[Estimations des extensions de fonctions holomorphes définies sur une sous-variété non réduite]
Soit un domaine strictement pseudo-convexe de et une sous-variété non réduite qui se comporte bien en . Nous donnons des estimations des extensions de fonctions holomorphes sur .
Let be a strictly pseudoconvex domain in and a pure-dimensional non-reduced subvariety that behaves well at . We provide -estimates of extensions of holomorphic functions defined on .
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Interpolation, Bergman space, non-reduced subvariety.
Mot clés : Interpolation, espace de Bergman, sous-variété non réduite.
Andersson, Mats 1
@article{AIF_2024__74_2_783_0, author = {Andersson, Mats}, title = {$L^p$-estimates of extensions of holomorphic functions defined on a non-reduced subvariety}, journal = {Annales de l'Institut Fourier}, pages = {783--809}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {2}, year = {2024}, doi = {10.5802/aif.3586}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3586/} }
TY - JOUR AU - Andersson, Mats TI - $L^p$-estimates of extensions of holomorphic functions defined on a non-reduced subvariety JO - Annales de l'Institut Fourier PY - 2024 SP - 783 EP - 809 VL - 74 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3586/ DO - 10.5802/aif.3586 LA - en ID - AIF_2024__74_2_783_0 ER -
%0 Journal Article %A Andersson, Mats %T $L^p$-estimates of extensions of holomorphic functions defined on a non-reduced subvariety %J Annales de l'Institut Fourier %D 2024 %P 783-809 %V 74 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3586/ %R 10.5802/aif.3586 %G en %F AIF_2024__74_2_783_0
Andersson, Mats. $L^p$-estimates of extensions of holomorphic functions defined on a non-reduced subvariety. Annales de l'Institut Fourier, Tome 74 (2024) no. 2, pp. 783-809. doi : 10.5802/aif.3586. https://aif.centre-mersenne.org/articles/10.5802/aif.3586/
[1] Extension of holomorphic functions defined on singular complex hypersurfaces with growth estimates, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 14 (2015) no. 1, pp. 293-330 | DOI | MR | Zbl
[2] Extension de fonctions holomorphes et courants, Bull. Sci. Math. (2), Volume 107 (1983) no. 1, pp. 25-48 | MR | Zbl
[3] Integral representation with weights. I, Math. Ann., Volume 326 (2003) no. 1, pp. 1-18 | DOI | MR | Zbl
[4] Integral representation with weights. II. Division and interpolation, Math. Z., Volume 254 (2006) no. 2, pp. 315-332 | DOI | MR | Zbl
[5] Uniqueness and factorization of Coleff–Herrera currents, Ann. Fac. Sci. Toulouse Math. (6), Volume 18 (2009) no. 4, pp. 651-661 | DOI | Numdam | MR | Zbl
[6] Coleff–Herrera currents, duality, and Noetherian operators, Bull. Soc. Math. France, Volume 139 (2011) no. 4, pp. 535-554 | DOI | Numdam | MR | Zbl
[7] A pointwise norm on a non-reduced analytic space, J. Funct. Anal., Volume 283 (2022) no. 4, 109520, 36 pages | DOI | MR | Zbl
[8] The -equation on a non-reduced analytic space, Math. Ann., Volume 374 (2019) no. 1-2, pp. 553-599 | DOI | MR | Zbl
[9] A Dolbeault–Grothendieck lemma on complex spaces via Koppelman formulas, Invent. Math., Volume 190 (2012) no. 2, pp. 261-297 | DOI | MR | Zbl
[10] Residue currents with prescribed annihilator ideals, Ann. Sci. École Norm. Sup. (4), Volume 40 (2007) no. 6, pp. 985-1007 | DOI | Numdam | MR | Zbl
[11] Decomposition of residue currents, J. Reine Angew. Math., Volume 638 (2010), pp. 103-118 | DOI | MR | Zbl
[12] Direct images of semi-meromorphic currents, Ann. Inst. Fourier, Volume 68 (2018) no. 2, pp. 875-900 http://aif.cedram.org/item?id=AIF_2018__68_2_875_0 | DOI | Numdam | MR | Zbl
[13] Le faisceau sur un espace analytique de dimension pure, Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977) (Lecture Notes in Mathematics), Volume 670, Springer, Berlin, 1978, pp. 187-204 | MR | Zbl
[14] Residues and -modules, The legacy of Niels Henrik Abel, Springer, Berlin, 2004, pp. 605-651 | DOI | MR | Zbl
[15] A general extension theorem for cohomology classes on non reduced analytic subspaces, Sci. China Math., Volume 60 (2017) no. 6, pp. 949-962 | DOI | MR | Zbl
[16] Extension dans des classes de Hardy de fonctions holomorphes et estimations de type « mesures de Carleson » pour l’équation , Ann. Inst. Fourier, Volume 33 (1983) no. 3, pp. 59-97 | DOI | Numdam | MR | Zbl
[17] Extension of holomorphic functions defined on non reduced analytic subvarieties, The legacy of Bernhard Riemann after one hundred and fifty years. Vol. I (Adv. Lect. Math. (ALM)), Volume 35, Int. Press, Somerville, MA, 2016, pp. 191-222 | MR | Zbl
[18] Theory of functions on complex manifolds, Monographs in Mathematics, 79, Birkhäuser Verlag, Basel, 1984, 226 pages | MR | Zbl
[19] The Szegő kernel in terms of Cauchy–Fantappiè kernels, Duke Math. J., Volume 45 (1978) no. 2, pp. 197-224 http://projecteuclid.org/euclid.dmj/1077312816 | DOI | MR | Zbl
[20] A survey on the extension theorems, J. Geom. Anal., Volume 30 (2020) no. 2, pp. 1366-1395 | DOI | MR | Zbl
[21] On the extension of holomorphic functions, Math. Z., Volume 195 (1987) no. 2, pp. 197-204 | DOI | MR | Zbl
[22] Holomorphic functions and integral representations in several complex variables, Graduate Texts in Mathematics, 108, Springer-Verlag, New York, 1986, xx+386 pages | DOI | MR | Zbl
Cité par Sources :