Geometry of manifolds which admit conservation laws
Annales de l'Institut Fourier, Volume 21 (1971) no. 1, pp. 1-9.

Let M be an (n+1)-dimensional Riemannian manifold admitting a covariant constant endomorphism h of the localized module of 1-forms with distinct non-zero eigenvalues. After it is shown that M is locally flat, a manifold N immersed in M is studied. The manifold N has an induced structure with n of the same eigenvalues if and only if the normal to N is a fixed direction of h. Finally conditions under which N is invariant under h, N is totally geodesic and the induced structure has vanishing Nijenhuis torsion or is covariant constant are found.

Soit M une variété riemannienne à (n+1) dimensions, admettant un endomorphisme covariant constant h du module local de 1-formes ayant des valeurs propres distinctes et différentes de zéro. On montre que M est localement plat, et on étudie une variété N immergée dans M. La variété N a une structure induite avec n des mêmes valeurs propres si et seulement si la normale à N est une direction fixe de h. Enfin, on trouve les conditions sous lesquelles N est invariant sous h, N est totalement géodésique et la structure induite a une torsion de Nijenhuis nulle ou est covariante constante.

@article{AIF_1971__21_1_1_0,
     author = {Blair, David E. and Stone, Alexander P.},
     title = {Geometry of manifolds which admit conservation laws},
     journal = {Annales de l'Institut Fourier},
     pages = {1--9},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {21},
     number = {1},
     year = {1971},
     doi = {10.5802/aif.359},
     zbl = {0197.18101},
     mrnumber = {44 #948},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.359/}
}
TY  - JOUR
AU  - Blair, David E.
AU  - Stone, Alexander P.
TI  - Geometry of manifolds which admit conservation laws
JO  - Annales de l'Institut Fourier
PY  - 1971
SP  - 1
EP  - 9
VL  - 21
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.359/
DO  - 10.5802/aif.359
LA  - en
ID  - AIF_1971__21_1_1_0
ER  - 
%0 Journal Article
%A Blair, David E.
%A Stone, Alexander P.
%T Geometry of manifolds which admit conservation laws
%J Annales de l'Institut Fourier
%D 1971
%P 1-9
%V 21
%N 1
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.359/
%R 10.5802/aif.359
%G en
%F AIF_1971__21_1_1_0
Blair, David E.; Stone, Alexander P. Geometry of manifolds which admit conservation laws. Annales de l'Institut Fourier, Volume 21 (1971) no. 1, pp. 1-9. doi : 10.5802/aif.359. https://aif.centre-mersenne.org/articles/10.5802/aif.359/

[1] D.E. Blair and A.P. Stone, A note on the holonomy group of manifolds with certain structures, Proc. AMS, 21 (1), (1969), 73-76. | MR | Zbl

[2] A. Frölicher and A. Nijenhuis, Theory of vector valued differential forma, I ; Ned. Akad. Wet. Proc. 59 (1956), 338-359. | Zbl

[3] E.T. Kobayashi, A remark on the Nijenhuis tensor, Pacific J. Math., 12, (1962), 963-977. | MR | Zbl

[4] H. Osborn, The existence of conservation laws, I ; Ann. of Math., 69 (1959), 105-118. | MR | Zbl

[5] H. Osborn, Les lois de conservation, Ann. Inst. Fourier, (Grenoble), 14 (1964), 71-82. | Numdam | MR | Zbl

[6] A.P. Stone, Analytic conservation laws, Ann. Inst. Fourier, (Grenoble), 16 (2), (1966), 319-327. | Numdam | MR | Zbl

[7] A.P. Stone, Generalized conservation laws, Proc. AMS 18, (5), (1967), 868-873. | MR | Zbl

Cited by Sources: