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THE SCATTERING MATRIX FOR 0TH ORDER
PSEUDODIFFERENTIAL OPERATORS

by Jian WANG (*)

Abstract. — We use microlocal radial estimates to prove the full limiting ab-
sorption principle for P , a self-adjoint 0th order pseudodifferential operator satisfy-
ing hyperbolic dynamical assumptions as of Colin de Verdière and Saint-Raymond.
We define the scattering matrix for P and show that the scattering matrix extends
to a unitary operator on appropriate L2 spaces. After conjugation with natural
reference operators, the scattering matrix becomes a 0th order Fourier integral
operator with a canonical relation associated to the bicharacteristics of P . The
operator P provides a microlocal model of internal waves in stratified fluids as
illustrated in the paper of Colin de Verdière and Saint-Raymond.

Résumé. — Nous utilisons des estimations radiales microlocales pour prouver
le principe d’absorption limite complet pour P , un opérateur pseudodifférentiel
auto-adjoint d’ordre 0 satisfaisant les hypothèses dynamiques hyperboliques de
Colin de Verdière et Saint-Raymond. Nous définissons la matrice de diffusion pour
P et montrons que la matrice de diffusion s’étend à un opérateur unitaire sur des
espaces L2 appropriés. Après conjugaison avec des opérateurs de référence naturels,
la matrice de diffusion devient un opérateur intégral de Fourier d’ordre 0 avec une
relation canonique associée aux bicharactéristiques de P . L’opérateur P fournit un
modèle microlocal des ondes internes dans les fluides stratifiés comme illustré dans
l’article de Colin de Verdière et Saint-Raymond.

1. Introduction

In this paper, we study an analog of the scattering theory for certain
0th order pseudodifferential operators. We define the scattering matrix for
these operators and show the scattering matrix is unitary by proving a
boundary pairing formula. We also study the microlocal structure of the
scattering matrix.

Keywords: Scattering matrix, zeroth order operator, internal wave.
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With motivation coming from fluid mechanics, the evolution equation
for such operators was recently studied by Colin de Verdière and Saint-
Raymond [25]. They showed the singular formation at the attractive hy-
perbolic cycles of the (rescaled) Hamiltonian flow as time goes to infinity.
Dyatlov and Zworski [6] provided an alternative approach using tools from
microlocal scattering theory and relaxed some assumptions of [25] (vanish-
ing of the subprincipal symbol, covering the base manifold by the charac-
teristic surface). Operators with generic Morse–Smale Hamiltonian flow on
surfaces and operators on higher dimensional manifolds were investigated
by Colin de Verdière in [24]. In this paper, we study the stationary states
of P − ω.

1.1. Main results

Let M be a closed surface. Suppose P is a pseudodifferential operator
that satisfies assumptions in Section 1.2, ω ∈ R satisfies assumptions in
Section 1.3. Let Λ±

ω be Lagrangian submanifolds defined in Section 1.2.
Let KerL2(P − ω) ⊂ L2(M) be the eigenspace of P with eigenvalue ω and
D ′

⊥(P, ω) be the orthogonal complement of KerL2(P − ω) in D ′(M):

(1.1) D ′
⊥(P, ω) := {u ∈ D ′(M) : ⟨u, f⟩ = 0, for all f ∈ KerL2(P − ω)}.

Here ⟨· , ·⟩ is the sesquilinear pairing between distributions and smooth
functions (that is it coincides with the L2 pairing on functions). As we will
see in Section 11, KerL2(P −ω) ⊂ C∞(M), hence D ′

⊥(P, ω) is well-defined.
One can see that D ′

⊥(P, ω) = D ′(M) if and only if ω /∈ Specpp(P ). We
consider the equation

(1.2) (P − ω)u = 0, u ∈ D ′
⊥(P, ω)

where u admits a decomposition

(1.3) u = u− + u+, u± ∈ I0(Λ±
ω ).

Here I0(Λ±
ω ) is the set of 0th order Lagrangian distributions associated

to Λ±
ω – see Section 1.2, Section 2.2 for definitions. We denote the set of

distributions satisfying (1.2) and (1.3) by Z(P, ω). We also denote a set of
microlocal solutions in D ′

⊥(P, ω) by D±(P, ω):

(1.4) D±(P, ω) := {u ∈ I0(Λ±
ω ) : (P − ω)u ∈ C∞(M)} ∩ D ′

⊥(P, ω)

and put

(1.5) D±(P, ω) := D±(P, ω)/ (C∞(M) ∩ D ′
⊥(P, ω)) .

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.1. — Suppose P ∈ Ψ0(M), ω ∈ R satisfy assumptions in
Section 1.2 and Section 1.3. Let d be the number of connected components
of Λ±

ω . Then there exist maps

(1.6) H±
ω,0 : C∞(S1;Cd) → D±(P, ω),

(1.7) Sω : C∞(S1;Cd) → C∞(S1;Cd)

such that
(1) The maps H±

ω,0 are linear and invertible;
(2) For any u ∈ Z(P, ω), there exist unique f± ∈ C∞(S1;Cd) satisfying

(1.8) u = H−
ω,0(f−) +H+

ω,0(f+);

(3) For any f− ∈ C∞(S1;Cd) there exists a unique f+ ∈ C∞(S1;Cd)
such that there exist u± = H±

ω,0(f±) satisfying

(1.9) u− + u+ ∈ Z(P, ω);

(4) If f± ∈ C∞(S1;Cd) satisfy (2), then

(1.10) Sω(f−) = f+;

(5) The map Sω can be extended to a unitary operator on L2(S1;Cd).

Remark 1.2. — The “=” in Theorem 1.1(2), (3) is undertood in the sense
of equivalence classes. We make the same convention in the rest of the
paper.

Remark 1.3. — Sω is called the scattering matrix for P at ω ∈ R.

Scattering matrices are studied in various mathematical settings. Part of
the literature are listed here. The scattering matrices for potential scatter-
ing and black box scattering in Rn for n ⩾ 3, n odd, are presented in [5,
Section 3.7, Section 4.4]. Melrose [16] studied the spectral theory for the
Laplacian operator on asymptotically Euclidean spaces and showed the ex-
istence of the scattering matrix. Later Melrose and Zworski [15] proved that
the scattering matrices in this setting are Fourier integral operators and
the canonical relations are given by the geodesic flow at infinity. Vasy [20]
studied the scattering matrices for long range potentials on asymptotically
Euclidean spaces and proved their Fourier integral operator structure in a
method that is different from the method used by Melrose and Zworski.
The spectral and scattering theory for symbolic potentials of order zero on
2-dimensional asymptotically Euclidean manifolds was studied by Hassell,
Melrose and Vasy in [9] and [10]. Connections between scattering matrix
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2188 Jian WANG

for asymptotically hyperbolic spaces and conformal geometry was studied
by Graham and Zworski in [7].

To see that the operator defined in Theorem 1.1 is an analog of the usual
scattering matrix, we briefly explain the scattering matrix for a compactly
supported potential on the real line. (See [5, Section 2.4]. Note that the
notation is slightly different.)

Suppose V ∈ C∞
c (R), P0 = −∂2

x + V (x). We consider the equation

(1.11) (P0 − λ2)u = 0, λ > 0.

P0 is a second order differential operator with principal symbol p0 = ξ2.
The characteristic surface Σ0 of P0 − λ2 is given by ξ = ±λ near |x| = ∞.
The Hamiltonian vector field Hp0 = 2ξ∂ξ and, near |x| = ∞, the flow
generated by Hp0 is

etHp0 (x0,±λ) = (±2λt+ x0,±λ), |x0| ≫ 1.(1.12)

We see that there are four “radial limiting points” of Σ0 at the two ends
of the real line: Lϵ1,ϵ2

0 = (ϵ1∞, ϵ2λ), ϵ1, ϵ2 = ±. The flow of HP0 travels
from L−,+

0 , L+,−
0 to L+,+

0 and L−,−
0 . Near |x| = ∞, that is, when |x| is

sufficiently large, V vanishes hence we can solve

u(x) = a+ eiλx +b− e−iλx, x ≫ 1;

u(x) = a− eiλx +b+ e−iλx, x ≪ −1.
(1.13)

Note that in phase space b− e−iλx |x≫1 and a− eiλx |x≪−1 (incoming solu-
tions) are localized near L+,−

0 and L−,+
0 where etHp0 in (1.12) flows out,

while a+ eiλx |x≫1 and b+ e−iλx |x≪−1 (outgoing solutions) are localized
near L+,+

0 and L−,−
0 where etHp0 flows in. The scattering matrix S0 is

then defined by mapping the data of the solution near L+,−
0 and L−,+

0 to
the ones near L+,+

0 and L−,−
0 :

(1.14) S0 : R2 → R2,

(
a−

b−

)
7→
(
a+

b+

)
.

The map H−
0 : C2 → D ′(R), that maps

(
a−

b−

)
to the solution u as in (1.13),

is called the Poisson operator of P0.
In the setting of Theorem 1.1, the rescaled Hamiltonian flow travels from

Λ−
ω to Λ+

ω on the characteristic surface of P − ω at infinity. The smooth
functions f± (analogous to (a±, b±) ) are “data” of the solutions and
H±

ω,0(f±) (“–” for incoming and “+” for outgoing) , similar to a± eiλx and
b± e−iλx, are “microlocal solutions”. The “scattering matrix” Sω then maps

ANNALES DE L’INSTITUT FOURIER
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the incoming data f− to the outgoing data f+. An anology of the Poisson
operator H−

0 is constructed in Definition 7.3.
It is natural to ask about the microlocal structure of Sω. In the case of

scattering on the real line, the scattering matrix S0 can be written as a sum
of the identity map on S0 and an operator with integral kernel in S0 × S0

(see for example [5, Theorem 2.11] and the remark after [5, Theorem 2.11]).
A less trivial example is the scattering matrix for potential scattering in
Rn, when n ⩾ 3 is an odd number. In this case, the absolute scattering
matrix (see [5, Definition 3.40]) Sabs(λ) can be written as

(1.15) Sabs(λ) = in−1J +A(λ)

where A(λ) : D ′(Sn−1) → C∞(Sn−1) is a smoothing operator and J :
D ′(Sn−1) → D ′(Sn−1) is defined by Jf(θ) = f(−θ) – see [5, Theorem 3.41].
Thus Sabs(λ) is a Fourier integral operator of order 0 associated to the
canonical relation given by the geodesic flow, which is also the Hamiltonian
flow of the Laplace operator, on T ∗Sn−1 \0 at distance π. Another example
is the scattering matrix for a scattering metric on asymptotically Euclidean
spaces. Melrose and Zworski [15] showed that the scattering matrix, S(λ),
of a scattering metric on an asymptotically Euclidean manifold X is, for
λ ∈ R \ {0}, a 0th order Fourier integral operator on ∂X associated to the
canonical diffeomorphism given by the geodesic flow at distance π for the in-
duced metric on ∂X. Vasy [20] generalized this result to long-range scatter-
ing metrices and showed the scattering matrices are Fourier integral opera-
tors of variable orders associated to the same canonical relation as of short-
range scattering metrices. The microlocal structures of the scattering ma-
trix on some other spaces are also studied. Joshi and Sá Barreto [14] showed
that the scattering matrix on an asymptotically hyperbolic space is a pseu-
dodifferential operators. Vasy [21] showed that the scattering matrix on an
asymptotically de Sitter-like space is an invertible elliptic 0th order Fourier
integral operator with canonical relation given by the classical scattering
map. The connection between the scattering on asymptotically hyperbolic
spaces and de Sitter-like spaces was investegated by Vasy [22]. Vasy and
Wrochna [23] studied the pairing formula on asymptotically hyperbolic and
asymptotically Minkowski spaces using radial sources and sinks structure.

For the scattering matrix Sω of a 0th order pseudodifferential operator P
in this paper, the result is different but similar in spirit. For simplicity, we
assume that the subprincipal symbol of P vanishes. Let ω ∈ R be a fixed
number satisfying assumptions in Section 1.3. We omit the ω subscript in
the following discussion in this subsection to simplify the notation. The be-
havior of the bicharateristics of P −ω near the limit cycles (see Section 1.2)
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is complicated both because they approach the limit cycles in a fast spi-
ral manner, and because the speed they approach the limit cycles are of
different rates, when they move along the boundary of the compactified
characteristic submanifold and along the Lagrangian submanifolds associ-
ated to the limit cycles. We will use special maps to absorb the tangled
behavior of the bicharacteristics near the limit cycles. More precisely, we
define the following maps:

Definition 1.4. — Let T± : C∞(S1;Cd) → D ′(S1;Cd) be two linear
maps defined by

T̂±fj(k) = e−iθ(k/λ±
j

) f̂j(k).(1.16)

Here S1 = R/2πZ and f̂(k) is the k-th Fourier coefficient of the 2π-periodic
function f , {λ±

j }d
j=1 ⊂ R are the Lyapunov exponents of the attractive (+)

and the repulsive (−) limit cycles.

Remark 1.5. — For each limit cycle γ ⊂ Σ of φt := exp tH, its Lyapunov
exponent is defined by the formula

λ := − 1
2π max

v∈TθM
lim sup
m→+∞

1
m

log |(dθφm)(θ)v|, θ ∈ γ.

See for instance [1, Chapter 2.1]. λ does not depend on the choice of θ ∈ γ.
In this convention, we have ±λ±

j > 0, 1 ⩽ j ⩽ d.

Remark 1.6. — The Lyapunov exponents determines the microlocal nor-
mal form of P near the limit cycles of exp tH, see [25, Section 6] or Section 8.

It turns out that T± are “not so bad” in the following sense: since
|T̂±fj(k)| = |f̂j(k)|, we know T± map C∞(S1;Cd) to C∞(S1;Cd), D ′(S1;Cd)
to D ′(S1;Cd), and T± are unitary on L2(S1;Cd). Another property of T±

that is worth noting is that the definition of T± depends only on the Lya-
punov spectrum of the limit cycles of the rescaled Hamiltonian flow on the
boundary of the characteristic submanifold of P (see Section 1.2).

We identify distributions in D ′(S1;Cd) with distributions in D ′(
⊔

d S1;C),
where

⊔
d S1 is the disjoint union of d copies of S1. Suppose Σhom :=

p−1(ω) ⊂ T ∗M \ 0 is the characteristic submanifold of P − ω, where p

is the principal symbol of P . Then in local coordinates associated to the
normal form as in Lemma 8.1,

(1.17) Σhom =
⊔
d

{(x, ξ) ∈ T ∗(R × S1) \ 0 : ξ2/ξ1 − λ+
j x1 = 0}.

As we will see in Section 8, more specifically, (8.11) and (8.14), T± gives an
identification between the restriction of the microlocal solutions to x1 = ±1

ANNALES DE L’INSTITUT FOURIER
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and the restriction of the symbol to a cycle. It is then natural to identify the
cotangent vectors on

⊔
d S1 with cotangent vectors in Σhom ∩ {x1 = ±1}:

Definition 1.7. — We define a map

(1.18) j+ :
⊔
d

T ∗S1 \ 0 → Σhom

by putting

(1.19) j+(y, η) = (±1, y, η/λ+
j , η)

when ±η > 0, y is on the j-th copy of
⊔

d S1. Here (±1, y, η/λ+
j , η) are

cotangent vectors expressed in local coordinates associated to the normal
form in Lemma 8.1. A map j− is defined in the same manner for the radial
source.

Now we use T± to conjugate the scattering matrix.

Definition 1.8. — We define an operator

Srel : C∞(S1;Cd) → D ′(S1;Cd)

by putting

(1.20) Srel := (T+)∗ST−.

The complicated behavior of bicharateristics of P − ω near the limit cy-
cles is now absorbed by T±. In any other region of the cotangent bundle,
P − ω behaves as of real principal type (for the precise meaning, see Sec-
tion 9). Therefore one can expect Srel is a Fourier integral operator and the
canonical relation is related to the bicharateristics of P − ω. We describe
the microlocal structure of Srel in the following theorem:

Theorem 1.9. — Suppose P ∈ Ψ0(M) satisfies assumptions in Sec-
tion 1.2 and the subprincipal symbol of P vanishes. Suppose ω ∈ R satis-
fies assumptions in Section 1.3. Let Srel be as in Definition 1.8, j± be as in
Definition 1.7. Then

(1.21) Srel : D ′(S1;Cd) → D ′(S1;Cd)

is a Fourier integral operator of order 0 associated to the canonical trans-
formation

(1.22) CSrel =
{

(z, ζ; y, η) ∈
⊔
d

T ∗S1 \ 0 ×
⊔
d

T ∗S1 \ 0 :

j−(z, ζ) and j+(y, η) lie on the
same bicharacteristic of P − ω

}
.

TOME 73 (2023), FASCICULE 5
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Remark 1.10. — As one can already see from Definition 1.7, the mi-
crolocal solutions branch in the phase space. This reflects the fact that the
bicharacteristics can approach or depart the limit cycles in two different
directions. See also Lemma 8.5.

Remark 1.11. — From the canonical relation of Srel, we know that the
scattering occurs only between limit cycles that “communicate to each
other”, that is, they are the attractive cycle or the repulsive cycle of the
same bicharacteristic.

1.2. Assumptions on P

Let M be a compact surface without boundary. Assume P ∈ Ψ0(M) is
self-adjoint for some smooth density on M . Let p ∈ S0(T ∗M \ 0;R) be the
principal symbol of P such that p is homogeneous of order 0 and 0 is a
regular value of p. Thus p−1(0) ⊂ T ∗M \ 0 is a smooth conic hypersurface.
Notice that R+ acts on T ∗M \ 0 as follows

R+ × (T ∗M \ 0) ∋ (t, x, ξ) 7→ (x, tξ) ∈ T ∗M \ 0.

Let ι : T ∗M \0 → (T ∗M \0)/R+ be the associated quotient map. The fiber-
radially compactified cotangent bundle of T ∗M is the bundle with interior
T ∗M and boundary (T ∗M \ 0)/R+ (see [5, Section E.1.3] for details of this
construction). The boundary of p−1(0) is then defined as Σ := ι(p−1(0)).
Since the vector field |ξ|Hp, where

Hp := ∂ξp · ∂x − ∂xp · ∂ξ,

commutes with the R+ action, we know H := ι∗(|ξ|Hp) defines a smooth
vector field on Σ.

We now assume that

(1.23) The flow exp tH on Σ is a Morse–Smale flow with no fixed points.

This assumption (1.23) means that (see for instance [17, Definition 5.1.1])
(1) exp tH has a finite number of hyperbolic limit cycles;
(2) every trajectory of exp tH that is not a limit cycle, has unique limit

cycles as its α, ω-limit sets.
(1.23) was first introduced by Colin de Verdière and Saint-Raymond [25]
in the study of internal waves.

We remark that under the assumption (1.23), the number of attractive
limit cycles and the number of repulsive limit cycles are the same. In fact,

ANNALES DE L’INSTITUT FOURIER
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the limit cycles divide Σ into several connected open subsets with limit cy-
cles as their boundaries. Let N1 be the number of such connected open sub-
sets. In each connected open subset, we pick a trajectory of X: γ1, . . . , γN1 .
By our assumptions, each γj , 1 ⩽ j ⩽ N1 has a unique attractive limit cycle
as its ω-limit set. On the other hand, for each attractive limit cycle γ, we
can find two different trajectories in {γj1}, γj2 such that γ is the ω-limit set
of γj1 and γj2 . Therefore if d is the number of attractive limit cycles, then
2d = N1. A similar argument shows that if d′ is the number of repulsive
limit cycles, then 2d′ = N1. Hence we have d = d′.

For ω ∈ R, let Σω := ι(p−1(ω)). The stability of Morse–Smale flows and
the stability of non-vanishing of H implies that for 0 < δ ≪ 1, |ω| ⩽ 2δ,
Σω satisfies (1.23). We denote the attractive limit cycles of exp tH on Σω

by L+
ω and the repulsive ones by L−

ω . Then L±
ω are the radial sink (+) and

radial source (−) for |ξ|(p− ω). The associated conic submanifolds

(1.24) Λ±
ω := ι−1(L±

ω ) ⊂ T ∗M \ 0

are Lagrangian submanifolds of T ∗M \ 0 (see [6, Lemma 2.1]). Notice that
the number of connected components of Λ±

ω does not change for small ω.

Remark 1.12. — It is not clear whether the results in Section 1.1 hold for
more general operators, for example, when M is a manifold of dimension
n, n ⩾ 3, or (1.23) is replaced by the existence of an escape function –
see [24, Section 3]. In both cases, the geometrical structure of the radial
sets can be complicated – for example, in the latter case, exp tH can have
fixed points (see [24, Theorem 6.2]), and that causes extra difficulty in
proving the limiting absorption principle Lemma 3.3 and constructing the
scattering map.

1.3. Eigenvalues of P

It is proved in [25, Theorem 5.1] and [6, Lemma 3.2] that P has only
embedded eigenvalues with finite multiplicities. In order to simplify the
notations, we assume that

(1.25) 0 is not an eigenvalue of P .

Under this assumption we know

(1.26) |Specpp(P ) ∩ [−δ, δ]| < ∞.

with δ > 0 as in Section 1.2. We also know that there exists 0 < δ0 < δ,
such that

(1.27) Specpp(P ) ∩ [−δ0, δ0] = ∅.

TOME 73 (2023), FASCICULE 5
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In Section 1, we assume |ω| < δ. In Sections 3-10, we assume |ω| ⩽ δ0. The
results in these sections can be generalized, without changes, to the case
where |ω| < δ is not an eigenvalue of P . In Section 11, we work under the
assumption that |ω| < δ is an embedded eigenvalue of P .

1.4. Examples

Let M = T2 := R2/(2πZ)2 be the torus.

Example 1.13. — Consider

(1.28) P := ⟨D⟩−1Dx2 − 2 cosx1, p(x, ξ) := |ξ|−1ξ2 − 2 cosx1,

where Dxj
= −i∂xj

, j = 1, 2. For this operator, Σ0 is a union of two
disjoint tori and these two tori do not cover T2. There are two attractive
cycles ι(Λ+

0 ) for the flow of ι∗(|ξ|Hp) on Σ0, where

Λ+
0 = {(±π/2, x2; ξ1, 0) : x2 ∈ S1,±ξ1 < 0}.

We can also consider

(1.29) P := ⟨D⟩−1Dx2 , p(x, ξ) := |ξ|−1ξ2 − 1
2 cosx1.

In this case, Σ0 is a union of two disjoint tori and each of the tori covers
T2. For illustrative figures of these two operators, see [6, Section 1.3].

Example 1.14. — An example of an embedded eigenvalue was constructed
by Zhongkai Tao [19, Example 2]. Tao showed that for M = T2, if

(1.30) P = ⟨D⟩−1Dx2 − α(1 − χ(Dx1)ψ(Dx2)) cosx1

− α cosx1(1 − χk(Dx1)ψ(Dx2))

with χk(k ± 1) = 1, ψ(ℓ) = δℓ0, χk, ψ ∈ C∞
c (R), then

(1.31) P (eix1k) = 0, and hence 0 ∈ Specpp(P ).

1.5. Organization of this paper

Throughout Section 3 to Section 10, we assume that ω ∈ R is not an
embedded eigenvalue of P . We show how to handle the case where ω is an
eigenvalue in Section 11.

In Section 2, we review some useful conceptions and facts on semiclassical
analysis and Lagrangian distributions. In Section 3, we prove a version of
the limiting absorption principle for the resolvent of P . In Section 4, we

ANNALES DE L’INSTITUT FOURIER
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discuss the solution to the transport equation. In Section 5, we solve (1.2)
up to smooth functions. The maps H±

ω,0 are constructed in Lemma 5.2.
In Section 6, we prove a boundary pairing formula which is crucial for us
to define the scattering matrix Sω. This formula also shows the unitarity
of our scattering matrix. In Section 7, we construct the Poisson operator
of P − ω and define Sω. We also prove Theorem 1.1 in this section. In
Section 8, we compute explicit formulas for the microlocal solutions using
microlocal normal forms of P . In Section 9, we study the propagation of
singularities of the microlocal solution. In Section 10, we prove a formula
for the conjugated scattering matrix Srel up to smoothing operators. Proof
of Theorem 1.9 is presented in this section. In Section 11, the results are
generalized to embedded eigenvalues.
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2. Preliminaries

In this section we review some important ingredients of this paper: semi-
classical analysis and Lagrangian distributions.

2.1. Semiclassical analysis

Here we review the notion of wavefront sets and prove some facts that
are useful for the analysis in later sections. A complete introduction to
semiclassical analysis can be found in [26] and [5, Appendix E].

We first recall the definition of wavefront sets.

Definition 2.1. — For s ∈ R, we define the semiclassical relative wave-
front set WFs

h(u) for a family of h-tempered (see [5, Definition E.35]) dis-
tributions u = u(h) in the following way: for (x0, ξ0) ∈ T ∗M , (x0, ξ0) /∈
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WFs
h(u) if and only if there exists a ∈ C∞

c (T ∗M) such that a(x0, ξ0) ̸= 0
and ∥Oph(a)u∥L2 = O(hs+). If u does not depend on h, we define the
wavefront set of u by

(2.1) WFs(u) := WFs
h(u) ∩ (T ∗M \ 0).

We also define

(2.2) WFh(u) :=
⋃
s∈R

WFs
h(u)

when u = u(h) is h-tempered and

(2.3) WF(u) :=
⋃
s∈R

WFs(u)

when u does not depend on h.

Since we use the slightly non-standard semiclassical definition of WFs
h

we provide the proof of the following lemma:

Lemma 2.2. — If u ∈ D ′(M), then WFs(u) = ∅ if and only if u ∈
Hs+(M). Moreover, WF(u) = ∅ if and only if u ∈ C∞(M).

Proof. — Suppose WFs(u) = ∅. Then by the definition, for any (x0, ξ0) ∈
T ∗M \ 0, there exists a(x0,ξ0) ∈ C∞

c (T ∗M \ 0) such that a(x0,ξ0)(x, ξ) ̸=
0 in some open neighborhood B(x0,ξ0) ⊂ T ∗M \ 0 of (x0, ξ0). Suppose
{B(xk,ξk)}m

k=1 is an open covering of {(x, ξ) ∈ T ∗M \ 0 : 1 ⩽ |ξ| ⩽ 2}.
Let a(x, ξ) =

∑m
k=1 a(xk,ξk), then a ∈ C∞

c (T ∗M \ 0), a(x, ξ) ̸= 0 when
1 ⩽ |ξ| ⩽ 2 and there exist δ > 0, ϵ > 0, C > 0 such that for any 0 < h < ϵ,
∥a(x, hD)u∥L2 ⩽ Chs+δ. Choose h0 small enough and a0 ∈ C∞

c (T ∗M) such
that C1 ⩽ a0(x, ξ) +

∑∞
j=0 a(x, hj

0ξ) ⩽ C2 for some constants C1, C2 > 0
for any (x, ξ) ∈ T ∗M . Then

(2.4)

∥u∥
Hs+ δ

2
⩽C

∥a0(x,D)u∥L2 +
∞∑

j=0
h

−(s+ δ
2 )j

0 ∥a(x, hj
0D)u∥L2


⩽C

1+
∞∑

j=0
h

−(s+ δ
2 )j+(s+δ)j

0

=C

1+
∞∑

j=0

(
h

δ
2
0

)j

<∞.

This implies u ∈ Hs+ δ
2 (M).

On the other hand, suppose u ∈ Hs+δ for some δ > 0. Then for any
(x0, ξ0) ∈ T ∗M \0, let a ∈ C∞

c (T ∗M) such that a(x0, ξ0) ̸= 0 and a(x, ξ) =
0 when |ξ0|/2 ⩽ |ξ| ⩽ 2|ξ0|. Then for any h > 0,

(2.5) h−(s+δ)∥a(x, hD)∥L2 ⩽ C∥⟨D⟩s+δa(x, hD)u∥L2 ⩽ C∥u∥Hs+δ .

Hence ∥a(x, hD)u∥L2 ⩽ hs+δ∥u∥Hs+δ . □
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In the proof of Lemma 3.2 and Proposition 6.6, we will take advantage
of semiclassical analysis to analyse the operator P . Notice that P itself is
not a semiclassical pseudodifferential operator – for example, if P in (1.28)
is semiclassical, then it has full symbol p

h
:= ξ2

h2+|ξ|2 − 2 cosx1, which,
however, is not in the symbol class S0

δ (T ∗M) for any δ ∈ [0, 1
2 ) – see

for instance [5, (E.1.48)]. We now make P semiclassical by composing it
with some microlocal cutoff operator. More precisely, we have the following
lemma:

Lemma 2.3. — Suppose χ ∈ C∞(T ∗M ; [0, 1]) such that χ = 0 when
|ξ| ⩽ R0, χ = 1 when |ξ| ⩾ 2R0 for some R0 ≫ 1. Then for h > 0,
the operator [P, χ(x, hD)] is a semiclassical pseudodifferential operator.
Moreover,

(1) WFh(h−1[P, χ(x, hD)]) is a compact subset of T ∗M \ 0, that is,
[P, χ(x, hD)] ∈ hΨcomp

h (M);
(2) σh(h−1[P, χ(x, hD)]) = −i{p, χ}.

Proof. — By taking local coordinates we can replace M by R2. Suppose

(2.6) P = Oph(p), p ∈ S0(T ∗R2), p− p ∈ S−1(T ∗R2).

Put p
h
(x, ξ) := p(x, ξ/h). Then we only need to show that

(2.7) p
h
#χ, χ#p

h
∈ S0

h(T ∗R2).

Here the symbol class Sk and semiclassical symbol class Sk
h are defined

in [5, Definition E.2] and [5, Definition E.3].
By [26, Theorem 4.11] we have

(2.8) p
h
#χ(x, ξ)

= 1
(πh)4

∫∫
e− 2i

h (z·η−y·ζ) p
h
(x+ y, ξ + η)χ(x+ z, ξ + ζ) dy dz dη dζ.

Let ρ1 ∈ C∞
c (R) such that ρ1 = 1 on [0, R0/16] and ρ0 = 0 on [R0/8,∞).

By integrating by parts with respect to dη and dζ and then use the fact
that

(2.9) ρ1(|η|)ρ1(|ζ|)ρ1(|ξ|/4)χ(x+ z, ξ + ζ) = 0,

we know

(2.10) p
h
#χ(x, ξ) = 1

(πh)4

∫∫
e− 2i

h (z·η−y·ζ) c(p
h
, χ) dy dz dη dζ.

with

(2.11) c(p
h
, χ) = ρ1(|η|)ρ1(|ζ|)

(
1−ρ1(|ξ|/4)

)
p

h
(x+y, ξ+η)χ(x+z, ξ+ζ).
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On the supp ch, we have |ξ + η| ⩾ |ξ|/2, |ξ + ζ| ⩾ |ξ|/2, |ξ| ⩾ R0/4, thus

(2.12) |∂β
x∂

α
ξ c(ph

, χ)| ⩽ Cαh
−|α|〈 ξ

h

〉−α
⩽ C ′

α.

When p has a polyhomogeneous asymptotic expansion as in the [5, Defi-
nition E.2], one can check as above that p

h
#χ has asymptotic expansion

as in [5, Definition E.3]. Thus we find Pχ(x, hD) is a semiclassical pseudo-
differential operator and [P, χ(x, hD)] is a semiclassical pseudo-differential
operator as well.

Note that when |ξ| ≫ 1, we have

(2.13) c(p
h
, χ) − c(χ, p

h
) = 0,

hence WFh([P, χ(x, hD)]) is a compact subset of T ∗M .
The principal symbol of [P, χ(x, hD)] can be computed by applying the

method of stationary phase to (2.10). □

2.2. Lagrangian distributions

Suppose M is a smooth manifold of dimension n. Let Λ ⊂ T ∗M \ 0 be a
closed conic Lagrangian manifold. There exist open conic sets {U} which
cover Λ and in some local coordinates in x,

(2.14) Λ ∩ U =
{

(x, ξ) : x = ∂F

∂ξ
, ξ ∈ Γ0

}
.

Here F = F (ξ) is homogenous of order 1 and Γ0 is an open conic set in
Rn \ 0. For s ∈ R, we define the space Is(M,Λ) to be the space of all
u ∈ D ′(M) such that

(1) WF(u) ⊂ Λ;
(2) If (x0, ξ0) ∈ Λ ∩ U , then there exists a ∈ Ss− n

4 (T ∗M) with support
in a cone Γ0 ⊂ Λ ∩ U , such that near (x0, ξ0),

(2.15) u(x) =
∫

Γ0

ei(⟨x,ξ⟩−F (ξ)) a(x, ξ) dξ + r(x)

with WF(r) ∩ Γ0 = ∅.
The principal symbol of u is defined as a section of Ss+n/4(Λ; MΛ ⊗
Ω

1
2
Λ)/Ss−n/4(Λ; MΛ ⊗ Ω

1
2
Λ), here MΛ is the Maslov bundle and Ω

1
2
Λ is the

half-density bundle on Λ.

Remark 2.4. — In our case, thanks to the microlocal normal form, the
Maslov bundle is a trivial bundle. In fact, suppose P ∈ Ψ0(M) satisfies
conditions in Section 1.2. Let Λω be the Lagrangian submanifold of T ∗M \0
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defined by (1.24). Without loss of generality, we assume that ω = 0 and put
Λ+ := Λ+

ω . We can also assume Λ+ has only one connected component. The
same argument as in [25, Lemma 6.2, Lemma 6.4] shows that there exists
a conic neighborhood U+ of Λ+, a conic neighborhood U+

0 ∈ T ∗(Rx1 ×
S1

x2
) \ 0 of Λ+

0 := {(x, ξ) ∈ T ∗(R × S1) \ 0 : x1 = 0, ξ2 = 0, ξ1 > 0} and
a homogeneous canonical transformation H : U → U0 such that H(Λ+) =
Λ+

0 . Note that Λ+
0 is a conormal bundle with a global generating function

φ0(x, ξ) = x1ξ1, ξ1 > 0. Therefore the Maslov MΛ+
0

is trivial. Now we
only need to show that φ(y, η) := H∗φ0(y, η) = x1(y, η)ξ1(y, η) is a global
generating function of Λ+, that is, if we put

(2.16) Λφ := {(y, η dy) : η dy = dyφ,dηφ = 0},

then Λφ = Λ+. In fact, since x1, ξ1 are homogeneous of order 0, 1 respec-
tively, we have

(2.17) 0 = η dηφ = (η dηx1)ξ1 + x1(η dηξ1) = x1ξ1 ⇒ x1 = 0.

Therefore

(2.18) Λφ = {(y, η dy) : η dy = ξ1 dyx1, dηx1 = 0, x1 = 0}.

Note that

(2.19) η dy = ξ dx = ξ1 dyx1 + ξ1 dηx1 + ξ2 dx2.

Hence η dy = ξ1 dyx1 and dηx1 = 0 if and only if ξ2 dx2 = 0, that is,
ξ2 = 0. Thus we find Λφ = Λ+.

In the local coordinates satisfying (2.14), the principal symbol of u is

(2.20) σ(u|dx| 1
2 ) = (2π)−1 e πi

4 sgn φ′′
a(x, ξ)|dξ| 1

2

where φ(x, ξ) = ⟨x, ξ⟩ − F (ξ).
Assume Q∈ Ψℓ(M ; Ω

1
2
M) satisfies q|Λ = 0, q :=σ(Q) and u∈ Is(M,Λ; Ω

1
2
M),

then

(2.21) Qu ∈ Is+ℓ−1
(
M,Λ; Ω

1
2
M

)
, σ(Qu) =

(
1
i LHq + c

)
σ(u)

where LHq is the Lie derivative on the line bundle MΛ ⊗ Ω
1
2
Λ along Hq and

c is the subprincipal symbol of Q. For the definition of subprincipal symbol
and proof of (2.21), see [2, Proposition 5.2.1] and [2, Theorem 5.3.1].
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3. Limiting absorption principle

A version of the limiting absorption principle for the resolvent of P is
proved in [25, Theorem 5.1] using Mourre estimates and in [6, Lemma 3.3]
using radial estimates. Here we prove the full result as in [25, Theorem 5.1]
following the strategy in [6].

We now state the limiting absorption principle.

Proposition 3.1. — Suppose P satisfies conditions in Section 1.2 and
Specpp(P ) ∩ [−δ0, δ0] = ∅. Then for any |ω| ⩽ δ0, f ∈ H

1
2 +(M), the limit

(3.1) (P − ω − iϵ)−1f
H− 1

2 −

−−−−→ (P − ω − i0)−1f, ϵ → 0+

exists. This limit is the unique solution to the equation

(3.2) (P − ω)u = f, WF− 1
2 (u) ⊂ Λ+,

and the map ω 7→ (P − ω − i0)−1f ∈ H− 1
2 −(M) is continuous for ω ∈

[−δ0, δ0].

In the proof of Proposition 3.1, we will use the following

Lemma 3.2. — Suppose P , ω satisfy conditions in Proposition 3.1. If
u ∈ D ′(M) and

(3.3) (P − ω)u ∈ C∞, WF− 1
2 (u) ⊂ Λ+, Im⟨(P − ω)u, u⟩ ⩾ 0,

then u ∈ H− 1
2 +(M).

Lemma 3.2 is an analog of [4, Lemma 2.3] and the proof here is a mod-
ification of the argument there. We introduce the semiclassical parameter
h and use semiclassical analysis in the proof – these allow us to use tools
developed in Section 2.1 and treat the remainder terms neatly.

Proof of Lemma 3.2. — We only need to show that for any a∈C∞
c (T ∗M\

0;R), there exists b ∈ C∞
c (T ∗M \ 0;R) such that

(3.4) ∥Oph(a)u∥L2 ⩽ Ch
1
2 ∥Oph(b)u∥L2 + O(h− 1

2 +), h → 0.

In fact, fix N > 0 such that u ∈ H−N (M), then for any a ∈ C∞
c (T ∗M \

0;R), we have ∥Oph(a)u∥L2 ⩽ Ch−N . By applying this uniform estimate
to Oph(b) in (3.4) we find

(3.5) ∥Oph(a)u∥L2 = O(h−N+ 1
2 ) + O(h− 1

2 +) = O(h−N+ 1
2 ).

We then replace a by b in (3.5) and use (3.4) again and find

(3.6) ∥Oph(a)u∥L2 = O(hmin{−N+1,− 1
2 +}).
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After a finite number of steps we get ∥Oph(a)u∥L2 = O(h− 1
2 +). By (2.1)

we have WF− 1
2 (u) = ∅. Thus u ∈ H− 1

2 + by Lemma 2.2.
We now prove (3.4).
We first note that there exists f1 ∈ C∞(T ∗M \ 0;R) such that
(1) f1 is homogeneous of degree 1;
(2) f1 ⩾ 0 and there exists C > 0 such that f1(x, ξ) ⩾ C|ξ| near Λ+;
(3) |ξ|Hpf1 ⩾ Cf1 near Λ+.

For the construction of f1, see [3, Lemma C.1].
Let χ1 ∈ C∞

c (R;R), such that χ1 = 1 near 0, χ′
1 ⩽ 0 on [0,∞) and

χ′
1 < 0 on f1(supp a). Let Xh ∈ Ψ0

h(M), such that σh(Xh) = χ1(f1), and
X∗

h = Xh. Now we have

(3.7) Im⟨(P − ω)u,Xhu⟩ = ⟨ i2 [P,Xh]u, u⟩.

Note that P is not a semiclassical pseudo-differential operator. However,
by Lemma 2.3, [P,Xh] is a semiclassical pseudo-differential operator in
hΨcomp

h (M), and

(3.8) σh

(
i

2h [P,Xh]
)

= 1
2χ

′
1(f1)Hpf1.

By the assumptions we know

(3.9) σh

(
i

2h [P,Xh]
)

⩽ 0 and σh

(
i

2h [P,Xh]
)
< 0 on Λ+ ∩ supp a.

Thus we can find a1 ∈ C∞
c (T ∗M \ 0;R) such that supp a1 ∩ Λ+ = ∅ and

(3.10) −σh

(
i

2h [P,Xh]
)

+ |a1|2 ⩾ C−1|a|2.

Let b ∈ C∞
c (T ∗M \ 0;R) such that

(3.11)
(

WFh

(
i

2h [P,Xh]
)

∪ supp a1 ∪ supp a
)

∩ supp(1 − b) = ∅.

By sharp Gårding’s inequality (see [5, Proposition E.34] for instance) we
have

(3.12) ∥Oph(a)u∥2
L2 ⩽ Ch∥Oph(b)u∥2

L2 + C∥Oph(a1)u∥2
L2

− h−1 Im⟨(P − ω)u,Xhu⟩ + O(h−∞).

Since supp a1 ∩ Λ+ = ∅, and WF− 1
2 (u) ⊂ Λ+, we have ∥Oph(a1)u∥L2 =

O(h− 1
2 +). For the commutator,

− Im⟨(P − ω)u,Xhu⟩ ⩽ Im⟨(I −Xh)(P − ω)u, u⟩ = O(h∞).(3.13)
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Here we used the fact that

(3.14) (P − ω)u ∈ C∞(M)

⇒ WFh((P − ω)u) ∩ WFh(I −Xh) ⊂ {ξ = 0} ∩ (T ∗M \ 0) = ∅.

See also Lemma 6.3.
Thus we have

(3.15) ∥Oph(a)u∥L2 ⩽ Ch1/2∥Oph(b)u∥L2 + O(h− 1
2 +).

This concludes the proof. □

In the proof of Proposition 3.1, we need the following estimates: for ϵ > 0,
let uϵ := (P − ω − iϵ)−1f , then

(1) For any β > 0, we have

(3.16) ∥uϵ∥
H− 1

2 −β ⩽ C∥f∥
H

1
2 +β + C∥uϵ∥H−N .

(2) If A ∈ Ψ0(M) is compactly supported and WF(A) ∩ Λ+ = ∅, then

(3.17) ∥Auϵ∥Hs ⩽ C∥f∥Hs+1 + C∥uϵ∥H−N

for s > − 1
2 .

The estimates (3.16) and (3.17) are obtained by using radial estimates. For
the proof of (3.16) and (3.17), we refer to [6, (3.5)] and [6, (3.6)].

Now we prove the limiting absorption principle. We modify the proof
of [6, Lemma 3.3] which in turn was a modification of an argument in [16].

Proof of Proposition 3.1. — For f ∈ H
1
2 +, ϵ > 0, denote

(3.18) uϵ := (P − ω − iϵ)−1f.

By (3.16), we know uϵ ∈ H− 1
2 − and by (3.17), we know that

WF− 1
2 (u) ⊂ Λ+.

We first show that for any α > 0, uϵ is bounded in H− 1
2 −α. Suppose

the contrary, then we can find ϵℓ → 0+ such that ∥uϵℓ
∥

H− 1
2 −α → ∞. Put

wℓ := uϵℓ
/∥uϵℓ

∥
H− 1

2 −α . We have

(3.19) (P − ω − iϵℓ)wℓ = fℓ, fℓ = f/∥uϵℓ
∥

H− 1
2 −α , fℓ

H
1
2 +

−−−→ 0.

By (3.16), wℓ in bounded in H− 1
2 −β for any β if we let N = 1

2 + α. Since
the embedding H− 1

2 −β ↪→ H− 1
2 −α is compact for 0 < β < α, by passing to

a subsequence, we can assume wℓ → w for some w ∈ H− 1
2 −α. Let ℓ → ∞

and we find

(3.20) (P − ω)w = 0, WF− 1
2 (w) ⊂ Λ+.
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By Lemma 3.2, we have

(3.21) w ∈ H− 1
2 +(M).

Thus we can apply high regularity estimates (3.17) to P − ω near Λ− and
to −(P − ω) near Λ+. And thus we have

(3.22) ∥w∥Hs ⩽ C∥w∥H−N

for any s and N . This implies w ∈ C∞(M), in particular, w ∈ L2(M).
Hence we conclude that w ≡ 0. This contradicts ∥wℓ∥

H− 1
2 −α = 1.

We conclude that uϵ is bounded in H− 1
2 −α for any α > 0. Using the

compact embedding H− 1
2 −β ↪→ H− 1

2 −α when β < α, we know uϵ converges
in H− 1

2 −α for any α > 0. By (3.16) and (3.17), and f ∈ H
1
2 +, we know the

limit u := (P − ω − i0)−1f ∈ H− 1
2 − satisfies

(3.23) (P − ω)u = f, WF− 1
2 (u) ⊂ Λ+.

Finally, we remark that the argument above can be used to show that if
ϵℓ→0+, ωℓ → ω, |ωℓ| ⩽ δ0, then

(P − ωℓ − iϵℓ)−1f
H− 1

2 −

−−−−→ (P − ω − i0)−1f, ℓ → ∞.

This implies the continuity of (P − ω − i0)−1f in ω. □

The Lagrangian regularity of the distributions in the range of (P−ω±i0)−1

is proved in [6, Lemma 4.1]. We record this as

Lemma 3.3. — Suppose P , ω satisfy conditions in Proposition 3.1. Let
f ∈ C∞(M) and

(3.24) u±(ω) := (P − ω ∓ i0)−1f ∈ H− 1
2 −(M).

Then u±(ω) ∈ I0(M ; Λ±
ω ).

4. Transport equations

From now on, up to Section 10, we put ω = 0. We omit P and ω in some
notations for simplicity if there is no ambiguity. The results in Sections 4-10
hold for any ω ∈ R that satisfies assumptions in Section 1.3 and that is not
an embedded eigenvalue of P .

Suppose L± ⊂ ∂T ∗M are the radial sink (+) and the radial source
(−). Then Λ± = κ−1(L±) ⊂ Σ0 := {p(x, ξ) = 0} are conic Lagrangian
submanifolds. There exist densities ν± on Λ± that are homogeneous of
order 1 and invariant under the Hamiltonian flow by [6, Lemma 2.5]. If
we use ν− and e πi

4 sgn φ′′ with fixed covering and generating functions (see
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Section 2.2) to trivialize the half-density bundle Ω
1
2
Λ− and the Maslov bundle

MΛ− , then the principal symbol of u ∈ Is(Λ−) can be locally written as

(4.1) σ(u) = e πi
4 sgn φ′′

a(x, ξ)
√
ν−

for some a ∈ Ss(Λ). Here we recall that

(4.2) Ss(Λ)
:= {a ∈ C∞(Λ) : t−sMta is uniformly bounded in C∞(Λ) for t > 1}

where Mt is the dilation in ξ, see [12, Definition 21.1.8] and [13, Sec-
tion 25.1]. We also define S−∞(Λ) :=

⋂
s∈R S

s(Λ).
Since p vanishes on Λ−, by (2.21) we know Pu ∈ Is−1(Λ−) and if

(4.3) σ(Pu) = e πi
4 sgn φ′′

b(x, ξ)
√
ν−

for some b ∈ Ss−1(Λ) then

(4.4)
(

1
iHp + V −

)
a = b

here V − ∈ C∞(Λ−;R) is a real-valued potential that is homogeneous of
order −1 – see [6, (4.29)].

Now we want to solve the transport equation (4.4). We first recall some
notations. Let ι be the radial compactification of T ∗M : ι : T ∗M → B∗M ,
(x, ξ) 7→ (x, ξ/(1 + ⟨ξ⟩)), where B∗M is the coball bundle modeling T ∗M

(see [5, Appendix E.1.3]). Let d be the number of connected components
of Λ±.

Lemma 4.1. — There exist open subsets O± of Λ± and submanifolds
K± of Λ± such that

(1) ι(O±) ⊂ T ∗M are neighborhoods of L± in ι(Λ±) ⊂ T ∗M .
(2) ∂O± = K±. Here ∂O± are the boundary of O± in Λ±;
(3) K± are diffeomorphic to

⊔
d S1;

(4) K± are transversal to the flow lines generated by Hp, and each flow
line meets K± at most once;

(5) For any (x, ξ) ∈ K± ∪ O±, etHp(x, ξ) converges to L± as t → ±∞.
(6) There exist smooth densities µ±(z) on K± such that

(4.5) ν±(etHp z)|O± = µ±(z) dt

for (z, t) ∈ K± × R, ±t > 0.
Proof. — In fact, let f2 ∈ C∞(Λ−;R) be the restriction of f1 to Λ−,

where f1 is defined in Lemma 3.2. Recall that

(4.6) f2 is homogeneous of order 1, Hpf2 ⩾ c, f2(x, ξ)⩾ c|ξ| with c> 0.
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We can put

(4.7) K− := {f2 = 1}, O− := {f2 > 1}.

Then K− and O− satisfy conditions in Lemma 4.1.
For (6): suppose ν−(etHp z) = α−(z, t) dz− dt, here α− ∈ C∞(K− ×

(−∞, 0)), dz− is some fixed smooth density on K−, dt is the Lebesgue
density on (−∞, 0). Then

(4.8) LHpν
− = 0 ⇒ ∂tα

− = 0.

Thus α− = α−(z). Put µ−(z) = α−(z) dz− and we get (4.5).
Similarly one can construct K+ and O+ by considering the radial source

for −P . □

Remark 4.2. — Let ϕ± :
⊔

d S1 → K± be diffeomorphisms, then the
pullbacks (ϕ±)∗ give diffeomorphisms between half-density bundles

(4.9) (ϕ±)∗ : C∞(K±; Ω
1
2
K±) → C∞(S1; (Ω

1
2
S1)d).

If we use
√
µ± on K± and the standard half-density

√
dS on S1 to trivialize

the half-density bundles, then (ϕ±)∗ give maps, which we still denote by
(ϕ±)∗, between smooth functions

(4.10) (ϕ±)∗ : C∞(K±;C) → C∞(S1;Cd).

We note that for any (x, ξ) ∈ O−,

there exists a unique (z, t) ∈ K− × R such that (x, ξ) = etHp z.(4.11)

Put

(4.12) W−(x, ξ) =
∫ t

0
V −(esHp z) ds ∈ C∞(O−), (x, ξ) ∈ O−.

We have the following lemma:

Lemma 4.3. — Let W− be the function defined by (4.12), z = z(x, ξ)
be defined by (4.11). Then

(1) In O−, the solutions to the transport equation (4.4) with b = 0 are

(4.13) a = eiW −
f(z), f ∈ C∞(K−).

(2) If f ∈ C∞(K−), a1 ∈ C∞(Λ−) and a1 = e−iW −
f(z) in O−, then

a1 ∈ S0(Λ−).

Proof. — (1) can be checked by a direct computation.
For (2): Using the fact that [ξ∂ξ,

1
iHp + V ] = −( 1

iHp + V ), we know

(4.14)
(

1
iHp + V

)k

(ξ∂ξ)ja1 = 0
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for any k ⩾ 1, j ⩾ 0 and (x, ξ) ∈ O−. Thus in O−

(4.15)
(

1
iHp + V

)k

(ξ∂ξ)ja1 = e−iW −
fjk(z) = O(1)

where k, j ⩾ 0 and fjk ∈ C∞. Since Hp and ξ∂ξ form a frame on Λ−, we
have a1 ∈ S0(Λ−). □

We use W− as an integral factor to solve the transport equation. The
solution to the transport equation

(4.16)
(

1
iHp + V −

)
a = b

is, for (x, ξ) ∈ O− and (z, t) ∈ K− × R defined by (4.11),

(4.17)

a(x, ξ) = e−iW −
(
a(z) + i

∫ t

0
b(esHp z) eiW −(esHp z) ds

)
= e−iW −

(
a(z) + i

∫ −∞

0
b(esHp z) eiW −(esHp z) ds

+ i
∫ t

−∞
b(esHp z) eiW −(esHp z) ds

)
.

This formula makes sense when b ∈ S−2(Λ−) for then the integrand is of
order ⟨ξ⟩−2 and the fact that |t| is comparable to |ξ| in O−.

From (4.17) we know

Lemma 4.4. — Suppose a−j ∈ S−j(Λ−), j ⩾ 0, b−2 ∈ S−2(Λ−), c−k ∈
S−k(Λ−), k ⩾ 2 satisfy the following system of equations

(4.18)
(

1
iHp + V −

)
a0 = b−2;

(4.19)
(

1
iHp + V −

)
a−j = −c−j−1, j ⩾ 1.

Then for (x, ξ) ∈ O− and (z, t) ∈ K− × R defined by (4.11),
(1) There exists a unique function f ∈ C∞(K−) such that

(4.20) a0 = e−iW −
(f(z) +O(|ξ|−1)), |ξ| → ∞.

Moreover, f depends only on the 0th order part of a0. That means
if ã0 ∈ S0 satisfies a0 − ã0 ∈ S−1 and solves

(4.21)
(

1
iHp + V −

)
ã0 = b̃−2
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for some b̃−2 ∈ S−2 and

(4.22) ã0 = e−iW −
(f̃(z) +O(|ξ|−1)), |ξ| → ∞,

then f ≡ f̃ .
(2) The equations (4.19) have solutions

(4.23) a−j = −i e−iW −
∫ t

−∞
eiW −(esHp z) c−j−1(esHp z) ds, j ⩾ 1.

Proof. — We only need to prove (1).
We can put

f(z) = a0(z) + i
∫ −∞

0
b−2(esHp z) eiW −(esHp z) ds(4.24)

and note that

(4.25)
∫ t

−∞
b−2(esHp z) eiW −(esHp z) ds = O(|ξ|−1), |ξ| → ∞

since b−2 ∈ S−2(Λ−) and t is comparable to |ξ| in O−. □

5. Solutions up to smooth functions

In this section we will construct a correspondence between a set of dis-
tributions D− := {u ∈ I0(Λ−) : Pu ∈ C∞(M)} and C∞(K−).

From now on we fix a family of open conic sets {Uj}m
j=1 that cover Λ−

and fix some local coordinates (x, ξ) such that Λ− ∩ Uj = {(x, ξ) : x =
∂Fj

∂ξ , ξ ∈ Γj} for some Fj that is homogeneous of order 1 and some open
conic set Γj ⊂ R2 \ 0. Let φj(x, ξ) = ⟨x, ξ⟩ − Fj(ξ) be a local generating
function of Λ−.

We first record that

Lemma 5.1. — If D− = {u ∈ I0(Λ−) : Pu ∈ C∞(M)}, then

(5.1) D− ∩ I−1(Λ−) = C∞(M).

Proof. — Suppose u ∈ D−, then Pu ∈ C∞(M) and WF(u) ⊂ Λ−. Since
u ∈ I−1(Λ) ⊂ L2(M), and P is self-adjoint, we find that Im⟨Pu, u⟩ = 0.
By [6, Lemma 3.1], we conclude that u ∈ C∞(M). □

In the next lemma, we construct microlocal solutions to (1.2), that is,
u ∈ I0(Λ−) satisfying Pu ∈ C∞(M). We build the connection between the
“initial data” and the microlocal solutions as mentioned in the Introduction.
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Lemma 5.2. — There exist linear maps
G− : D−/C∞(M) → C∞(K−),
H− : C∞(K−) → D−/C∞(M),

(5.2)

such that

(5.3) G− ◦H− = IdC∞(K−), H− ◦G− = IdD−/C∞(M) .

Proof. — We first construct G− and H−. The linearity and invertibility
of G− and H− can be checked from the construction.

Construction of G−. — Let u ∈ I0(Λ−) be a representative of [u] ∈
D−/C∞(M). The principal symbol of u can be written as

(5.4) σ(u) = e πi
4 sgn φ′′

j a0
√
ν−

in Λ− ∩ Uj with a0 ∈ S0(Λ−). Since Pu ∈ C∞ we know that σ−1(Pu) = 0,
that is,

(5.5)
(

1
iHp + V −

)
a0 = b−2

for some b−2 ∈ S−2(Λ). By Lemma 4.4, we know that there exists a unique
f ∈ C∞(K−) such that for (x, ξ) ∈ O− and (z, t) ∈ K− × R defined
by (4.11),

(5.6) a0 = e−iW −
(f(z) +O(|ξ|−1)), |ξ| → ∞.

Furthermore, by Lemma 4.4, f does not depend on the choice of the rep-
resentative of the principal symbol of u. The function f does not depend
on the choice of the representative of [u] as well since elements in [u] differ
only by smooth functions on M . Thus we get a map

G− : D−/C∞(M) → C∞(K−), [u] 7→ f.(5.7)

From the construction we can check that G− is linear.
Construction of H−. — For any f ∈ C∞(K−), put

(5.8) a0 = e−iW −
f(z)

for (x, ξ) ∈ O−, and (z, t) ∈ K− × R defined by (4.11). Let

χ ∈ C∞((0,∞); [0, 1])

be a cut-off function such that χ = 0 on (0, 1] and χ = 1 on [2,∞). Then
the function χ(f2)a0 ∈ S0(Λ−). Let u0 be a distribution in I0(Λ−) with
principal symbol

(5.9) σ(u0) = e πi
4 sgn φ′′

j χ(f2)a0
√
ν−.
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in Λ− ∩ Uj . By Lemma 4.3 we know that

(5.10) 1
i Lσ(u0) ∈ S−3/2(Λ−; MΛ− ⊗ Ω

1
2
Λ−)

and this implies that σ−1(Pu0) = 0, that is, Pu0 ∈ I−2(Λ−). Suppose

(5.11) σ−2(Pu0) = e πi
4 sgn φ′′

j c−2
√
ν−,

then by Lemma 4.4, we can find a−1 ∈ C∞(O−) such that χ(f2)a−1 ∈
S−1(Λ−) and

(5.12)
(

1
iHp + V −

)
(a−1) = −c−2,

in O− ∩ {f2 > 2}. Let u−1 be in I−1(Λ−) with

(5.13) σ−1(u−1) = e πi
4 sgn φ′′

j χ(f2)a−1
√
ν−.

Then σ−2(P (u0 + u−1)) = 0, that is, P (u0 + u−1) ∈ I−3(Λ−).
Continue this procedure and we get a symbol sequence {χ(f2)a−j}∞

j=0
such that χ(f2)a−j ∈ S−j(Λ−), j = 0, 1, . . .. By [8, Proposition 1.8], there
exists a ∈ S0(Λ−) such that

(5.14) a ∼ a0 + a−1 + a−2 + · · · .

Now we have

(5.15)
(

1
iHp + V −

)
a ∈ S−∞(Λ−), a = e−iW −

(f(z) +O(|ξ|−1)).

Let u be a distribution defined by (2.15) in Λ− ∩ Uj for any j, then
u ∈ I0(Λ−) and Pu ∈ C∞(M), that is, u ∈ D−. Let [u] be the equivalent
class of u in D−/C∞(M). Now we get a map

H− : C∞(K−) → D−/C∞(M), f 7→ [u].(5.16)

We now show that H− is linear. In fact, let g1, g2 ∈ C∞(K−), c1, c2 ∈ C.
Then from (5.8) we know

(5.17) σ(H−(c1g1 + c2g2)) = σ(c1H
−(g1) + c2H

−(g2)).

Put

(5.18) w := H−(c1g1 + c2g2) − (c1H
−(g1) + c2H

−(g2)).

Here H−(·) should be understand as arbitrary representatives in the equiv-
alence class. Then w ∈ I−1(Λ−), Pw ∈ C∞(M). Thus by Lemma 5.1 we
find w ∈ D− ∩ I−1(Λ−) = C∞(M), i.e., w = 0 in D−/C∞(M).

The identities in the lemma are clear from the construction of G−

and H−. □
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Remarks 5.3.
(1) For any f ∈ C∞(K−), H−(f) is a microlocal solution of (1.2).
(2) In the construction (which is similar to Borel’s Lemma – see [11,

Theorem 1.2.6]) of a in (5.14), the map from f to a is nonlinear.
Hence it is not obvious that H is in fact linear. However, the nonlin-
earity – which is caused by the lower order terms in the asymptotic
expansion of a – is “killed” by taking the quotient space of D− with
respect to C∞(M), which is D− ∩ I−1(Λ−) by Lemma 5.1.

(3) We can define D+, G+, H+ in a similar way.
(4) Using the maps (ϕ±)∗ constructed in the remark below Lemma 4.1,

we can then identify microlocal solutions with smooth functions on
circles. We define

G±
0 := (ϕ±)∗ ◦G± : D±/C∞(M) → C∞(S1;Cd),

H±
0 := H± ◦ ((ϕ±)∗)−1 : C∞(S1;Cd) → D±/C∞(M).

(5.19)

By the definitions, G±
0 and H±

0 are linear and

(5.20) G±
0 ◦H±

0 = Id, H±
0 ◦G±

0 = Id .

6. The boundary pairing formula

In this section, we prove a boundary pairing formula for microlocal solu-
tions to (1.2). For that, let ⟨· , ·⟩ be the pairing of distributions and smooth
functions with L2 convention, i.e., ⟨u, v⟩ =

∫
uv dm if u, v ∈ C∞(M). Here

dm is a smooth density on M such that P is self-adjoint (see Section 1.2).
We consider microlocal solutions to (1.2):

(6.1) Puj ∈ C∞(M), uj = u−
j + u+

j , u±
j ∈ I0(Λ±), j = 1, 2.

Put

(6.2) B(u1, u2) := ⟨Pu1, u2⟩ − ⟨u1, Pu2⟩.

Our goal is to compute B using G± constructed in Lemma 5.2.
We first clarify the assumption (6.1) and the definition of B.

Lemma 6.1. — Suppose uj ∈ D ′(M), j = 1, 2, satisfy (6.1). Then
(1) In the decomposition of uj = u−

j +u+
j , u±

j is unique up to C∞(M);
(2) In fact we have Pu±

j ∈ C∞(M);
(3) If u1 or u2 is smooth, then B(u1, u2) = 0.
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Proof.

(1). — In fact, suppose u1 has another decomposition

(6.3) u1 = ũ−
1 + ũ+

1 , ũ±
1 ∈ I0(Λ±),

then

(6.4) u−
1 − ũ−

1 = −(u+
1 − ũ+

1 ) ∈ I0(Λ−) ∩ I0(Λ+) ⊂ C∞(M).

(2). — Note that Pu−
j = −Pu+

j + C∞(M). Hence

(6.5) WF(Pu−
j ) = WF(Pu+

j ).

However we know

(6.6) WF(Pu±
j ) ⊂ Λ±, Λ− ∩ Λ+ = ∅.

Thus Pu±
j ∈ C∞.

(3). — This follows from the definition of B and the fact that P is
self-adjoint. □

Remark 6.2. — The last claim in Lemma 6.1 shows that B is defined for
equivalent classes in (D− ⊕D+) /C∞(M).

First we note that

Lemma 6.3. — If u(h) ∈ D ′(M), f(h) ∈ C∞(M) are h-tempered and

(6.7) WFh(u(h)) ∩ WFh(f(h)) = ∅.

Then we have

(6.8) ⟨u(h), f(h)⟩ = O(h∞), h → 0.

Proof. — Let A ∈ Ψ0
h(M) such that

(6.9) A ≡ I near WFh(f(h)), A ≡ 0 near WFh(u(h)),

where “≡” means microlocal equivalence – see [5, Definition E.29] and [5,
Proposition E.30]. Then we have

(6.10) (I −A)f(h) = O(h∞)C∞ , A∗u(h) = O(h∞)C∞ .

Thus
⟨u(h), f(h)⟩ = ⟨u(h), Af(h)⟩ +O(h∞)

= ⟨A∗u(h), f(h)⟩ +O(h∞) = O(h∞).
(6.11)

This concludes the proof. □
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Lemma 6.4. — Suppose Q(x, hD) ∈ hΨcomp
h (R2) satisfies that

Q(x, hD) = Oph(qh(x, ξ)),

ess-spt(qh) is a compact subset of T ∗R2 \ 0 and qh = qh,0 +O(h2)S−1(T ∗R2)
as h → 0. Suppose

(6.12) u(x) =
∫

ei(⟨x,ξ⟩−F (ξ)) a(ξ) dξ

where F ∈ C∞(R2) is homogeneous of order 1, a is supported in some conic
subset of Γ0 and a ∈ S− 1

2 (Λ). Let F be the Fourier transform. Then for
ξ ∈ Γ0,

(6.13) F(Q(x, hD)u)

= (2π)2 e−iF (ξ)(qh,0(∂ξF (ξ), hξ)a(∂ξF (ξ), ξ) +R(h, ξ) +O(h|ξ|−N ))

with R(h, ξ) = O(h 5
2 ) and R = 0 if |ξ| ⩽ h/C or |ξ| ⩾ Ch, C ≫ 1, N ≫ 1,

as h → 0, |ξ| → ∞.

Proof. — By the definition we have
(6.14)
F(Q(x, hD)u)(ξ) = 1

(2π)2

∫∫∫∫
eiΦ(x,y,ζ,η;ξ) qh(x, hζ)a(y, η) dx dy dζ dη

with

(6.15) Φ(x, y, ζ, η; ξ) = −⟨x, ξ⟩ + ⟨x− y, ζ⟩ + ⟨y, η⟩ − F (η).

Let γ ∈ C∞
c (Rn \0) and γ(θ) = 1 when C−1 ⩽ |θ| ⩽ C for sufficiently large

C, then by integration by parts

(6.16) F(Q(x, hD)u)(ξ) = 1
(2π)2

∫∫∫∫
eiΦ(x,y,ζ,η;ξ)

× γ

(
ζ

|ξ|

)
γ

(
η

|ξ|

)
qh(x, hζ)a(y, η) dxdy dζ dη

up to a term of order O(h|ξ|−∞) as h → 0, |ξ| → ∞. Replace (ξ, ζ, η) by
(λξ, λζ, λη) with λ > 0, and suppose 1/2 ⩽ |ξ| ⩽ 2, we have

(6.17) F(Q(x, hD)u)(λξ) = λ4

(2π)2

∫∫∫∫
eiλΦ(x,y,ζ,η;ξ)

× γ

(
ζ

|ξ|

)
γ

(
η

|ξ|

)
qh(x, hλζ)a(y, λη) dxdy dζ dη

up to a term of order O(h|ξ|−∞). Note that

(6.18) ∇x,y,ζ,ηΦ = (ζ − ξ, η − ζ, x− y, y − ∂ηF (η)).

ANNALES DE L’INSTITUT FOURIER



SCATTERING MATRIX 2213

The critical point of Φ is

(6.19) x = y = ∂ξF (ξ), ζ = η = ξ.

At this critical point Φ = −F (ξ) and

(6.20) ∇2
x,y,ζ,ηΦ =


0 0 I 0
0 0 −I I

I −I 0 0
0 I 0 −∂2

ξF (ξ)

 .

By the method of stationary phase we find as λ → +∞, h → 0,

(6.21) F(Q(x, hD)u)(λξ)

= (2π)2 e−iλF (ξ)(qh(∂ξF (ξ), hλξ)a(∂ξF (ξ), λξ) +R(h, λξ) +O(hλ−N ))

where R(h, λξ) = O(h5/2) and R = 0 if |λ| ⩽ h/C or |λ| ⩾ Ch, N ≫ 1.
Hence as |ξ| → ∞, h → 0,

F(Q(x, hD)u)(ξ) = (2π)2 e−iF (ξ)(6.22)

× (qh,0(∂ξF (ξ), hξ)a(∂ξF (ξ), ξ) +R(h, ξ) +O(h|ξ|−N )). □

Lemma 6.5. — Suppose that Q(x, hD) ∈ hΨcomp
h (R2) satisfies assump-

tions in Lemma 6.4. Let u, v ∈ I0(Λ) for some Lagrangian submanifold
Λ ⊂ T ∗R2. Then

(6.23) ⟨Q(x, hD)u, v⟩ = (2π)2
∫

Λ
qh,0(·, h·)σ(u)σ(v) +O(h)

where σ(u), σ(v) ∈ S
1
2 /S− 1

2 (Λ; MΛ ⊗ Ω
1
2
Λ) are the principal symbols of the

Lagrangian distributions u and v.

Proof. — By Parseval’s formula, we have

(6.24) ⟨Q(x, hD)u, v⟩ = ⟨F(Q(x, hD)u),F(v)⟩.

Suppose F ∈ C∞(R2) is homogeneous of order 1 and Λ = {(x, ξ) : x =
∂ξF (ξ), ξ ∈ Γ0} for some open conic subset Γ0 ⊂ R2. Then there exist
a, b ∈ S− 1

2 (Λ) and a, b are supported in some conic subset of Γ0 such that

(6.25) u(x) =
∫

ei(⟨x,ξ⟩−F (ξ)) a(x, ξ) dξ, v(x) =
∫

ei(⟨x,ξ⟩−F (ξ)) b(x, ξ) dξ.

By Lemma 6.4,

(6.26) F(Q(x, hD)u)(ξ) = (2π)2 e−iF (ξ)(qh,0(∂ξF (ξ), hξ)a(∂ξF (ξ), ξ)

+R(h, ξ) +O(h|ξ|−N )).
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Similarly

(6.27) F(v)(ξ) = (2π)2 e−iF (ξ)(b(∂ξF (ξ), ξ) +O(|ξ|− 3
2 )).

Thus

⟨Q(x, hD)u, v⟩ = (2π)4
∫
qh,0(·, h·)ab|(∂ξF (ξ),ξ) dξ +O(h).(6.28)

By (2.20),

(6.29)
σ(u) = (2π)−1 e πi

4 sgn φ′′
a(x, ξ)|dξ| 1

2 ,

σ(v) = (2π)−1 e πi
4 sgn φ′′

b(x, ξ)|dξ| 1
2

with φ(x, ξ) = ⟨x, ξ⟩ − F (ξ). Thus

(6.30) ⟨Q(x, hD)u, v⟩ = (2π)2
∫

Λ
qh,0(·, h·)σ(u)σ(v) +O(h).

Note that formula (6.30) holds for any representatives of the principal sym-
bols since the integral of lower order terms can be absorbed in the remainder
O(h). □

Proposition 6.6. — Suppose P satisfies assumptions in Section 1.2,
uj , j = 1, 2 satisfy assumptions (6.1), B is defined by (6.2), G±

0 are maps
defined in Lemma 5.19. Then

(6.31) i
(2π)2 B(u1, u2) =

∫
S1

(
G+

0 (u+
1 ) ·G+

0 (u+
2 ) −G−

0 (u−
1 ) ·G−

0 (u−
2 )
)

dS

where · is the Hermitian product on Cd, dS is the standard density on S1.

Proof.
Step 1. — Let χ ∈ C∞(T ∗M ; [0, 1]) such that χ = 0 when |ξ| ⩽ R0,

χ = 1 when |ξ| ⩾ 2R0 for some R0 ≫ 1. Note that

(6.32) WFh(Pu1) ∩ WFh(χ(hD)u1) ⊂ {ξ = 0} ∩ {|ξ| ⩾ R0} = ∅.

By Lemma 6.3, we know for h > 0

(6.33) ⟨Pu1, χ(hD)u2⟩ = O(h∞), ⟨χ(hD)u1, Pu2⟩ = O(h∞)

as h → 0. Thus we have

(6.34)
B(u1, u2) = ⟨Pu1, (1 − χ(hD))u2⟩−⟨(1−χ(hD))u1, Pu2⟩+O(h∞)

= ⟨[P, χ(hD)]u1, u2⟩ +O(h∞).

Here we used the fact that P is self-adjoint and (I − χ(hD))u1 ∈ C∞(M).
From Lemma 2.3 we know that [P, χ(hD)] is a semiclassical pseudo-differ-
ential operator that satisfies assumptions on Q(x, hD) in Lemma 6.4.
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Since uj can be decomposed as in the assumption (6.1), we know

(6.35) B(u1, u2) = B(u+
1 , u

+
2 ) + B(u−

1 , u
−
2 ) + B(u+

1 , u
−
2 ) + B(u−

1 , u
+
2 ).

For the term

(6.36) B(u+
1 , u

−
2 ) = ⟨[P, χ(x, hD)]u+

1 , u
−
2 ⟩ +O(h∞),

we observe that

(6.37)
WFh([P, χ(x, hD)]u+

1 ) ⊂ Λ+ ∩ {|ξ| ⩾ R0},

WFh(u−
2 ) ⊂ Λ− ∪ {ξ = 0},

hence

(6.38) WFh([P, χ(x, hD)]u+
1 ) ∩ WFh(u−

2 ) = ∅.

Again by Lemma 6.3, we have

(6.39) B(u+
1 , u

−
2 ) = O(h∞).

Let h → 0 and we find

(6.40) B(u+
1 , u

−
2 ) = 0.

A similar argument shows that B(u−
1 , u

+
2 ) = 0. Thus we get

(6.41) B(u1, u2) = B(u+
1 , u

+
2 ) + B(u−

1 , u
−
2 ).

Step 2. — Now we analyse the term

(6.42) B(u−
1 , u

−
2 ) = ⟨[P, χ(x, hD)]u−

1 , u
−
2 ⟩ +O(h∞).

As in Section 2.2, we assume Uj , j = 1, 2, . . . ,m are open conic subsets
of Λ− such that they cover Λ− and in Uj , distributions in I0(Λ−) can be
expressed in local coordinates as (2.15). Let ψj ∈ C∞

c (Uj), j = 1, 2, . . . ,m
be a partition of unity of Λ−, i.e.,

∑
j ψj = 1 on Λ−, then ψj(x, hD)

is a microlocal partition of unity of Λ− – see [5, Proposition E.30]. Let
ψ̃j ∈ C∞

c (Uj) such that ψ̃j = 1 on suppψj . Then we have

(6.43) B(u−
1 , u

−
2 ) =

∑
j

⟨ψj(x, hD)[P, χ(x, hD)]u−
1 , ψ̃j(x, hD)u−

2 ⟩ +O(h∞).

We can now compute the summand in local coordinates, using the Fourier
transform defined in local coordinates. By Lemma 6.5, we have

(6.44) ⟨ψj(x, hD)[P, χ(x, hD)]u−
1 , ψ̃j(x, hD)u−

2 ⟩

= −i(2π)2h

∫
Λ−

ψj(x, ξ){p, χ}(x, hξ)σ(u−
1 )(x, ξ)σ(u−

2 )(x, ξ) +O(h).
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Thus we get

(6.45) B(u−
1 , u

−
2 )

= −i(2π)2h

∫
Λ−

{p, χ}(x, hξ)σ(u−
1 )(x, ξ)σ(u−

2 )(x, ξ) +O(h).

Note that by the definition of G− – see Lemma 5.2, we have

(6.46) σ(u−
1 )(x, ξ)σ(u−

2 )(x, ξ) = (G−(u−
1 )G−(u−

2 ) +O(⟨ξ⟩)−1)ν−.

By Lemma 4.1, ν−|O− = µ−(z) dt. A direct computation shows that

h{p, χ}(x, hξ) = Hpχh(x, ξ)

with χh(x, ξ) = χ(x, hξ). Hence for 0 < h ≪ 1,

(6.47) B(u−
1 , u

−
2 )

= −i(2π)2
∫

O−
HpχhG

−(u−
1 )G−(u−

2 )µ−(z) dt+O(h)

= −i(2π)2
∫

K−

(∫ 0

−∞
Hpχh dt

)
G−(u−

1 )G−(u−
2 )µ−(z) +O(h)

= i(2π)2
∫

K−
G−(u−

1 )G−(u−
2 )µ−(z) +O(h).

Here we used the fact that

(6.48)
∫ 0

−∞
Hpχh(z, t) dt =

∫ 0

−∞

d
dt (χh(z, t)) dt = χh(z, t)|0−∞ = −1.

Similarly we have

(6.49) B(u+
1 , u

+
2 ) = −i(2π)2

∫
K+

G+(u+
1 )G+(u+

2 )µ+(z) +O(h).

Combine (6.41), (6.47), (6.49) and let h → 0 and we get

B(u1, u2)(6.50)

= −i(2π)2
(∫

K+
G+(u+

1 )G+(u+
2 )µ+ −

∫
K−

G−(u−
1 )G−(u−

2 )µ−
)

= −i(2π)2
∫
S1

(
G+

0 (u+
1 ) ·G+

0 (u+
2 ) −G−

0 (u−
1 ) ·G−

0 (u−
2 )
)

dS. □

7. The scattering matrix

As in the Introduction, we denote the solution space that we are consid-
ering by Z:

(7.1) Z := {u ∈ D ′(M) : Pu = 0, u = u− + u+, u± ∈ I0(Λ±)}.
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Lemma 6.1 allows us to define

Definition 7.1. — For any u ∈ D ′(M) satisfying (6.1), we define

(7.2) G± : Z → C∞(S1;Cd), u 7→ G±
0 ([u±]).

Here [u±] is the equivalent class of u± in D±/C∞(M). In particular, G±

is defined on Z.

As an immediate corollary of Proposition 6.6, we have

Corollary 7.2. — If uj ∈ Z, G± are as in Definition 7.1, then

(7.3)
∫
S1

(
G+(u1) · G+(u2) − G−(u1) · G−(u2)

)
dS = 0,

where · is the standard Hermitian product on Cd, dS is the standard density
on S1.

Definition 7.3. — Let H± be an operator from C∞(S1;Cd) to D ′(M)
defined by the formula

(7.4) H±(f) = H±
0 (f) − (P ± i0)−1(PH±

0 (f)).

Here H±
0 (f) is an arbitrary representative of H±

0 (f) ∈ D±/C∞(M).

By Lemma 3.3, we know for any f ∈ C∞(S1;Cd), H±(f) ∈ Z. The
following lemma shows that the maps H± are well-defined and in fact each
one of H± produces all solutions in Z.

Lemma 7.4. — Let G± and H± be as in Definition 7.1 and Defini-
tion 7.3. Then

(1) H±(f) do not depend on the choice of the representative of H±
0 (f);

(2) G±, H± are linear and

(7.5) G± ◦ H± = IdC∞(S1;Cd), H± ◦ G± = IdZ .

Proof. — We only check for G−, H−.
(1). — Suppose u−

1 , u−
2 are two representatives of H−

0 (f). Put u−
0 =

u−
1 − u−

2 , and

(7.6) u0 := u−
0 + u+

0 , u+
0 := −(P − i0)−1(Pu−

0 ).

We only need to show that u0 = 0. Note that

(7.7) u0 ∈ Z, G−(u0) = 0.

Put u1 = u2 = u0 in (7.3) and we find

(7.8)
∫
S1

|G+(u0)|2 dS = 0 ⇒ G+(u0) = 0.
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By the definition of G± we know

(7.9) u±
0 ∈ C∞(M) ⇒ u0 ∈ C∞(M).

Since 0 is not an eigenvalue of P we find u0 = 0.
(2). — We only show H−◦G− = IdZ . Others follow from the definitions.
Suppose u ∈ Z, f = G−(u). Then

(7.10) u = H−
0 (f) + u+, u+ ∈ I0(Λ+).

Thus

(7.11) u− H−(f) ∈ Z ∩ I0(Λ+).

Again by (7.3) we get G+(u− H−(f)) = 0. Thus u− H−(f) ∈ C∞(M) ⇒
u− H−(f) = 0, i.e., H− ◦ G−(u) = u. □

Definition 7.5. — We define

(7.12) S := G+ ◦ H− : C∞(S1;Cd) → C∞(S1;Cd).

We also identify S with a map between half-density bundles on
⊔

d S1 by
using the standard density on S1.

By (7.5), we know

Lemma 7.6. — Suppose u ∈ Z, then

(7.13) S ◦ G−(u) = G+(u).

Lemma 7.6 is the reason why we call S the scattering matrix – it maps
the “incoming” part G−(u) of a solution to the “outgoing” part G+(u).

Put uj = H−(fj), with fj ∈C∞(S1;Cd), j= 1, 2, we can now rewrite (7.3)
as

(7.14)
∫
S1

S(f1) · S(f2) dS =
∫
S1
f1 · f2 dS.

As a result of (7.14), we find

Proposition 7.7. — The operator S extends to a unitary operator

(7.15) S : L2(S1;Cd) → L2(S1;Cd).

We can now prove Theorem 1.1 when ω is not an embedded eigenvalue.
Proof of Theorem 1.1 away from embedded eigenvalues. — Let H±

0 be
defined in (5.19), S be defined in Definition 7.5.

(1). — See Lemma 5.2 and the remark below Lemma 5.2;
(2). — This follows from (1) and Lemma 6.1.
(3). — See Definition 7.3 and Lemma 7.4.
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(4). — See Lemma 7.6, Definition 7.1, and the remarks after Lemma 5.2.
(5). — See Proposition 7.7. □

8. Normal forms and microlocal solutions

In this section we review the normal forms for the operator P derived by
Colin de Verdière and Saint-Raymond [25, Lemma 6.2, Lemma 6.4, Propo-
sition 7.1]. From now on we make the assumption that the subprincipal
symbol of P vanishes.

We first define a operator P0, which is a reference operator for the radial
sink, on the space

⊔
d

(
Rx2 × S1

x2

)
. We put

(8.1) p0(λ+;x, ξ) := ξ2/ξ1 − λ+x1,

in the open cone

(8.2) U+
0 := {(x, ξ) ∈ T ∗(R × S1) \ 0 : |ξ2| < cξ1}

with small constant c. Then let P0 be a pseudodifferential operator on⊔
d

(
R × S1) of order 0 with full symbol p0(λ+

j , ·, ·) in the j-th copy of U+
0

and elliptic outside
⊔

d U
+
0 .

Now we assume that {γ+
j }d

j=1 ⊂ ∂T ∗M are the attractive cycles with
Lyapunov spectrum {λ+

j }d
j=1. For any 1 ⩽ j ⩽ d, let U+

j ⊂ T ∗M be a
conic open neighborhood of γ+

j and U+ =
⋃
U+

j . Then we know

Lemma 8.1 ([25, Lemma 6.2, Lemma 6.4, Proposition 7.1]). — If P sat-
isfies assumptions in Section 1.2 and the subprincipal symbol of P vanishes,
then there exists a homogeneous canonical transform H : U+ →

⊔
d U

+
0 and

Fourier integral operators A : D ′(
⊔

d

(
R × S1)) → D ′(M), B : D ′(M) →

D ′(
⊔

d

(
R × S1)) with WF′(A) ⊂ graph(H), WF′(B) ⊂ graph(H−1), such

that
(1) H∗(p|U+

j
) = p0(λ+

j , · , ·), where H∗ is the pullback of H;
(2) WF′(AB−I)∩

(⊔
d U

+
0 ×

⊔
d U

+
0
)

= ∅, WF′(BA−I)∩(U+×U+) = ∅;
(3) BPA ∈ Ψ0(M) and WF′(BPA− P0) ∩

⊔
d U

+
0 = ∅.

Thus the operator P is conjugated to the reference operator P0 by Fourier
integral operators A and B, and microlocally near the limit cycles, P0 has
explicit expression. We will call the coordinates (x, ξ) ∈

⊔
d T

∗(R × S1) \ 0
the local coordinates associated to the normal form.

Now we find microlocal solutions by using the microlocal normal forms.
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Let Λ+
j = κ−1(γ+

j ) be the Lagrangian submanifold associated to γ+
j . By

Lemma 8.1, in the local coordinates associated to the normal form, we have

(8.3) Hp|Λ+
j

= 1
ξ1
∂x2 + λ+

j ∂ξ1 .

To trivialize the half density bundle on Λ+, we put

(8.4) ν+ ∈ Ω
1
2
Λ+ , ν+|Λ+

j
= |dx2dξ1| 1

2 .

Then ν+ is homogeneous of order 1 and invariant under the Hamiltonian
flow Hp, that is, LHp

ν+ = 0. Suppose a(x2, ξ2)ν+ solves the transport
equation

(8.5) 1
i LHp

(aν+) = 0,

then we find

(8.6) a|Λ+
j

(x2, ξ2) =
∑
k∈Z

aj(k)ξ
−ik/λ+

j

1 eikx2 .

Let J+ be the parametrization of Λ+ using bicharacteristics of the Hamil-
tonian vector field, that is,

J+ :
⊔
d

(
S1 × R

)
→ Λ+, (z, t) 7→ etHp(0, z, 1, 0).(8.7)

Since the bicharacteristics on Λ+
j are

(8.8) x2(z, t) − (λ+
j )−1 ln ξ1(z, t) = z mod 2πZ,

and the pullback of the density

(8.9) (J+)∗(dx2 dξ1) = (λ+
j )−1 dz dt,

we find

(8.10) (J+)∗(aν+) =
(∑

k∈Z
aj(k) eikz

)
(λ+

j )− 1
2 |dz dt| 1

2

on the j-th copy of
⊔

d(S1 ×R). Therefore the half density µ+ in Lemma 4.1
and the function f in Lemma 4.4 are now

(8.11) µ+(z) = (λ+
j )−1|dz|, f(z) =

∑
k∈Z

aj(k) eikz
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on the j-th copy of
⊔

d S1. On the other hand, from the half density aν+,
we can construct a microlocal solution

u(x) =
∑

j

X+
j

∫ ∞

0
eix1ξ1

∑
k∈Z

aj(k)ξ
−ik/λ+

j

1 eikx2 dξ1

=
∑

j

X+
j

∑
k∈Z

α(k/λ+
j )aj(k)(x1 + i0)−1+ik/λ+

j eikx2 ,
(8.12)

where X+
j ∈ Ψ0(M) satisfies that WF(X+

j ) is contained in a small neigh-
borhood of U+

j and WF(I −X+
j ) ∩ U+

j = ∅, and

α(x) := iΓ(1 − ix) e πx
2 =: |α(x)| eiθ(x), x ∈ R, θ ∈ R/2πZ,

|α(x)| = e πx
2

√
πx

sinh πx =
(√

2π|x| +O(|x|− 1
2 )
)

e−πx− , x → ∞

θ(x) = x ln |x| − x+ π/2 +O(|x|−1) mod 2πZ, x → ∞.

(8.13)

Here we used the following result in [11, Example 7.1.17]∫ +∞

0
eixξ ξβ dξ = Γ(β + 1) e

β+1
2 πi(x+ i0)−1−β , Reβ > −1

and Stirling’s formula for the gamma function – see for instance [18, Ap-
pendix A, Theorem 2.3].

Restrict the microlocal solution in U+
j to x1 = 1, we get

(8.14)
∑
k∈Z

|α(k/λ+
j )| eiθ(k/λ+

j
) aj(k) eikx2 .

Combine (8.11), (8.12) and (8.14), we now construct microlocal distri-
butions using functions on cycles near the limit cycles.

Definition 8.2. — We define a linear map

(8.15) R+ : C∞(S1;Cd) → D ′(M)

by the fomula

(8.16) R+f =
∑

j

X+
j R+

j fj ,

where

(8.17) R+
j fj(x) =

∑
k∈Z

|α(k/λ+
j )|f̂j(k)(x1 + i0)−1+ik/λ+

j eikx2

in the local coordinates associated to the normal form in Lemma 8.1. We
define X−

j , R− in a similar way for the repulsive cycles.

We remark that
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Lemma 8.3.
(1) The map R+ extends to distributions, that is,

(8.18) R+ : D ′(S1;Cd) → D ′(M).

(2) For any f ∈ D ′(S1;Cd), we have

(8.19) WF(PR+f) ∩ U+ = ∅.

The proof of this lemma is the same as the proof of [25, Lemma 7.4].
Proof. — We only need to prove the lemma for R+

j .
Apply Fourier transform to R+

j f with respect to x1, we get the following
series:

(8.20)
∑
k∈Z

e−iθ(k/λ+
j

) f̂j(k)ξ
−1+ik/λ+

j

1 eikx2 .

Therefore R+
j f ∈ D ′(M) if and only if f̂j(k) = O(kN ) for some N ∈ Z,

that is, f ∈ D ′(S1).
(2) can be checked by a direct computation using the normal form of P

in Lemma 8.1. □

We now record a useful fact:

Lemma 8.4. — Let α be as in (8.13), λ > 0 is a constant, S1 = R/2πZ.
We define u ∈ D ′(S1) by

(8.21) u(z) =
∑
k∈Z

|α(λ−1k)| eikz .

Then u ∈ I3/4(Ξ) where Ξ := {(0, ζ) : ζ > 0}. The principal symbol of u is

(8.22) σ(u|dz| 1
2 )(ζ) = φ̂u(ζ)|dζ| 1

2

where φ ∈ C∞(S1) is supported in a small neighborhood of z = 0 and
φ = 1 near z = 0.

Proof. — We first show that u ∈ C∞(S1 \ {0}). In fact, if z ̸= 0, then

(8.23) eikz = ei(k+1)z − eikz

eiz −1 .

Thus

(8.24)

u(z) = (eiz −1)−1
∑
k∈Z

|α(λ−1k)|(ei(k+1)z − eikz)

= −(eiz −1)−1
∑
k∈Z

∆(1)(|α(λ−1·)|)(k) eikz
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with

∆(1)(|α(λ−1·)|)(k) := |α(λ−1(k + 1))| − |α(λ−1k)| = O(|k|− 1
2 ).

Use (8.23) again and we find

(8.25) u(z) = (−1)2(eiz −1)−2
∑
k∈Z

∆(2)(|α(λ−1·)|)(k) eikz

with ∆(2)(|α(λ−1·)|)(k) := ∆(1)(|α(λ−1·)|)(k + 1) − ∆(1)(|α(λ−1·)|)(k) =
O(|k|− 3

2 ). By induction we find that

(8.26) u(z) = (−1)N (eiz −1)−N
∑
k∈Z

∆(N)(|α(λ−1·)|)(k) eikz

with ∆(N)(|α(λ−1·)|)(k) = O(|k| 1
2 −N ), for any N ∈ N. Thus u ∈ C∞(S1 \

{0}).
Now we pick a function φ ∈ C∞(S1) that is supported near in a small

neighborhood of z = 0 and φ = 1 near z = 0. Now we have

(8.27) φ̂u(ζ) =
∑
k∈Z

|α(λ−1k)|φ̂(ζ − k)

where φ̂u is the Fourier transform on R and we identify suppφ as a subset
of (−π, π) ⊂ R. Suppose −2ℓ ⩽ ζ ⩽ −ℓ for some large ℓ ∈ N.

|φ̂u(ζ)| ⩽

 ∑
|k|⩽ℓ/2

+
∑

k⩾ℓ/2

+
∑

k⩽−ℓ/2

 |α(λ−1k)||φ̂(ζ − k)|(8.28)

When |k| ⩽ ℓ/2,we have |ζ − k| ⩾ ℓ/2, hence

(8.29)
∑

|k|⩽ℓ/2

|α(λ−1k)||φ̂(ζ − k)| ⩽ C
∑

|k|⩽ℓ/2

√
|k|(ℓ/2)−N = O(ℓ−N+ 3

2 ).

When k ⩾ ℓ/2, we have |ζ − k| = |ζ| + k, hence

(8.30)

∑
k⩾ℓ/2

|α(λ−1k)||φ̂(ζ − k)| ⩽ C
∑

k⩾ℓ/2

√
k(|ζ| + k)−N

⩽
∑

k⩾ℓ/2

k−N+ 1
2 = O(ℓ−N+ 3

2 ).

For the last partial sum,

(8.31)
∑

k⩽−ℓ/2

|α(λ−1k)||φ̂(ζ − k)| ⩽
∑

k⩽−ℓ/2

e−δ0|k| = O(e−δ0ℓ/2)

with δ0 > 0 depends only on λ. Finally we get

(8.32) |φ̂u(ζ)| = O(|ζ|−N )
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for any N as ζ → −∞. Hence

(8.33) WF(u) ⊂ Ξ.

One can show that φ̂u is in fact a symbol of order 1/2 in Ξ using the same
method. Thus u ∈ I3/4(Ξ). Note that σ(u|dz| 1

2 ) does not depend on the
choice of φ. Suppose φ̃ is another smooth function on S1 that is supported
in a small neighborhood of z = 0 and φ̃ = 1 near z = 0, then φ − φ̃ ∈
C∞

c (S1 \ {0}). Since u(z) ∈ C∞(S1 \ {0}), we know (φ − φ̃)u ∈ C∞(S1)
thus ̂(φ− φ̃)u decays rapidly. □

Lemma 8.5. — Suppose X+ ∈ Ψ0(M) and WF(X+) ⊂ U+ \ Λ+. Then
X+R+ is a Fourier integral operator of order 1/4 associated to the canon-
ical relation

CX+R+ = {(x, ξ; y, η) : (x, ξ) ∈ WF(X+), (x, ξ) ∼ j+(y, η), η ̸= 0}

⊂ T ∗M \ 0 ×
⊔
d

T ∗S1 \ 0.(8.34)

Here ∼ means two points lie on the same bicharacteristic of P . A similar
result holds for X−R−, where X− ∈ Ψ0(M), WF(X−) ⊂ U− \Λ− and U−

is a conic neighborhood of Λ−.

Proof. — We only need to show that if χ ∈ C∞
c (Rx1 \ {0} × S1

x2
) and

(8.35) R+
j (x, y) = χ(x)

∑
k∈Z

|α(k/λ+
j )|(x1 + i0)−1+ik/λ+

j eik(x2−y),

then R+
j is a Lagrangian distribution of order 1/4 with

(8.36) WF′(R+
j ) ⊂ {(x,ξ; y,η) : x∈ suppχ,(x,ξ) ∼ (±1,y,η/λj ,η),±η > 0}.

In fact, since WF(X+) ⊂ U+ \ Λ+, there exists χ ∈ C∞
c (Rx1 \ {0} × S1

x2
),

where x1, x2 are the local coordinates associated to the normal form, such
that χ = 1 on WF(X+). By [5, Proposition E.32], there exists Y + ∈ Ψ0(M)
such that WF(Y +) ⊂ WF(X+) and Y +χ = X+ + Ψ−∞(M). Therefore
X+R+ = Y +χR+ + Ψ−∞(M) and we find

(8.37) WF′(X+R+) ⊂ WF′(Y +) ◦ WF′(χR+) ⊂ WF′(X+) ◦ WF′(χR+).

Now we study R+
j , which is, modulo smooth functions, the integral kernel

of χR+
j in the coordinates associated to the normal form of P . When

±x1 > 0, we have

(8.38) R+
j (x, y) = x−1

1 χ(x)
∑
k∈Z

|α(±k/λ+
j )| eik(x2−y+(λ+

j
)−1 ln |x1|) .
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We first consider

(8.39) v(x, y) =
∑
k∈Z

|α(k/λ+
j )| eik(x2−y+(λ+

j
)−1 ln x1) = (F ∗u)(x, y)

with u as in Lemma 8.4 and F ∗ is the pullback of the map

(8.40) F : R>0 × S1 × S1 → S1, (x1, x2, y) 7→ x2 − y + (λ+
j )−1 ln x1.

By [8, Corollary 7.9], we find

(8.41) WF(v) ⊂

(x, y, ξ, η) ∈ T ∗(R>0 × S1 × S1) \ 0 :

there exists ζ > 0, such that

x2 − y + (λ+
j )−1 ln x1 = 0,

ξ1 = (λ+
j )−1x−1

1 ζ, ξ2 = ζ, η = −ζ


Therefore

(8.42) WF′(v)

⊂ {(x, ξ; y, η) : x2 + (λ+
j )−1 ln x1 = y, ξ2/ξ1 = λ+

j x1, ξ2 = η, η > 0}

⊂ T ∗(R>0 × S1) \ 0 × T ∗S1 \ 0.

On the other hand, the bicharacteristics of P in U+
j \ γ+

j are given by

(8.43) x2 + (λ+
j )−1 ln x1 = const mod 2πZ, ξ2/ξ1 − λ+

j x1 = 0

in the coordinates associated to the normal form. Therefore

(8.44)
WF′(v) ⊂ {(x, ξ; y, η) : (x, ξ) ∼ (1, y, η/λ+

j , η), η > 0}

⊂ T ∗(R>0 × S1) \ 0 × T ∗S1 \ 0.

Similarly, if we put

(8.45) w(x, y) =
∑
k∈Z

|α(−k/λ+
j )| eik(x2−y+(λ+

j
)−1 ln |x1|)

Then w is a Lagrangian distribution with

WF′(w) ⊂ {(x, ξ; y, η) : (x, ξ) ∼ (−1, y, η/λ+
j , η), η < 0}

⊂ T ∗(R<0 × S1) \ 0 × T ∗S1 \ 0.
(8.46)

Since x−1
1 χ(x) is a smooth function with support contained in x1 ̸= 0, our

proof is completed by applying [8, Theorem 7.11]. □
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9. Propagation of singularities

As one can see from Lemma 8.3, when f is merely a distribution rather
than a smooth function, PR+

j f has singularities (that is, it has non-empty
wavefront set). To study the microlocal structure of the scattering matrix,
we need to study the propagation of singularities of the equation Pu = 0.

9.1. Real principal type propagation

We first recall the definition of real principal type operators. We refer
to [13, Section 26.1] for detailed discussion.

Definition 9.1 ([13, Definition 26.1.8]). — Let P ∈ Ψm(X) be a prop-
erly supported pseudodifferential operator. We shall say that P is of real
principal type in X if P has a real homogeneous principal part p of order m
and no complete bicharacteristic strip of P stays over a compact set in X.

We also need

Definition 9.2 ([13, Definition 26.1.10]). — If P is of real principal
type in X we shall say that X is pseudo-convex with respect to P when
the following condition is satisfied: for every compact set K ⊂ X there is
another compact set K ′ ⊂ X such that every bicharacteristic interval with
respect to P having end points over K must lie entirely over K ′.

Now we recall a classical result by Duistermaat and Hörmander [2]:

Proposition 9.3 ([13, Theorem 26.1.14]). — Let P ∈ Ψm(X) be of
real principal type in X and assume that X is pseudo-convex with respect
to P . Then there exist parametrices E+ and E− of P such that

(9.1) PE± = I + Ψ−∞(M)

and

(9.2) WF′(E+) = ∆∗ ∪ C+, WF′(E−) = ∆∗ ∪ C−

where ∆∗ is the diagonal in (T ∗X \ 0) × (T ∗X \ 0), C± is the forward
(backward) bicharacteristic relation. We also have

(9.3) E+ − E− ∈ I
1
2 −m(X ×X,C ′)

and E+ − E− is non-characteristic at every point of C ′, where C is the
bicharacteristic relation.
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Now we assume the operator P satisfies assumptions in Section 1.2. We
show that P has parametrices away from the limit cycles. More precisely,

Lemma 9.4. — For any small open conic neighborhoods U, V of Λ :=
Λ− ∪ Λ+ such that V ⊂ U , there exist linear maps E+,E− : C∞(M) →
D ′(M) such that

(9.4) PE± = T + Ψ−∞(M)

with T ∈ Ψ0(M), WF(T ) ∩ V = ∅ and WF(I − T ) ∩ U = ∅. We also have

(9.5) WF′(E+) ⊂ (∆∗ ∪C+)\ (Λ×Λ), WF′(E−) ⊂ (∆∗ ∪C−)\ (Λ×Λ)

and

(9.6) E+ − E− ∈ I
1
2 (M ×M,C ′ \ (Λ × Λ)).

Proof. — The proof of this lemma is a modification of the argument in
the proof of [13, Theorem 26.1.14].

Let π : T ∗M → M , π(x, ξ) = x be the natural projection from the
cotangent bundle to the manifold. Let W1 := (T ∗M \ 0) \ V , W2 :=
(T ∗π(U) \ 0) \ U . Then W1, W2 is an open covering of (T ∗M \ 0) \ U .
Let T1, T2 ∈ Ψ0(M) be a microlocal partition of unity associated to W1
and W2, that is WF(T1 + T2 − I) ⊂ V , WF(T1) ⊂ W1, WF(T2) ⊂ W2.

The bicharacteristics of P in W1 and W2 satisfy the condition in Defini-
tion 9.1: no complete bicharacteristic strip of P stays in a compact set in
W1 or W2. This is because that by our assumptions in Section 1.2, every
bicharacteristic of P converges to Λ± as t → ±∞. Since Λ± is contained
in U, V , the bicharacteristics extends to the exterior of W1, W2 by the
definition of W1, W2.

Since P is of real principal type on M \ π(Λ), by Proposition 9.3, there
exist parametrices E±

1 of P on M \ π(Λ) satisfying conditions in Propo-
sition 9.3 with M replaced by M \ π(Λ). Let X1 ∈ Ψ0(M) such that
WF(X1) ∩ Λ = ∅, WF(X1 − I) ∩W1 = ∅. Then

PX1E
±
1 T1 = [P,X1]E±

1 T1 +X1PE
±
1 T1(9.7)

Since WF([P,X1]) ∩ WF(T1) = ∅, we know [P,X1]E±
1 T1 ∈ I− 1

2 (M × M,

C ′ \ (Λ × Λ)). We also have X1PE
±
1 T1 ≡ X1T1 ≡ T1 over T ∗M \ 0. Thus

(9.8) PX1E
±
1 T1 = T1 +R1, R1 ∈ I− 1

2 (M ×M,C ′ \ (Λ × Λ)).

For W2 and T2, we can not project W2 to the base manifold directly, since
T ∗π(W2)\0 has closed bicharacteristics. LetW ′

2 be a conic subset of T ∗M\0
such that the closure of κ(W2) is contained in κ(W ′

2). Since κ(W ′
2) is a

disjoint union of cylinders where the bicharacteristics is of real principal
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type, P has microlocal normal form D1 on P2 := Rx1 ×S1, by an argument
that is similar to the proof of Lemma 8.1. P2 is of real principal type, hence
by Proposistion 9.3, it has forward and backward parametrices. Thus P also
has forward and backward parametrices E±

2 over W ′
2. Let X2 ∈ Ψ0(M) such

that WF(X2) ⊂ W ′
2, and WF(X2 − I) ⊂ W2. Then as (9.8), we have

(9.9) PX2E
±
2 T2 = T2 +R2, R2 ∈ I− 1

2 (M ×M,C ′ \ (Λ × Λ)).

If we put

(9.10) T := T1 + T2, E±
0 := X1E

±
1 T1 +X2E

±
2 T2, R := R1 +R2,

then

(9.11) PE±
0 = T +R, R ∈ I− 1

2 (M ×M,C ′ \ (Λ × Λ)).

The proof of this lemma is then completed by applying Lemma 26.1.16
of [13]. □

9.2. Propagation of singularities near radial sets

We now focus on the propagation of singularities near radial sets. We
have the following

Lemma 9.5. — Suppose f ∈ D ′(M) and WF(f) ∩ Λ± = ∅, then (P ±
i0)−1f is a tempered distribution. Moreover, WF((P ± i0)−1f) is a subset
of the union of Λ∓ and backward (forward) bicharacteristics of WF(f).

Proof. — We only prove for (P − i0)−1, and the other case is proved in
the same way.

Put u := (P − i0)−1f . Suppose g ∈ C∞(M), then

(9.12) ⟨u, g⟩ = ⟨f, (P + i0)−1g⟩

By Proposition 3.1, WF((P + i0)−1g) ⊂ Λ−. Since WF(f) ∩ Λ− = ∅, we
know that the pairing is bounded by ∥g∥∞ for any g ∈ C∞(M), by an
estimate similar to (3.17), for (P + i0)−1 and the radial sink. Therefore
u ∈ D ′(M).

Suppose A,B ∈ Ψ0(M) such that WF(A) and WF(B) both have empty
intersection with forward bicharacteristics of WF(f) and the backward
bicharacteristics starting from WF(A) is contained in ell(B). Then by [6,
(3.2)] and [6, (3.4)], we have

(9.13) ∥Au∥s ⩽ C∥Bf∥s+1 + C∥u∥−N , s > −1
2 .

Since Bf ∈ C∞(M), we find Au ∈ C∞(M). Therefore WF(u) is contained
in the union of Λ+ and the forward bicharateristics of WF(f). □
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10. Microlocal structure of the scattering matrix

In this section we derive a fomula for the conjugated scattering matrix
up to smoothing operators. Our approach is an analog of the argument
used by Vasy in [20]. We then show that the conjugated scattering matrix
is a Fourier integral operator.

Let U±, V ± be small open conic subsets of Λ± such that V ± ⊂ U±,
U− ∩ U+ = ∅. Suppose operators E± and T ∈ Ψ0 satisfy conditions in
Lemma 9.4 with U, V replaced by V − ∪ V + and an open conic subset of
V − ∪ V +. Let X± ∈ Ψ0(M) such that

(10.1) WF(X±) ⊂ U±, WF(I −X±) ∩ V ± = ∅.

Lemma 10.1. — Assume U±, V ±, X± satisfy the conditions above. We
define

(10.2) Q± : D ′(S1;Cd) → D ′(M)

by the formula

(10.3) Q± = (I −X∓)E∓[P,X±]R± −X±R±.

Then

(10.4) PQ± = −[P,X∓]E∓[P,X±]R± + Ψ−∞(M).

where Ψ−∞(M) is the set of smoothing operators on M . In particular, we
know that for any distribution f ,

(10.5) WF(PQ±(f)) ⊂ V ∓.

Proof. — We only prove for Q− since conclusions for Q+ can be proved
in the same way.

Suppose f ∈ D ′(S1;Cd), then we have

(10.6) PX−R−(f) = [P,X−]R−(f) +X−PR−(f)

Since WF(PR−(f)) ∩ U− = ∅, we know

(10.7) PX−R−(f) = [P,X−]R−(f) + C∞(M).

Since WF([P,X−]R−(f)) ∩ V ± = ∅, we can use the forward parametrix
E+ to propagate the microlocal solution and get

(10.8) (I −X+)E+[P,X−]R−(f).

Now we compute

(10.9) P (I −X+)E+[P,X−]R−(f)
= −[P,X+]E+[P,X−]R−(f) + (I −X+)PE+[P,X−]R−(f).
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Note that

(10.10) (I −X+)PE+[P,X−]R−(f)
= (I −X+)T [P,X−]R−(f) + C∞(M)
= (I −X+)[P,X−]R−(f) + C∞(M)
= [P,X−]R−(f) + C∞(M).

Here we used the fact that PE+ = T +Ψ−∞(M) and WF(I−T )∩V − = ∅.
Now we find

(10.11) P (I −X+)E+[P,X−]R−(f)
= −[P,X+]E+[P,X−]R−(f) + [P,X−]R−(f) + C∞(M).

Combine (10.7) and (10.11), we get (10.4). □

By Lemma 9.5,

(10.12) (P − i0)−1PQ−(f) ∈ D ′(M), WF((P − i0)−1PQ−(f)) ⊂ V +.

Thus by the definition of Q− and the definition of R−, the Poisson operator
H− satisfies

(10.13) H−T− = Q− − (P − i0)−1PQ−.

For f, g ∈ C∞(S1;Cd), G± be as in Defintion 7.1, we have

(10.14) G−H−T−(f) = T−(f), G+H−T−(f) = ST−(f),

and

(10.15) G−Q+(g) = 0, G+Q+(g) = T+(g).

Now we apply the boundary pairing formula, Proposition 6.6, with

(10.16) u1 = H−T−(f), u2 = Q+(g),

and we get

(10.17) − i
(2π)2 ⟨H−T−(f), PQ+(g)⟩ = ⟨ST−(f),T+(g)⟩.

Thus we find

(10.18) Srel = (T+)∗ST− = − i
(2π)2 (PQ+)∗(Q− − (P − i0)−1PQ−).

We now study the microlocal structure of Srel. To simplify the for-
mula (10.18), we need the following

Lemma 10.2. — Suppose A, B: D ′(M) → D ′(M) are linear maps. If for
any u, v ∈ D ′(M), WF(Au)∩WF(Bv) = ∅, then B∗A : D ′(M) → C∞(M),
that is, B∗A is a smoothing operator.
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Proof. — Let u, v ∈ D ′(M). Since WF(Au) ∩ WF(Bv) = ∅, we can find
X ∈ Ψ0(M), such that

(10.19) WF(X) ∩ WF(Bv) = ∅, WF(I −X) ∩ WF(Au) = ∅.

Then we have

(10.20) ⟨B∗Au, v⟩ = ⟨Au,Bv⟩ = ⟨(I −X)Au,Bv⟩ + ⟨Au,X∗Bv⟩.

Since (I −X)Au ∈ C∞(M), X∗Bv ∈ C∞, we know that

(10.21) ⟨B∗Au, v⟩ < ∞.

This is true for any u, v ∈ D ′(M), hence we conclude that B∗A is a smooth-
ing operator. □

Suppose X̂± ∈ Ψ0(M) satisfy

(10.22) WF(X̂±) ⊂ U± \ Λ±, WF(I − X̂±) ∩ WF([P,X±]) = ∅.

Then we have

Lemma 10.3. — The operator Srel is defined for distributions, that is,

(10.23) Srel : D ′(S1;Cd) → D ′(S1;Cd)

and

(10.24) Srel = − i
(2π)2 ([P,X−]E−[P,X+]X̂+R+)∗X̂−X−R−+Ψ−∞(M).

where Ψ−∞(M) is the set of smoothing operators on M .

Proof. — Suppose f, g ∈ D ′(S1;Cd). Then by (10.12) and Lemma 10.1
we have

(10.25) WF((P − i0)−1PQ−(f)) ⊂ V +,WF(PQ+(g)) ⊂ V −.

Thus by Lemma 10.2 and (10.18), we know

(10.26) Srel = − i
(2π)2 (PQ+)∗Q− + Ψ−∞(M).

Note that the wavefront set of

(10.27) (I −X+)E+[P,X−]R−(g)

is a subset of the forward flow-out of WF([P,X−]R−(f)) which has empty
intersection with V −, hence by Lemma 10.2, we find

(10.28) Srel = i
(2π)2 (PQ+)∗X−R− + Ψ−∞(M).

That is

(10.29) Srel = − i
(2π)2 ([P,X−]E−[P,X+]R+)∗X−R− + Ψ−∞(M).
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Note that

(10.30) WF([P,X−]E−[P,X+]R+(g)) ⊂ WF([P,X−])

while

(10.31) WF((I − X̂−)X−R−(f)) ∩ WF([P,X−]) = ∅.

Again by Lemma 10.2, we have

(10.32) Srel = − i
(2π)2 ([P,X−]E−[P,X+]R+)∗X̂−X−R− + Ψ−∞(M).

Finally we get (10.24) since [P,X+]X̂+ = [P,X+] + Ψ−∞(M). □

We can now prove Theorem 1.9 when ω is not an embedded eigenvalue.

Proof of Theorem 1.9 away from embedded eigenvalues. — By Lemma 8.5
we know that X̂−X−R− and X̂+R+ are Fourier integral operators of order
1/4 associated to the canonical relations

(10.33)

C
X̂−X−R− = {(x, ξ; y, η) : (x, ξ) ∼ j−(y, η), (x, ξ) ∈ WF(X̂−), η ̸= 0}

⊂T ∗M \ 0 ×
⊔
d

T ∗S1 \ 0,

C
X̂+R+ = {(x, ξ; z, ζ) : (x, ξ) ∼ j+(z, ζ), (x, ξ) ∈ WF(X̂+), η ̸= 0}

⊂T ∗M \ 0 ×
⊔
d

T ∗S1 \ 0.

By Lemma 9.4, [P,X−]E−[P,X+] is also a Fourier integral operator of
order 1/2 − 2 = −3/2 with canonical relation

(10.34) C0 := C ∩
(
WF([P,X−]) × WF([P,X+])

)
where C is the bicharacteristic relation.

We claim that the intersection of

(10.35) S1 := C0 × C
X̂+R+ and S2 := T ∗M \ 0 × ∆T ∗M\0 ×

⊔
d

T ∗S1 \ 0

is clean with excess e = 1. To see this, we only need to show that

(10.36) TS1 ∩ TS2 ⊂ T (S1 ∩ S2) on S1 ∩ S2.

Suppose (x′, ξ′;x, ξ;x, ξ; y, η) ∈ S1 ∩ S2. Since (x′, ξ′) ∼ (x, ξ), (x, ξ) ∼
j+(y, η), there exists T0, T1 ∈ R such that (x′, ξ′) = eT0Hp(x, ξ), (x, ξ) =
eT1Hp j+(y, η). Let eT0Hp , eT1Hp : T ∗M \ 0 → T ∗M \ 0 be diffeomorphisms
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generated by the Hamiltonian flow at time T0 and T1. Then one can check
that any tangent vector, V , of S1 has the form

(10.37) V =
(
c0Hp(x′, ξ′)+(eT0Hp)∗(x′, ξ′)(v), v,

c1Hp(x, ξ) + (eT1Hp)∗(x, ξ)(w), w
)

with w ∈ T(y,η)
(⊔

d T
∗S1 \ 0

)
, v ∈ T(x,ξ)Σhom, c0, c1 ∈ R. If V ∈ TS2, then

we have

(10.38) v = c1Hp(x, ξ) + (eT1Hp)∗(x, ξ)(w).

Now let β(t) = (y(t), η(t)) be a curve in
⊔

d T
∗S1 \0, T0(t), T1(t) be smooth

functions on R, such that

(10.39)
β(0) = (y, η), β′(0) = w, T0(0) = T0,

T ′
0(0) = c0, T1(0) = T1, T ′

1(0) = c1.

Then the curve

(10.40) γ(t)

:= (e(T0(t)+T1(t))Hp j+(β(t)); eT1(t)Hp j+(β(t)); eT1(t)Hp j+(β(t));β(t))

is a curve in S1 ∩ S2 with

(10.41) γ(0) = (x′, ξ′;x, ξ;x, ξ; y, η), γ′(0) = V.

Hence the intersection of S1 and S2 is clean with excess e = codimS1 +
codimS2 − codimS1 ∩ S2 = 7 + 4 − 10 = 1.

By [13, Theorem 25.2.3], [P,X−]E−[P,X+]X̂+R+ is a Fourier inte-
gral operator of order −3/2 + 1/4 + 1/2 = −3/4 with canonical relation
C0 ◦ C

X̂+R+ . A similar clean intersection argument shows that
([P,X−]E−[P,X+]X̂+R+)∗X̂−X−R− is a Fourier integral operator of or-
der −3/4 + 1/4 + 1/2 = 0 with canonical relation

(10.42) CSrel = {(z, ζ; y, η) : j−(z, ζ) ∼ j+(y, η)} ⊂
⊔
d

T ∗S1\0×
⊔
d

T ∗S1\0.

By the dynamical assumption in Section 1.2 we know that for any (y, η) ∈⊔
d T

∗S1 \0, there exists a unique (z, ζ) ∈
⊔

d T
∗S1 \0 such that (z, ζ; y, η) ∈

CSrel . Therefore CSref actually defines a canonical transformation. This
concludes the proof. □
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11. The scattering matrix for eigenvalues

In this section we study the case where ω satisfies assumptions in Sec-
tion 1.3 and is an embedded eigenvalue of P . The proof of Theorem 1.1 and
Theorem 1.9 are done by projecting P to the orthogonal complement of the
eigenspace. The key fact that makes this possible is that the eigenfunctions
of P are smooth, thus the microlocal structures are preserved.

Proof of Theorem 1.1 and Theorem 1.9 at embedded eigenvalues.
Step 1. Project away the eigenvalue. — Assume ω0 satisfying assump-

tions in Section 1.3 is an embedded eigenvalue of P . Without loss of gen-
erality, we assume ω0 is of multiplicity 1 with an eigenvector u0 ∈ L2(M),
∥u0∥L2(M) = 1. By [6, Lemma 3.2], u0 ∈ C∞(M). We omit the subscript
ω0 in this proof to simplify the notation.

Let D ′
⊥(P, ω0) be the orthogonal complement of the eigenspace with

eigenvalue ω0 as in (1.1), and

(11.1) Π : D ′(M) → D ′
⊥(P, ω0), Πv := v − ⟨v, u0⟩u0

be the projection onto D ′
⊥(P, ω0). Here ⟨·, ·⟩ is as at the beginning of Sec-

tion 6. We consider the operater

(11.2) P⊥ := PΠ : D ′(M) → D ′
⊥(P, ω0).

Since u0 ∈ C∞(M), we know the integral kernel of Π − I is a smooth
function on M ×M , which implies Π − I ∈ Ψ−∞(M). Therefore

(11.3) P⊥ − P ∈ Ψ−∞(M).

This shows that P⊥ ∈ Ψ0(M) satisfies the assumptions in Section 1.2.
Although 0 is an eigenvalue of P⊥ because P⊥u0 = 0, we note that ω0 is

not an eigenvalue of P⊥. In fact, suppose v ∈ L2(M) and P⊥v = ω0v. Since
P⊥v ∈ D ′

⊥(P, ω0), we find v ∈ D ′
⊥(P, ω0). Now we know Πv = v, hence

Pv = P⊥v = ω0v. If v ̸= 0, then v is an eigenvector with the eigenvalue ω0.
This however contradicts the fact that v ∈ D ′

⊥(P, ω0). Thus we find v = 0
and we conclude that ω0 is not an eigenvalue of P⊥.

Step 2. Construct the operators in Theorem 1.1. — We can now apply
the proof of Theorem 1.1 and of Theorem 1.9 in the case where ω is not an
embedded eigenvalue of P , with (P, ω) replaced by (P⊥ −ω0, 0). Let H±

0,⊥,
S⊥ be the operators satisfying conditions in Theorem 1.1 for (P⊥ − ω0, 0).
We show that Theorem 1.1 holds for (P, ω) with

(11.4) H±
0 := ΠH±

0,⊥, S := S⊥.

ANNALES DE L’INSTITUT FOURIER



SCATTERING MATRIX 2235

We first clarify the definition of H±
0 . By the definition of Π, we know Π

induces a map between quotient spaces, which we still denote by Π,

(11.5) Π : D±(PΠ − ω0, 0)
→ D±(PΠ − ω0, 0) ∩ D ′

⊥(P, ω0)/C∞(M) ∩ D ′
⊥(P, ω0).

For the meaning of the notations, see Section 1.1. One can check by the
definition that the latter sets are in fact D±(P, ω0). Thus we get operators

(11.6) H±
0 = ΠH±

0,⊥ : C∞(S1;Cd) → D±(P, ω0).

Step 3. Proof of Theorem 1.1. — We now check the conclusions in The-
orem 1.1.

(1). — The linearity of H±
0 is clear. To see that H±

0 are invertible, it
suffices to show that the map Π defined in (11.5) is invertible. Since Π
is induced by the projection map, we know Π is surjective. If u ∈ D ′(M),
Π([u]) = 0, then Π(u) ∈ C∞(M). Hence u = Π(u)+(u0⊗u0)(f) ∈ C∞(M),
that is, [u] = 0. This shows that Π is injective.

(2). — We first remark that

(11.7) Z(P⊥ − ω0, 0) = Z(P, ω0)

where Z is the set of solutions defined in Section 1.1. In fact, suppose
u ∈ Z(P⊥ − ω0, 0), then

(11.8) (P⊥ − ω0)u = 0 ⇒ u = ω−1
0 P⊥u ∈ D ′

⊥(P, ω0) ⇒ (P − ω0)u = 0.

Hence u ∈ Z(P, ω0). The inclusion Z(P, ω0) ⊂ Z(P⊥ − ω0, 0) is clear by
the definition.

Now if u ∈ Z(P, ω0), then there exists unique f± ∈ C∞(S1;Cd) such
that

(11.9) u ∈ H−
0,⊥(f−) +H+

0,⊥(f+).

Apply Π to (11.9) and note that Πu = u, we have

(11.10) u ∈ H−
0 (f−) +H+

0 (f+).

The uniqueness of the decomposition follows from the invertibility of Π
defined in (11.5).

(2). — Suppose H±
0,⊥, f±, u± satisfy conditions in (3) for (PΠ −ω0, 0),

then similar to (2) and (2), one can check that H±
0 , f±, Πu± satisfy con-

ditions in (3) for (P, ω0).
(4) and (5). — Follow from the proof of (1), (2) and (3).
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Step 4. Proof of Theorem 1.9. — Recall (11.3): P⊥ − P ∈ Ψ−∞(M).
This implies that the characteristic submanifold, the bicharacteristics, the
limit cycles for (P⊥ − ω0, 0) is the same as for (P, ω0). Since Theorem 1.9
applies to S⊥, we conclude that the same results hold for S. □
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