Nous utilisons des estimations radiales microlocales pour prouver le principe d’absorption limite complet pour , un opérateur pseudodifférentiel auto-adjoint d’ordre 0 satisfaisant les hypothèses dynamiques hyperboliques de Colin de Verdière et Saint-Raymond. Nous définissons la matrice de diffusion pour et montrons que la matrice de diffusion s’étend à un opérateur unitaire sur des espaces appropriés. Après conjugaison avec des opérateurs de référence naturels, la matrice de diffusion devient un opérateur intégral de Fourier d’ordre avec une relation canonique associée aux bicharactéristiques de . L’opérateur fournit un modèle microlocal des ondes internes dans les fluides stratifiés comme illustré dans l’article de Colin de Verdière et Saint-Raymond.
We use microlocal radial estimates to prove the full limiting absorption principle for , a self-adjoint 0th order pseudodifferential operator satisfying hyperbolic dynamical assumptions as of Colin de Verdière and Saint-Raymond. We define the scattering matrix for and show that the scattering matrix extends to a unitary operator on appropriate spaces. After conjugation with natural reference operators, the scattering matrix becomes a th order Fourier integral operator with a canonical relation associated to the bicharacteristics of . The operator provides a microlocal model of internal waves in stratified fluids as illustrated in the paper of Colin de Verdière and Saint-Raymond.
Révisé le :
Accepté le :
Publié le :
Keywords: Scattering matrix, zeroth order operator, internal wave.
Mot clés : Matrice de diffusion, opérateur d’ordre zéro, vague interne.
Wang, Jian 1
@article{AIF_2023__73_5_2185_0, author = {Wang, Jian}, title = {The scattering matrix for 0th order pseudodifferential operators}, journal = {Annales de l'Institut Fourier}, pages = {2185--2237}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {5}, year = {2023}, doi = {10.5802/aif.3570}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3570/} }
TY - JOUR AU - Wang, Jian TI - The scattering matrix for 0th order pseudodifferential operators JO - Annales de l'Institut Fourier PY - 2023 SP - 2185 EP - 2237 VL - 73 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3570/ DO - 10.5802/aif.3570 LA - en ID - AIF_2023__73_5_2185_0 ER -
%0 Journal Article %A Wang, Jian %T The scattering matrix for 0th order pseudodifferential operators %J Annales de l'Institut Fourier %D 2023 %P 2185-2237 %V 73 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3570/ %R 10.5802/aif.3570 %G en %F AIF_2023__73_5_2185_0
Wang, Jian. The scattering matrix for 0th order pseudodifferential operators. Annales de l'Institut Fourier, Tome 73 (2023) no. 5, pp. 2185-2237. doi : 10.5802/aif.3570. https://aif.centre-mersenne.org/articles/10.5802/aif.3570/
[1] Lyapunov exponents and smooth ergodic theory, University Lecture Series, 23, American Mathematical Society, Providence, RI, 2002, xii+151 pages | DOI | MR
[2] Fourier integral operators. II, Acta Math., Volume 128 (1972) no. 3-4, pp. 183-269 | DOI | MR | Zbl
[3] Dynamical zeta functions for Anosov flows via microlocal analysis, Ann. Sci. Éc. Norm. Supér. (4), Volume 49 (2016) no. 3, pp. 543-577 | DOI | MR | Zbl
[4] Ruelle zeta function at zero for surfaces, Invent. Math., Volume 210 (2017) no. 1, pp. 211-229 | DOI | MR | Zbl
[5] Mathematical theory of scattering resonances, Graduate Studies in Mathematics, 200, American Mathematical Society, Providence, RI, 2019, xi+634 pages | DOI | MR
[6] Microlocal analysis of forced waves, Pure Appl. Anal., Volume 1 (2019) no. 3, pp. 359-384 | DOI | MR | Zbl
[7] Scattering matrix in conformal geometry, Invent. Math., Volume 152 (2003) no. 1, pp. 89-118 | DOI | MR | Zbl
[8] Microlocal analysis for differential operators. An introduction, London Mathematical Society Lecture Note Series, 196, Cambridge University Press, Cambridge, 1994, iv+151 pages | DOI | MR
[9] Spectral and scattering theory for symbolic potentials of order zero, Adv. Math., Volume 181 (2004) no. 1, pp. 1-87 | DOI | MR | Zbl
[10] Microlocal propagation near radial points and scattering for symbolic potentials of order zero, Anal. PDE, Volume 1 (2008) no. 2, pp. 127-196 | DOI | MR | Zbl
[11] The analysis of linear partial differential operators. I: Distribution theory and Fourier analysis, Grundlehren der mathematischen Wissenschaften, 256, Springer-Verlag, Berlin, 1983, ix+391 pages | DOI | MR
[12] The analysis of linear partial differential operators. III: Pseudodifferential operators, Grundlehren der mathematischen Wissenschaften, 274, Springer-Verlag, 1985, viii+525 pages (Pseudodifferential operators) | MR | Zbl
[13] The analysis of linear partial differential operators. IV: Fourier integral operators, Grundlehren der mathematischen Wissenschaften, 275, Springer-Verlag, 1985, vii+352 pages | MR
[14] Inverse scattering on asymptotically hyperbolic manifolds, Acta Math., Volume 184 (2000) no. 1, pp. 41-86 | DOI | MR | Zbl
[15] Scattering metrics and geodesic flow at infinity, Invent. Math., Volume 124 (1996) no. 1-3, pp. 389-436 | DOI | MR | Zbl
[16] Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, Spectral and scattering theory (Sanda, 1992) (Lecture Notes in Pure and Appl. Math.), Volume 161, Dekker, New York, 1994, pp. 85-130 | MR | Zbl
[17] Flows on 2-dimensional manifolds. An overview, Lecture Notes in Mathematics, 1705, Springer-Verlag, Berlin, 1999, xx+294 pages | DOI | MR | Zbl
[18] Complex analysis, Princeton Lectures in Analysis, 2, Princeton University Press, Princeton, NJ, 2003, xviii+379 pages | MR | Zbl
[19] 0-th order pesudo-differential operators on the circle (to appear in Proceedings of the AMS, https://arxiv.org/abs/1909.06316)
[20] Geometric scattering theory for long-range potentials and metrics, Internat. Math. Res. Notices (1998) no. 6, pp. 285-315 | DOI | MR | Zbl
[21] The wave equation on asymptotically de Sitter-like spaces, Adv. Math., Volume 223 (2010) no. 1, pp. 49-97 | DOI | MR | Zbl
[22] Resolvents, Poisson operators and scattering matrices on asymptotically hyperbolic and de Sitter spaces, J. Spectr. Theory, Volume 4 (2014) no. 4, pp. 643-673 | DOI | MR | Zbl
[23] Quantum fields from global propagators on asymptotically Minkowski and extended de Sitter spacetimes, Ann. Henri Poincaré, Volume 19 (2018) no. 5, pp. 1529-1586 | DOI | MR | Zbl
[24] Spectral theory of pseudodifferential operators of degree 0 and an application to forced linear waves, Anal. PDE, Volume 13 (2020) no. 5, pp. 1521-1537 | DOI | MR | Zbl
[25] Attractors for two-dimensional waves with homogeneous Hamiltonians of degree 0, Comm. Pure Appl. Math., Volume 73 (2020) no. 2, pp. 421-462 | DOI | MR | Zbl
[26] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, Providence, RI, 2012, xii+431 pages | DOI | MR | Zbl
Cité par Sources :