[Une version triple operateur de l’inégalité Golden-Thompson pour les traces sur les algèbres de von Neumann]
Nous prouvons une géneralisation de l’extension de Lieb à trois matrices de l’inégalité de Golden–Thompson de l’algèbre des matrices à des traces associés à des algèbres de von Neumann finies. Plus précisément, supposons que est une algèbre de von Neumann finie munie d’un état tracé . Soient tels que . Alors pour tout , , et opérateurs auto-adjoints et -mesurables satisfaisant , , et , on a l’inégalité suivante :
où denote l’identité de . Nous présentons également d’autres résultats liés à Wigner–Yanase–Dyson–Lieb concavité dans le contexte général d’état tracé.
Nous utilisons la version ci-dessus de l’inégalité de Golden–Thompson pour trois opérateurs pour demontrer une extension de inégalité arcsinh de Prokhorov aux martingales non commutatives dans des espaces de probabilité non commutatif.
We provide a generalization of Lieb’s triple matrix extension of the Golden–Thompson inequality from matrix algebras to the setting of traces on finite von Neumann algebras. More precisely, assume that is a finite von Neumann algebra equipped with a tracial state . If with , it is shown that whenever , , and are self-adjoint -measurable operators satisfying , , and , then the following inequality holds:
where denotes the identity in . We also present other results related to the Wigner–Yanase–Dyson–Lieb concavity in the context of general tracial state.
We use the above version of the Golden–Thompson inequality for three operators to prove an extension of the Prokhorov arcsinh inequality to noncommutative martingales in general noncommutative probability spaces.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Trace inequalities, von Neumann algebras, noncommutative martingales
Mot clés : inégalités de trace, algèbres de von Neumann, martingales non commutatives
Randrianantoanina, Narcisse 1
@article{AIF_2024__74_1_193_0, author = {Randrianantoanina, Narcisse}, title = {Triple operator version of the {Golden-Thompson} inequality for traces on von {Neumann} algebras}, journal = {Annales de l'Institut Fourier}, pages = {193--233}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {1}, year = {2024}, doi = {10.5802/aif.3575}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3575/} }
TY - JOUR AU - Randrianantoanina, Narcisse TI - Triple operator version of the Golden-Thompson inequality for traces on von Neumann algebras JO - Annales de l'Institut Fourier PY - 2024 SP - 193 EP - 233 VL - 74 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3575/ DO - 10.5802/aif.3575 LA - en ID - AIF_2024__74_1_193_0 ER -
%0 Journal Article %A Randrianantoanina, Narcisse %T Triple operator version of the Golden-Thompson inequality for traces on von Neumann algebras %J Annales de l'Institut Fourier %D 2024 %P 193-233 %V 74 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3575/ %R 10.5802/aif.3575 %G en %F AIF_2024__74_1_193_0
Randrianantoanina, Narcisse. Triple operator version of the Golden-Thompson inequality for traces on von Neumann algebras. Annales de l'Institut Fourier, Tome 74 (2024) no. 1, pp. 193-233. doi : 10.5802/aif.3575. https://aif.centre-mersenne.org/articles/10.5802/aif.3575/
[1] Golden-Thompson and Peierls-Bogolubov inequalities for a general von Neumann algebra, Commun. Math. Phys., Volume 34 (1973), pp. 167-178 | DOI | MR | Zbl
[2] Relative entropy of states of von Neumann algebras, Publ. Res. Inst. Math. Sci., Volume 11 (1976) no. 3, pp. 809-833 | DOI | MR | Zbl
[3] Matrix analysis, Graduate Texts in Mathematics, 169, Springer, 1996, xii+347 pages | DOI
[4] Atomic decompositions for noncommutative martingales (2020) (https://arxiv.org/abs/2001.08775v1)
[5] Vector measures, Math. Surveys, 15, American Mathematical Society, 1977, xiii+322 pages | DOI
[6] Noncommutative Köthe duality, Trans. Am. Math. Soc., Volume 339 (1993) no. 2, pp. 717-750 | MR | Zbl
[7] Generalized -numbers of -measurable operators, Pac. J. Math., Volume 123 (1986), pp. 269-300 | DOI | MR | Zbl
[8] The Golden-Thompson inequality: historical aspects and random matrix applications, J. Math. Phys., Volume 55 (2014) no. 2, 023503, 12 pages | DOI | MR | Zbl
[9] Lower bounds for the Helmholtz function, Phys. Rev., II. Ser., Volume 137 (1965), p. B1127-B1128 | MR | Zbl
[10] Uniform ergodic theorems for identity preserving Schwarz maps on -algebras, J. Oper. Theory, Volume 11 (1984) no. 2, pp. 395-404 | MR | Zbl
[11] Perturbation formulas for traces on -algebras, Publ. Res. Inst. Math. Sci., Volume 31 (1995) no. 1, pp. 169-178 | DOI | MR | Zbl
[12] Ultraproducts in Banach space theory, J. Reine Angew. Math., Volume 313 (1980), pp. 72-104 | DOI | MR | Zbl
[13] Best constants in martingale version of Rosenthal’s inequality, Ann. Probab., Volume 18 (1990) no. 4, pp. 1656-1668 | MR | Zbl
[14] Inequalities for noncommutative differentially subordinate martingales, Adv. Math., Volume 337 (2018) no. 1, pp. 216-259 | DOI | MR | Zbl
[15] Best constants in moment inequalities for linear combinations of independent and exchangeable random variables, Ann. Probab., Volume 13 (1985) no. 1, pp. 234-253 | MR | Zbl
[16] Doob’s inequality for non-commutative martingales, J. Reine Angew. Math., Volume 549 (2002), pp. 149-190 | MR | Zbl
[17] Theory of -spaces for continuous filtrations in von Neumann algebras, Astérisque, 362, Société Mathématique de France, 2014, vi+134 pages | Numdam
[18] Noncommutative Burkholder/Rosenthal inequalities, Ann. Probab., Volume 31 (2003) no. 2, pp. 948-995 | MR | Zbl
[19] Noncommutative Burkholder/Rosenthal inequalities. II. Applications, Isr. J. Math., Volume 167 (2008), pp. 227-282 | DOI | MR | Zbl
[20] Noncommutative Bennett and Rosenthal inequalities, Ann. Probab., Volume 41 (2013) no. 6, pp. 4287-4316 | DOI | MR | Zbl
[21] Noncommutative martingale deviation and Poincaré type inequalities with applications, Probab. Theory Relat. Fields, Volume 161 (2015) no. 3-4, pp. 449-507 | DOI | Zbl
[22] Symmetric norms and spaces of operators, J. Reine Angew. Math., Volume 621 (2008), pp. 81-121 | DOI | MR | Zbl
[23] Interpolation theory and the Wigner–Yanase–Dyson–Lieb concavity, Commun. Math. Phys., Volume 87 (1982) no. 3, pp. 315-329 | DOI | MR | Zbl
[24] An inequality of Araki–Lieb–Thirring (von Neumann algebra case), Proc. Am. Math. Soc., Volume 114 (1992) no. 2, pp. 477-481 | DOI | MR | Zbl
[25] Convex trace functions and the Wigner–Yanase–Dyson conjecture, Adv. Math., Volume 11 (1973), pp. 267-288 | DOI | MR | Zbl
[26] A fundamental property of quantum-mechanical entropy, Phys. Rev. Lett., Volume 30 (1973), pp. 434-436 | DOI | MR
[27] Uncountably many factors, Ann. Math., Volume 90 (1969), pp. 372-377 | DOI | MR
[28] Notes on non-commutative integration, J. Funct. Anal., Volume 15 (1974), pp. 103-116 | DOI | MR | Zbl
[29] Actions of discrete amenable groups on von Neumann algebras, Lecture Notes in Mathematics, 1138, Springer, 1985, iv+115 pages | DOI | MR
[30] A survey of certain trace inequalities, Functional analysis and operator theory (Warsaw, 1992) (Banach Center Publications), Volume 30, Polish Academy of Sciences, 1994, pp. 287-298 | MR | Zbl
[31] Non-commutative martingale inequalities, Commun. Math. Phys., Volume 189 (1997) no. 3, pp. 667-698 | DOI | MR | Zbl
[32] Non-commutative -spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, 2003, pp. 1459-1517 | DOI | Zbl
[33] An extremal problem in probability theory, Theor. Probability Appl., Volume 4 (1960), pp. 201-203 | DOI | MR | Zbl
[34] Non-commutative martingale transforms, J. Funct. Anal., Volume 194 (2002), pp. 181-212 | MR | Zbl
[35] Noncommutative Burkholder/Rosenthal inequalities associated with convex functions, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 53 (2017) no. 4, pp. 1575-1605 | DOI | MR | Zbl
[36] On ultrapowers of non commutative spaces, J. Oper. Theory, Volume 48 (2002) no. 1, pp. 41-68 | MR | Zbl
[37] A noncommutative martingale convexity inequality, Ann. Probab., Volume 44 (2016) no. 2, pp. 867-882 | DOI | MR | Zbl
[38] Inequalities for traces on von Neumann algebras, Commun. Math. Phys., Volume 26 (1972), pp. 280-289 | DOI | MR | Zbl
[39] Noncommutative martingale concentration inequalities, Ill. J. Math., Volume 58 (2014) no. 2, pp. 561-575 | MR | Zbl
[40] Trace ideals and their applications, Mathematical Surveys and Monographs, 120, American Mathematical Society, 2005, viii+150 pages | DOI
[41] “Ultra”-techniques in Banach space theory, Queen’s Papers in Pure and Applied Mathematics, 60, Queen’s University, 1982, iv+117 pages
[42] Completeness of quasi-normed symmetric operator spaces, Indag. Math., New Ser., Volume 25 (2014) no. 2, pp. 376-388 | DOI | MR | Zbl
[43] Johnson–Schechtman inequalities in the free probability theory, J. Funct. Anal., Volume 263 (2012) no. 10, pp. 2921-2948 | DOI | MR | Zbl
[44] Multivariate trace inequalities, Commun. Math. Phys., Volume 352 (2017) no. 1, pp. 37-58 | DOI | MR | Zbl
[45] Inequality with applications in statistical mechanics, J. Math. Phys., Volume 6 (1965), pp. 1812-1813 | DOI | MR
[46] Continuity of operator functions in topologies connected with a trace on a von Neumann algebra, Izv. Vyssh. Uchebn. Zaved., Mat. (1987) no. 1, pp. 77-79 | MR
[47] User-friendly tail bounds for sums of random matrices, Found. Comput. Math., Volume 12 (2012) no. 4, pp. 389-434 | DOI | MR | Zbl
[48] Quotients of finite -algebras, J. Funct. Anal., Volume 9 (1972), pp. 322-335 | DOI | MR | Zbl
[49] Analytic functions with values in lattices and symmetric spaces of measurable operators, Math. Proc. Camb. Philos. Soc., Volume 109 (1991), pp. 541-563 | MR | Zbl
[50] From Wigner–Yanase–Dyson conjecture to Carlen–Frank–Lieb conjecture, Adv. Math., Volume 365 (2020), 107053, 18 pages | DOI | MR | Zbl
Cité par Sources :