[Approximation rationnelle des applications holomorphes]
Soit une variété algébrique affine non singulière complexe, soit un sous-ensemble holomorphiquement convexe de , et soit une variété algébrique complexe homogène pour un groupe algébrique linéaire complexe. Nous montrons qu’une application holomorphe peut être uniformément approchée sur par des applications régulières si et seulement si est homotope à une application régulière . Cependant, il peut arriver qu’une application holomorphe qui est null-homotope n’admette pas d’approximation uniforme par des applications régulières . Ici, on dit qu’une application est holomorphe (resp. régulière) s’il existe un voisinage ouvert (resp. ouvert de Zariski) de et une application holomorphe (resp. régulière) telle que .
Let be a complex nonsingular affine algebraic variety, a compact holomorphically convex subset of , and a homogeneous complex manifold for some complex linear algebraic group. We prove that a holomorphic map can be uniformly approximated on by regular maps if and only if is homotopic to a regular map . However, it may happen that a null homotopic holomorphic map does not admit uniform approximation on by regular maps . Here, a map is called holomorphic (resp. regular) if there exist an open (resp. a Zariski open) neighborhood of and a holomorphic (resp. regular) map such that .
Révisé le :
Accepté le :
Publié le :
Keywords: Algebraic manifold, holomorphic map, regular map, approximation.
Mot clés : Variété algébrique, application holomorphe, application régulière, approximation.
Bochnak, Jacek 1 ; Kucharz, Wojciech 2
@article{AIF_2023__73_3_1115_0, author = {Bochnak, Jacek and Kucharz, Wojciech}, title = {Rational approximation of holomorphic maps}, journal = {Annales de l'Institut Fourier}, pages = {1115--1131}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {3}, year = {2023}, doi = {10.5802/aif.3542}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3542/} }
TY - JOUR AU - Bochnak, Jacek AU - Kucharz, Wojciech TI - Rational approximation of holomorphic maps JO - Annales de l'Institut Fourier PY - 2023 SP - 1115 EP - 1131 VL - 73 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3542/ DO - 10.5802/aif.3542 LA - en ID - AIF_2023__73_3_1115_0 ER -
%0 Journal Article %A Bochnak, Jacek %A Kucharz, Wojciech %T Rational approximation of holomorphic maps %J Annales de l'Institut Fourier %D 2023 %P 1115-1131 %V 73 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3542/ %R 10.5802/aif.3542 %G en %F AIF_2023__73_3_1115_0
Bochnak, Jacek; Kucharz, Wojciech. Rational approximation of holomorphic maps. Annales de l'Institut Fourier, Tome 73 (2023) no. 3, pp. 1115-1131. doi : 10.5802/aif.3542. https://aif.centre-mersenne.org/articles/10.5802/aif.3542/
[1] Flexible varieties and automorphism groups, Duke Math. J., Volume 162 (2013) no. 4, pp. 767-823 | DOI | MR | Zbl
[2] Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Volume III, American Mathematical Society (1961), pp. 7-38 | DOI | MR | Zbl
[3] The tight approximation property, J. Reine Angew. Math., Volume 776 (2021), pp. 151-200 | DOI | MR | Zbl
[4] Real algebraic geometry, Ergeb. Math. Grenzgeb., 3. Folge, 36, Springer-Verlag, Berlin, 1998, x+430 pages | DOI | MR | Zbl
[5] Realization of homotopy classes by algebraic mappings, J. Reine Angew. Math., Volume 377 (1987), pp. 159-169 | MR | Zbl
[6] Approximation of holomorphic maps by algebraic morphisms, Ann. Polon. Math., Volume 80 (2003), pp. 85-92 | DOI | MR | Zbl
[7] Topology and geometry, Graduate Texts in Mathematics, 139, Springer-Verlag, New York, 1993, xiv+557 pages | DOI | MR | Zbl
[8] Introduction to differential topology, Cambridge University Press, Cambridge-New York, 1982, vii+160 pages (Translated from the German by C. B. Thomas and M. J. Thomas) | MR | Zbl
[9] On algebraic group varieties, J. Math. Soc. Japan, Volume 6 (1954), pp. 303-324 | DOI | MR | Zbl
[10] Algebraic approximations of holomorphic maps from Stein domains to projective manifolds, Duke Math. J., Volume 76 (1994) no. 2, pp. 333-363 | DOI | MR | Zbl
[11] Holomorphic approximation: the legacy of Weierstrass, Runge, Oka–Weil, and Mergelyan, Advancements in complex analysis – from theory to practice, Springer, Cham, 2020, pp. 133-192 | DOI | MR | Zbl
[12] Holomorphic flexibility properties of complex manifolds, Amer. J. Math., Volume 128 (2006) no. 1, pp. 239-270 | DOI | MR | Zbl
[13] Stein manifolds and holomorphic mappings. The homotopy principle in complex analysis, Ergeb. Math. Grenzgeb., 3. Folge, 56, Springer, Cham, 2017, xiv+562 pages | DOI | MR | Zbl
[14] Developments in Oka theory since 2017 (2020) (https://arxiv.org/abs/2006.07888)
[15] Intersection theory, Ergeb. Math. Grenzgeb., 3. Folge, 2, Springer-Verlag, Berlin, 1984, xi+470 pages | DOI | MR | Zbl
[16] Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., Volume 135 (1958), pp. 263-273 | DOI | MR | Zbl
[17] On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math. (2), Volume 68 (1958), pp. 460-472 | DOI | MR | Zbl
[18] Oka’s principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc., Volume 2 (1989) no. 4, pp. 851-897 | DOI | MR | Zbl
[19] Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965, xiv+317 pages | MR | Zbl
[20] An introduction to complex analysis in several variables, North-Holland Mathematical Library, 7, North-Holland Publishing Co., Amsterdam, 1990, xii+254 pages | MR | Zbl
[21] Fibre bundles, Graduate Texts in Mathematics, 20, Springer-Verlag, New York, 1994, xx+353 pages | DOI | MR | Zbl
[22] On subelliptic manifolds, Israel J. Math., Volume 228 (2018) no. 1, pp. 229-247 | DOI | MR | Zbl
[23] The Runge approximation problem for holomorphic maps into Grassmannians, Math. Z., Volume 218 (1995) no. 3, pp. 343-348 | DOI | MR | Zbl
[24] An implicit function theorem for sprays and applications to Oka theory, Internat. J. Math., Volume 31 (2020) no. 9, 2050071, 9 pages | DOI | MR | Zbl
[25] Approximation and interpolation of regular maps from affine varieties to algebraic manifolds, Math. Scand., Volume 125 (2019) no. 2, pp. 199-209 | DOI | MR | Zbl
[26] Algebraic approximations in analytic geometry, Invent. Math., Volume 121 (1995) no. 2, pp. 335-353 | DOI | MR | Zbl
[27] Faisceaux algébriques cohérents, Ann. of Math. (2), Volume 61 (1955), pp. 197-278 | DOI | MR | Zbl
[28] Differentiable manifolds, Ann. of Math. (2), Volume 37 (1936) no. 3, pp. 645-680 | DOI | MR | Zbl
Cité par Sources :