[Résultats sous-critiques sur le caractère bien posé de l’équation de Zakharov–Kuznetsov en dimension supérieure ou égale à trois]
On considère l’équation de Zakharov–Kuznetsov en dimension . On établit que le problème de Cauchy est localement bien posé dans pour tout exposant sous-critique . Ceci est optimal jusqu’au cas limite. Comme corollaire, il s’ensuit que l’équation est globalement bien posée dans et, sous une hypothèse de petitesse, dans .
The Zakharov–Kuznetsov equation in space dimension is considered. It is proved that the Cauchy problem is locally well-posed in in the full subcritical range , which is optimal up to the endpoint. As a corollary, global well-posedness in and, under a smallness condition, in , follow.
Révisé le :
Accepté le :
Publié le :
Keywords: Well-posedness, Cauchy problem, Zakharov–Kuznetsov equation, bilinear estimate, nonlinear Loomis–Whitney inequality.
Mot clés : Caractère bien posé, problème de Cauchy, équation de Zakharov–Kuznetsov, estimation bilinéaire, inégalité de Loomis–Whitney non-linéaire
Herr, Sebastian 1 ; Kinoshita, Shinya 2
@article{AIF_2023__73_3_1203_0, author = {Herr, Sebastian and Kinoshita, Shinya}, title = {Subcritical well-posedness results for the {Zakharov{\textendash}Kuznetsov} equation in dimension three and higher}, journal = {Annales de l'Institut Fourier}, pages = {1203--1267}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {3}, year = {2023}, doi = {10.5802/aif.3547}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3547/} }
TY - JOUR AU - Herr, Sebastian AU - Kinoshita, Shinya TI - Subcritical well-posedness results for the Zakharov–Kuznetsov equation in dimension three and higher JO - Annales de l'Institut Fourier PY - 2023 SP - 1203 EP - 1267 VL - 73 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3547/ DO - 10.5802/aif.3547 LA - en ID - AIF_2023__73_3_1203_0 ER -
%0 Journal Article %A Herr, Sebastian %A Kinoshita, Shinya %T Subcritical well-posedness results for the Zakharov–Kuznetsov equation in dimension three and higher %J Annales de l'Institut Fourier %D 2023 %P 1203-1267 %V 73 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3547/ %R 10.5802/aif.3547 %G en %F AIF_2023__73_3_1203_0
Herr, Sebastian; Kinoshita, Shinya. Subcritical well-posedness results for the Zakharov–Kuznetsov equation in dimension three and higher. Annales de l'Institut Fourier, Tome 73 (2023) no. 3, pp. 1203-1267. doi : 10.5802/aif.3547. https://aif.centre-mersenne.org/articles/10.5802/aif.3547/
[1] On the 2D Zakharov system with -Schrödinger data, Nonlinearity, Volume 22 (2009) no. 5, pp. 1063-1089 | DOI | MR | Zbl
[2] Convolutions of singular measures and applications to the Zakharov system, J. Funct. Anal., Volume 261 (2011) no. 2, pp. 478-506 | DOI | MR | Zbl
[3] A convolution estimate for two-dimensional hypersurfaces, Rev. Mat. Iberoam., Volume 26 (2010) no. 2, pp. 707-728 | DOI | MR | Zbl
[4] Fundamentals of Plasma Physics, Cambridge University Press, Cambridge, 2006 | DOI
[5] A non-linear generalisation of the Loomis–Whitney inequality and applications, Math. Res. Lett., Volume 12 (2005) no. 4, pp. 443-457 | DOI | MR | Zbl
[6] Global well-posedness for low regularity data in the 2d modified Zakharov–Kuznetsov equation (https://arxiv.org/abs/1906.05822)
[7] Well-posedness results for the modified Zakharov–Kuznetsov equation, Nonlinear equations: methods, models and applications (Bergamo, 2001) (Progr. Nonlinear Differential Equations Appl.), Volume 54, Birkhäuser, Basel, 2003, pp. 181-189 | MR | Zbl
[8] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal., Volume 3 (1993) no. 3, pp. 209-262 | DOI | MR | Zbl
[9] Transference of bilinear restriction estimates to quadratic variation norms and the Dirac-Klein-Gordon system, Anal. PDE, Volume 11 (2018) no. 5, pp. 1171-1240 | DOI | MR | Zbl
[10] Asymptotic stability of high-dimensional Zakharov–Kuznetsov solitons, Arch. Ration. Mech. Anal., Volume 220 (2016) no. 2, pp. 639-710 | DOI | MR | Zbl
[11] The Cauchy problem for the Zakharov–Kuznetsov equation, Differentsial’ nye Uravneniya, Volume 31 (1995) no. 6, p. 1070-1081, 1103 | MR
[12] A note on the 2D generalized Zakharov–Kuznetsov equation: local, global, and scattering results, J. Differential Equations, Volume 253 (2012) no. 8, pp. 2558-2571 | DOI | MR | Zbl
[13] On the Cauchy problem for the Zakharov system, J. Funct. Anal., Volume 151 (1997) no. 2, pp. 384-436 | DOI | MR | Zbl
[14] On the generalized Zakharov-Kuznetsov equation at critical regularity (https://arxiv.org/abs/1509.09146)
[15] A remark on the modified Zakharov–Kuznetsov equation in three space dimensions, Math. Res. Lett., Volume 21 (2014) no. 1, pp. 127-131 | DOI | MR | Zbl
[16] The Fourier restriction norm method for the Zakharov–Kuznetsov equation, Discrete Contin. Dyn. Syst., Volume 34 (2014) no. 5, pp. 2061-2068 | DOI | MR | Zbl
[17] On KP-II type equations on cylinders, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 26 (2009) no. 6, pp. 2335-2358 | DOI | Numdam | MR | Zbl
[18] Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., Volume 40 (1991) no. 1, pp. 33-69 | DOI | MR | Zbl
[19] A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., Volume 9 (1996) no. 2, pp. 573-603 | DOI | MR | Zbl
[20] Well-posedness for the Cauchy problem of the modified Zakharov-Kuznetsov equation (https://arxiv.org/abs/1911.13265)
[21] Global well-posedness for the Cauchy problem of the Zakharov–Kuznetsov equation in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 38 (2021) no. 2, pp. 451-505 | DOI | MR | Zbl
[22] Convolution estimates for singular measures and some global nonlinear Brascamp-Lieb inequalities, Proc. Roy. Soc. Edinburgh Sect. A, Volume 145 (2015) no. 6, pp. 1223-1237 | DOI | MR | Zbl
[23] Nonlinear ion-acoustic waves in weak magnetic fields, Phys. Fluids, Volume 25 (1982) no. 6, pp. 985-989 | DOI | MR | Zbl
[24] The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, Studies in phase space analysis with applications to PDEs (Progr. Nonlinear Differential Equations Appl.), Volume 84, Birkhäuser/Springer, New York, 2013, pp. 181-213 | DOI | MR | Zbl
[25] Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation, SIAM J. Math. Anal., Volume 41 (2009) no. 4, pp. 1323-1339 | DOI | MR | Zbl
[26] Local and global well-posedness for the 2D generalized Zakharov-Kuznetsov equation, J. Funct. Anal., Volume 260 (2011) no. 4, pp. 1060-1085 | DOI | MR | Zbl
[27] The Cauchy problem for the 3D Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., Volume 24 (2009) no. 2, pp. 547-565 | DOI | MR | Zbl
[28] An inequality related to the isoperimetric inequality, Bull. Amer. Math. Soc, Volume 55 (1949), pp. 961-962 | DOI | MR | Zbl
[29] Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 32 (2015) no. 2, pp. 347-371 | DOI | Numdam | MR | Zbl
[30] A note on the Cauchy problem for the 2D generalized Zakharov–Kuznetsov equations, C. R. Math. Acad. Sci. Paris, Volume 350 (2012) no. 9-10, pp. 499-503 | DOI | MR | Zbl
[31] Well-posedness results for the three-dimensional Zakharov–Kuznetsov equation, SIAM J. Math. Anal., Volume 44 (2012) no. 4, pp. 2289-2304 | DOI | MR | Zbl
[32] The nonlinear Schrödinger equation, Applied Mathematical Sciences, 139, Springer-Verlag, New York, 1999, xvi+350 pages (Self-focusing and wave collapse) | MR | Zbl
[33] Three-dimensional solitons, Sov. Phys. JETP, Volume 39 (1974) no. 2, pp. 285-286
Cité par Sources :