic of the moduli spaces of Abelian differentials, Forum Math. Pi, Volume 10 (2022), e16, 55 pages | DOI | MR | Zbl

[8] Mumford, D. Hirzebruch’s proportionality theorem in the non-compact case, Invent. Math., Volume 42 (1977), pp. 239-272 | DOI | MR | Zbl

[9] Sauvaget, Adrien Volumes and Siegel-Veech constants of (2G-2) and Hodge integrals, Geom. Funct. Anal., Volume 28 (2018) no. 6, pp. 1756-1779 | DOI | MR | Zbl

[10] Sauvaget, Adrien Volumes of moduli spaces of flat surfaces (2020) (https://arxiv.org/abs/2004.03198)

[11] Veech, W. Flat surfaces, Amer. J. Math., Volume 115 (1993) no. 3, pp. 589-689 | DOI | MR | Zbl

Cité par Sources :