[Approximation rationnelle des applications holomorphes]
Soit
Let
Révisé le :
Accepté le :
Publié le :
Keywords: Algebraic manifold, holomorphic map, regular map, approximation.
Mots-clés : Variété algébrique, application holomorphe, application régulière, approximation.
Bochnak, Jacek 1 ; Kucharz, Wojciech 2

@article{AIF_2023__73_3_1115_0, author = {Bochnak, Jacek and Kucharz, Wojciech}, title = {Rational approximation of holomorphic maps}, journal = {Annales de l'Institut Fourier}, pages = {1115--1131}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {3}, year = {2023}, doi = {10.5802/aif.3542}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3542/} }
TY - JOUR AU - Bochnak, Jacek AU - Kucharz, Wojciech TI - Rational approximation of holomorphic maps JO - Annales de l'Institut Fourier PY - 2023 SP - 1115 EP - 1131 VL - 73 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3542/ DO - 10.5802/aif.3542 LA - en ID - AIF_2023__73_3_1115_0 ER -
%0 Journal Article %A Bochnak, Jacek %A Kucharz, Wojciech %T Rational approximation of holomorphic maps %J Annales de l'Institut Fourier %D 2023 %P 1115-1131 %V 73 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3542/ %R 10.5802/aif.3542 %G en %F AIF_2023__73_3_1115_0
Bochnak, Jacek; Kucharz, Wojciech. Rational approximation of holomorphic maps. Annales de l'Institut Fourier, Tome 73 (2023) no. 3, pp. 1115-1131. doi : 10.5802/aif.3542. https://aif.centre-mersenne.org/articles/10.5802/aif.3542/
[1] Flexible varieties and automorphism groups, Duke Math. J., Volume 162 (2013) no. 4, pp. 767-823 | DOI | MR | Zbl
[2] Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Volume III, American Mathematical Society (1961), pp. 7-38 | DOI | MR | Zbl
[3] The tight approximation property, J. Reine Angew. Math., Volume 776 (2021), pp. 151-200 | DOI | MR | Zbl
[4] Real algebraic geometry, Ergeb. Math. Grenzgeb., 3. Folge, 36, Springer-Verlag, Berlin, 1998, x+430 pages | DOI | MR | Zbl
[5] Realization of homotopy classes by algebraic mappings, J. Reine Angew. Math., Volume 377 (1987), pp. 159-169 | MR | Zbl
[6] Approximation of holomorphic maps by algebraic morphisms, Ann. Polon. Math., Volume 80 (2003), pp. 85-92 | DOI | MR | Zbl
[7] Topology and geometry, Graduate Texts in Mathematics, 139, Springer-Verlag, New York, 1993, xiv+557 pages | DOI | MR | Zbl
[8] Introduction to differential topology, Cambridge University Press, Cambridge-New York, 1982, vii+160 pages (Translated from the German by C. B. Thomas and M. J. Thomas) | MR | Zbl
[9] On algebraic group varieties, J. Math. Soc. Japan, Volume 6 (1954), pp. 303-324 | DOI | MR | Zbl
[10] Algebraic approximations of holomorphic maps from Stein domains to projective manifolds, Duke Math. J., Volume 76 (1994) no. 2, pp. 333-363 | DOI | MR | Zbl
[11] Holomorphic approximation: the legacy of Weierstrass, Runge, Oka–Weil, and Mergelyan, Advancements in complex analysis – from theory to practice, Springer, Cham, 2020, pp. 133-192 | DOI | MR | Zbl
[12] Holomorphic flexibility properties of complex manifolds, Amer. J. Math., Volume 128 (2006) no. 1, pp. 239-270 | DOI | MR | Zbl
[13] Stein manifolds and holomorphic mappings. The homotopy principle in complex analysis, Ergeb. Math. Grenzgeb., 3. Folge, 56, Springer, Cham, 2017, xiv+562 pages | DOI | MR | Zbl
[14] Developments in Oka theory since 2017 (2020) (https://arxiv.org/abs/2006.07888)
[15] Intersection theory, Ergeb. Math. Grenzgeb., 3. Folge, 2, Springer-Verlag, Berlin, 1984, xi+470 pages | DOI | MR | Zbl
[16] Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., Volume 135 (1958), pp. 263-273 | DOI | MR | Zbl
[17] On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math. (2), Volume 68 (1958), pp. 460-472 | DOI | MR | Zbl
[18] Oka’s principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc., Volume 2 (1989) no. 4, pp. 851-897 | DOI | MR | Zbl
[19] Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965, xiv+317 pages | MR | Zbl
[20] An introduction to complex analysis in several variables, North-Holland Mathematical Library, 7, North-Holland Publishing Co., Amsterdam, 1990, xii+254 pages | MR | Zbl
[21] Fibre bundles, Graduate Texts in Mathematics, 20, Springer-Verlag, New York, 1994, xx+353 pages | DOI | MR | Zbl
[22] On subelliptic manifolds, Israel J. Math., Volume 228 (2018) no. 1, pp. 229-247 | DOI | MR | Zbl
[23] The Runge approximation problem for holomorphic maps into Grassmannians, Math. Z., Volume 218 (1995) no. 3, pp. 343-348 | DOI | MR | Zbl
[24] An implicit function theorem for sprays and applications to Oka theory, Internat. J. Math., Volume 31 (2020) no. 9, 2050071, 9 pages | DOI | MR | Zbl
[25] Approximation and interpolation of regular maps from affine varieties to algebraic manifolds, Math. Scand., Volume 125 (2019) no. 2, pp. 199-209 | DOI | MR | Zbl
[26] Algebraic approximations in analytic geometry, Invent. Math., Volume 121 (1995) no. 2, pp. 335-353 | DOI | MR | Zbl
[27] Faisceaux algébriques cohérents, Ann. of Math. (2), Volume 61 (1955), pp. 197-278 | DOI | MR | Zbl
[28] Differentiable manifolds, Ann. of Math. (2), Volume 37 (1936) no. 3, pp. 645-680 | DOI | MR | Zbl
- Algebraic Gromov Ellipticity: A Brief Survey, Taiwanese Journal of Mathematics, Volume -1 (2024) no. -1 | DOI:10.11650/tjm/241001
Cité par 1 document. Sources : Crossref