Combinatorial structure of Sturmian words and continued fraction expansion of Sturmian numbers
[Structure combinatoire des mots sturmiens et développement en fraction continue des nombres sturmiens]
Annales de l'Institut Fourier, Tome 73 (2023) no. 5, pp. 2029-2078.

Soit θ=[0;a 1 ,a 2 ,] le développement en fraction continue d’un nombre irrationnel θ(0,1) et soit q k le dénominateur de la k-ième réduite de θ. On sait que les préfixes M k de longueur q k du mot sturmien caractéristique de pente θ vérifient la relation de récurrence M k =M k-1 a k M k-2 pour tout k2. Nous établissons une relation de concaténation analogue pour les préfixes d’un mot sturmien quelconque s. Soit b un entier 2. Nous obtenons en deuxième lieu une formule explicite pour le développement en fraction continue de tout nombre réel ξ(0,1) dont la suite des chiffres en base b forme une suite sturmienne s sur l’alphabet {0,b-1}. On généralise ainsi un résultat classique de Böhmer qui traitait le cas particulier où s est une suite sturmienne caractéristique. Nous en déduisons une formule donnant l’exposant d’irrationalité de ξ en fonction de la pente et de l’intercept de s.

Let θ=[0;a 1 ,a 2 ,] be the continued fraction expansion of an irrational real number θ(0,1). It is well-known that the characteristic Sturmian word of slope θ is the limit of a sequence of finite words (M k ) k0 , with M k of length q k (the denominator of the k-th convergent to θ) being a suitable concatenation of a k copies of M k-1 and one copy of M k-2 . Our first result extends this to any Sturmian word s. Let b2 be an integer. Our second result gives the continued fraction expansion of any real number ξ whose b-ary expansion is a Sturmian word s over the alphabet {0,b-1}. This extends a classical result of Böhmer who considered only the case where s is characteristic. As a consequence, we obtain a formula for the irrationality exponent of ξ in terms of the slope and the intercept of s.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3561
Classification : 11J04, 11J70, 11J81, 68R15
Keywords: Rational approximation, continued fraction, transcendence, Sturmian sequence, combinatorics on words.
Mot clés : Approximation rationnelle, fraction continue, transcendance, suite sturmienne, combinatoire des mots.

Bugeaud, Yann 1, 2 ; Laurent, Michel 3

1 IRMA, UMR7501 Université de Strasbourg et CNRS 7, rue René Descartes 67084 Strasbourg (France)
2 Institut universitaire de France
3 Aix-Marseille Université CNRS Institut de Mathématiques de Marseille 163 avenue de Luminy, Case 907 13288 Marseille Cedex 9 (France)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2023__73_5_2029_0,
     author = {Bugeaud, Yann and Laurent, Michel},
     title = {Combinatorial structure of {Sturmian} words and continued fraction expansion of {Sturmian} numbers},
     journal = {Annales de l'Institut Fourier},
     pages = {2029--2078},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {73},
     number = {5},
     year = {2023},
     doi = {10.5802/aif.3561},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3561/}
}
TY  - JOUR
AU  - Bugeaud, Yann
AU  - Laurent, Michel
TI  - Combinatorial structure of Sturmian words and continued fraction expansion of Sturmian numbers
JO  - Annales de l'Institut Fourier
PY  - 2023
SP  - 2029
EP  - 2078
VL  - 73
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3561/
DO  - 10.5802/aif.3561
LA  - en
ID  - AIF_2023__73_5_2029_0
ER  - 
%0 Journal Article
%A Bugeaud, Yann
%A Laurent, Michel
%T Combinatorial structure of Sturmian words and continued fraction expansion of Sturmian numbers
%J Annales de l'Institut Fourier
%D 2023
%P 2029-2078
%V 73
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3561/
%R 10.5802/aif.3561
%G en
%F AIF_2023__73_5_2029_0
Bugeaud, Yann; Laurent, Michel. Combinatorial structure of Sturmian words and continued fraction expansion of Sturmian numbers. Annales de l'Institut Fourier, Tome 73 (2023) no. 5, pp. 2029-2078. doi : 10.5802/aif.3561. https://aif.centre-mersenne.org/articles/10.5802/aif.3561/

[1] Adamczewski, Boris On the expansion of some exponential periods in an integer base, Math. Ann., Volume 346 (2010) no. 1, pp. 107-116 | DOI | MR | Zbl

[2] Adamczewski, Boris; Allouche, Jean-Paul Reversals and palindromes in continued fractions, Theoret. Comput. Sci., Volume 380 (2007) no. 3, pp. 220-237 | DOI | MR | Zbl

[3] Adamczewski, Boris; Bugeaud, Yann Mesures de transcendance et aspects quantitatifs de la méthode de Thue–Siegel–Roth–Schmidt, Proc. Lond. Math. Soc. (3), Volume 101 (2010) no. 1, pp. 1-26 | DOI | MR | Zbl

[4] Adamczewski, Boris; Bugeaud, Yann Nombres réels de complexité sous-linéaire: mesures d’irrationalité et de transcendance, J. Reine Angew. Math., Volume 658 (2011), pp. 65-98 | DOI | MR | Zbl

[5] Adams, William W.; Davison, J. L. A remarkable class of continued fractions, Proc. Amer. Math. Soc., Volume 65 (1977) no. 2, pp. 194-198 | DOI | MR | Zbl

[6] Allouche, Jean-Paul; Shallit, Jeffrey Automatic sequences, Cambridge University Press, Cambridge, 2003, xvi+571 pages (Theory, applications, generalizations) | DOI | MR | Zbl

[7] Arnoux, P. Sturmian sequences, Substitutions in dynamics, arithmetics and combinatorics (Lecture Notes in Math.), Volume 1794, Springer, Berlin, 2002, pp. 143-198 | DOI | MR

[8] Arnoux, Pierre; Ferenczi, Sébastien; Hubert, Pascal Trajectories of rotations, Acta Arith., Volume 87 (1999) no. 3, pp. 209-217 | DOI | MR | Zbl

[9] Berthé, Valérie Autour du système de numération d’Ostrowski, Bull. Belg. Math. Soc. Simon Stevin, Volume 8 (2001) no. 2, pp. 209-239 Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000) | DOI | MR | Zbl

[10] Berthé, Valérie; Holton, Charles; Zamboni, Luca Q. Initial powers of Sturmian sequences, Acta Arith., Volume 122 (2006) no. 4, pp. 315-347 | DOI | MR | Zbl

[11] Böhmer, P. E. Über die Transzendenz gewisser dyadischer Brüche, Math. Ann. (1927) no. 96, pp. 367-377 | DOI | Zbl

[12] Bugeaud, Yann Approximation by algebraic numbers, Cambridge Tracts in Mathematics, 160, Cambridge University Press, Cambridge, 2004, xvi+274 pages | DOI | MR | Zbl

[13] Bugeaud, Yann Distribution modulo one and Diophantine approximation, Cambridge Tracts in Mathematics, 193, Cambridge University Press, Cambridge, 2012, xvi+300 pages | DOI | MR | Zbl

[14] Bugeaud, Yann; Kim, Dong Han A new complexity function, repetitions in Sturmian words, and irrationality exponents of Sturmian numbers, Trans. Amer. Math. Soc., Volume 371 (2019) no. 5, pp. 3281-3308 | DOI | MR | Zbl

[15] Bugeaud, Yann; Kim, Dong Han; Laurent, Michel; Nogueira, Arnaldo On the Diophantine nature of the elements of Cantor sets arising in the dynamics of contracted rotations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 22 (2021) no. 4, pp. 1691-1704 | DOI | MR | Zbl

[16] Bugeaud, Yann; Laurent, Michel Transcendence and continued fraction expansion of values of Hecke-Mahler series (2022) (https://arxiv.org/abs/2203.12901)

[17] Chuan, Wai-Fong Sturmian morphisms and α-words, Theoret. Comput. Sci., Volume 225 (1999) no. 1-2, pp. 129-148 | DOI | MR | Zbl

[18] Cohn, P. M. On the structure of the GL 2 of a ring, Inst. Hautes Études Sci. Publ. Math. (1966) no. 30, pp. 5-53 | DOI | MR | Zbl

[19] Danilov, L. V. Certain classes of transcendental numbers, Mat. Zametki, Volume 12 (1972), pp. 149-154 | MR

[20] Davison, J. L. A series and its associated continued fraction, Proc. Amer. Math. Soc., Volume 63 (1977) no. 1, pp. 29-32 | DOI | MR | Zbl

[21] Ferenczi, Sébastien; Mauduit, Christian Transcendence of numbers with a low complexity expansion, J. Number Theory, Volume 67 (1997) no. 2, pp. 146-161 | DOI | MR | Zbl

[22] Koksma, J. F. Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen, Monatsh. Math. Phys., Volume 48 (1939), pp. 176-189 | DOI | MR | Zbl

[23] Komatsu, Takao A certain power series and the inhomogeneous continued fraction expansions, J. Number Theory, Volume 59 (1996) no. 2, pp. 291-312 | DOI | MR | Zbl

[24] Laurent, Michel; Nogueira, Arnaldo Rotation number of contracted rotations, J. Mod. Dyn., Volume 12 (2018), pp. 175-191 | DOI | MR | Zbl

[25] Laurent, Michel; Nogueira, Arnaldo Dynamics of 2-interval piecewise affine maps and Hecke-Mahler series, J. Mod. Dyn., Volume 17 (2021), pp. 33-63 | DOI | MR | Zbl

[26] Lothaire, M. Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications, 90, Cambridge University Press, Cambridge, 2002, xiv+504 pages | DOI | MR | Zbl

[27] Queffélec, Martine Approximations diophantiennes des nombres sturmiens, J. Théor. Nombres Bordeaux, Volume 14 (2002) no. 2, pp. 613-628 | DOI | Numdam | MR | Zbl

[28] Tamura, Jun-ichi A class of transcendental numbers having explicit g-adic and Jacobi-Perron expansions of arbitrary dimension, Acta Arith., Volume 71 (1995) no. 4, pp. 301-329 | DOI | MR | Zbl

[29] Wojcik, C. Formal Intercept of Sturmian words (2018) (https://arxiv.org/abs/1803.02073)

[30] Wojcik, C. Factorisations des mots de basse complexité, Ph. D. Thesis, Université de Lyon (2019)

Cité par Sources :