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RATIONAL APPROXIMATION OF HOLOMORPHIC
MAPS

by Jacek BOCHNAK & Wojciech KUCHARZ (*)

Abstract. — Let X be a complex nonsingular affine algebraic variety, K a
compact holomorphically convex subset of X, and Y a homogeneous complex man-
ifold for some complex linear algebraic group. We prove that a holomorphic map
f : K → Y can be uniformly approximated on K by regular maps K → Y if and
only if f is homotopic to a regular map K → Y . However, it may happen that a
null homotopic holomorphic map K → Y does not admit uniform approximation
on K by regular maps X → Y . Here, a map φ : K → Y is called holomorphic (resp.
regular) if there exist an open (resp. a Zariski open) neighborhood U ⊆ X of K

and a holomorphic (resp. regular) map φ̃ : U → Y such that φ̃|K = φ.
Résumé. — Soit X une variété algébrique affine non singulière complexe, soit

K un sous-ensemble holomorphiquement convexe de X, et soit Y une variété al-
gébrique complexe homogène pour un groupe algébrique linéaire complexe. Nous
montrons qu’une application holomorphe f : K → Y peut être uniformément ap-
prochée sur K par des applications régulières K → Y si et seulement si f est
homotope à une application régulière K → Y . Cependant, il peut arriver qu’une
application holomorphe K → Y qui est null-homotope n’admette pas d’approxima-
tion uniforme par des applications régulières X → Y . Ici, on dit qu’une application
φ : K → Y est holomorphe (resp. régulière) s’il existe un voisinage ouvert (resp.
ouvert de Zariski) U ⊂ X de K et une application holomorphe (resp. régulière)
φ̃ : U → Y telle que φ̃|K = φ.

1. Introduction

Throughout this paper, algebraic varieties are complex algebraic vari-
eties understood in the sense of Serre [27, p. 226]. Each algebraic variety
has an underlying structure of a complex space. Nonsingular algebraic va-
rieties are complex (holomorphic) manifolds and will be called algebraic
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manifolds. Morphisms of algebraic varieties will be called regular maps
(clearly, they are also holomorphic maps). Unless explicitly stated other-
wise, all topological notions relating to algebraic varieties will refer to the
Euclidean topology determined by the standard metric on C.

An algebraic variety Y is said to be homogeneous for an algebraic group
G if G acts transitively on Y , the action G × Y → Y , (a, y) 7→ a · y
being a regular map. Note that each homogeneous algebraic variety is an
equidimensional algebraic manifold. An algebraic group is said to be linear
if it is biregularly isomorphic to a Zariski closed subgroup of the general
linear group GLn(C), for some n.

Let X, Y be algebraic varieties and let K be a compact subset of X.
A map f : K → Y is said to be holomorphic (resp. regular) if it is the
restriction of a holomorphic (resp. regular) map f̃ : U → Y defined on an
open (resp. a Zariski open) neighborhood U ⊆ X of K. We say that a
holomorphic map f : K → Y can be approximated by regular maps from
K into Y if for every neighborhood U ⊆ C(K,Y ) of f , where C(K,Y ) is
the space of all continuous maps endowed with the compact-open topology,
there exists a regular map K → Y that belongs to U . The compact-open
topology on C(K,Y ) is the same as the uniform convergence topology with
respect to a metric d on Y which induces the Euclidean topology on Y .
Thus, a holomorphic map f : K → Y can be approximated by regular
maps from K into Y if and only if for every ε > 0 there exists a rational
map φ from X into Y , with domain of definition containing K, such that
d(f(x), φ(x)) < ε for all x ∈ K.

Recall that a compact subset K of a reduced complex space Z is holomor-
phically convex in Z if for every point p ∈ Z \K there exists a holomorphic
function h : Z → C with |h(p)| > |h(x)| for all x ∈ K. In particular, every
compact geometrically convex set in Cn is holomorphically convex.

The main result of the present paper is the following.

Theorem 1.1. — Let X be an affine algebraic manifold, K a compact
holomorphically convex set in X, and Y a homogeneous algebraic manifold
for some linear algebraic group. Then, for a holomorphic map f : K → Y ,
the following conditions are equivalent:

(1) f can be approximated by regular maps from K into Y .
(2) f is homotopic to a regular map from K into Y .

As an immediate consequence of Theorem 1.1 we get the following.
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Corollary 1.2. — For X, K, Y as in Theorem 1.1, every null homo-
topic holomorphic map from K into Y can be approximated by regular
maps from K into Y .

Since every continuous map defined on a geometrically convex subset of
Cn is null homotopic, we also get the following.

Corollary 1.3. — Let K be a compact geometrically convex set in Cn

and let Y be a homogeneous algebraic manifold for some linear algebraic
group. Then every holomorphic map from K into Y can be approximated
by regular maps from K into Y .

The proof of Theorem 1.1 is given in Section 2, where we first develop
technical tools among which is the concept of cascade inspired by Gromov’s
key notion of spray [18]. Theorems 2.7 and 2.9 are of independent inter-
est. Our proofs follow quite closely those of Forstnerič [12] for algebraically
subelliptic manifolds. However, in the context of the present paper, we need
to resolve new and rather subtle issues arising from the fact that a homo-
geneous algebraic manifold for a linear algebraic group is not necessarily
algebraically subelliptic. In Example 1.7 we discuss relationships between
our results and previous relevant results due to Forstnerič [12, 13]; roughly
speaking, we obtain optimal weaker conclusions under weaker assumptions.
Subsequently we give two other illustrative examples. In the remainder of
this section we assume that Theorem 1.1 holds.

Let f : K → C be a holomorphic function defined on a compact subset K
of C. By the Runge approximation theorem, for every ε > 0 there exists a
rational function φ on C without poles in K such that |f(x)−φ(x)| < ε for
all x ∈ K. Now suppose that the compact set K is holomorphically convex
in C (equivalently, the set C \K is connected). Then, according to another
variant of the Runge approximation theorem, for every ε > 0 there exists
a regular (= polynomial) function ψ : C → C such that |f(x) − ψ(x)| < ε

for all x ∈ K.
These two versions of the Runge approximation theorem suggest two

different general problems. Given two algebraic manifolds X,Y and a holo-
morphic map f : K → Y defined on a compact subset K of X, consider the
following.

Problem 1.4. — Under what assumptions can f be uniformly approx-
imated on K by regular maps from K into Y ?

Problem 1.5. — Under what assumptions can f be uniformly approx-
imated on K by regular maps from X into Y ?

TOME 73 (2023), FASCICULE 3



1118 Jacek BOCHNAK & Wojciech KUCHARZ

The case where Y = C (or, equivalently, Y = Cn) is classical, see the
excellent recent survey by Fornaes, Forstnerič and Wold [11] and the ref-
erences therein. Some linearization methods are used if Y is not a vector
space. Assuming algebraic subellipticity of Y (see [12, Definition 2.1] or [13,
Definition 5.6.13(e)]), Forstnerič [12, 13, 14], Lárusson and Truong [25], and
Kusakabe [24] obtained interesting results concerning Problem 1.5. On the
other hand, [6, 23] and the present paper are contributions addressing Prob-
lem 1.4. Suppose now that dimX = 1 and K is an arbitrary compact subset
of X. The recent result of Benoist and Wittenberg [3, Theorem D] implies
that approximation as in Problem 1.4 (resp. Problem 1.5) is always pos-
sible if Y is a homogeneous space for some linear algebraic group (resp.
a nonsingular compactification of such a homogeneous space). Moreover,
by [3, Examples 5.4], approximation as in Problem 1.5 is always possible
if Y is a nonsingular projective cubic hypersurface of dimension at least
2 (note that the analogous statement is false for some nonsingular quar-
tic surfaces in projective 3-space). Thus, in particular, Theorem 1.1 is of
interest only for dimX ⩾ 2.

The following serves to fix some notation.

Example 1.6. — Here are some homogeneous algebraic manifolds for lin-
ear algebraic groups.

(1) Every linear algebraic group G acts transitively on itself by left
multiplication and is therefore a homogeneous manifold.

(2) If G is a linear algebraic group and H is a Zariski closed subgroup of
G, then the quotient G/H is a homogeneous algebraic manifold for
G. Each homogeneous algebraic manifold for G is, up to biregular
isomorphism, of the form G/H.

(3) The Grassmannian G(k, n) of k-dimensional vector subspaces of
Cn is a homogeneous algebraic manifold for GLn(C). In particular,
complex projective n-space Pn = G(1, n + 1) is homogeneous for
GLn+1(C).

(4) For every nonnegative integer n the complex unit n-sphere

Σn = {(z0, . . . , zn) ∈ Cn+1 : z2
0 + · · · + z2

n = 1}

is a homogeneous algebraic manifold for the complex special or-
thogonal group SOn+1(C). The set Σn(R) := Σn ∩ Rn+1 of real
points of Σn is the real unit n-sphere Sn in Rn+1. Note that Sn is
a deformation retract of Σn.

Next we discuss relationships between Problem 1.4 and Problem 1.5 in
the context of Corollary 1.3 and [13, Corollary 6.15.2].

ANNALES DE L’INSTITUT FOURIER
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Example 1.7. — Let K be a compact geometrically convex set in X :=
Cn and let Y be an algebraic manifold. By Corollary 1.3, if Y is homoge-
neous for some linear algebraic group, then every holomorphic map from
K into Y can be uniformly approximated on K by regular maps from K

into Y . On the other hand, by [13, Corollary 6.15.2], if Y is algebraically
subelliptic, then every holomorphic map from K into Y can be uniformly
approximated on K by regular maps from X into Y .

Suppose that Y is homogeneous for a linear algebraic group G. Recall
that a character of G is a homomorphism of algebraic groups G → C×,
where C× := C \ {0}. If G is connected and without nontrivial characters,
then Y is algebraically flexible [1, Proposition 5.4], hence algebraically el-
liptic (therefore also algebraically subelliptic) [13, Proposition 5.6.22(c)].
Now, let H be the isotropy group of a point y ∈ Y and let us identify
Y with the quotient G/H. Assume that G admits a nontrivial character
χ : G → C× with χ(H) = {1}. Note that the regular map φ : G/H → C×,
defined by φ(aH) = χ(a) for all a ∈ G, is surjective. Therefore we can
choose a holomorphic map f : K → G/H such that the composite map
φ ◦ f : K → C× is nonconstant. We claim that f cannot be uniformly
approximated on K by regular maps from X into G/H. Indeed, suppos-
ing the claim false, we conclude that the nonconstant holomorphic map
φ ◦ f : K → C× can be uniformly approximated on K by regular maps
from X into C×. This yields a contradiction because every regular map
X → C× is constant. It follows that the homogeneous algebraic manifold
G/H is not algebraically subelliptic. Thus, Problems 1.4 and 1.5 lead to
quite different results, and the methods of [12, 13, 14, 18, 22, 24, 25] based
on algebraic subellipticity are not always applicable for maps into homo-
geneous algebraic manifolds.

As noted in Example 1.6(4), the complex n-sphere Σn is homogeneous for
the group SOn+1(C), which is connected and has no nontrivial character.
Consequently, Σn is algebraically elliptic.

By [13, Proposition 6.4.1(a)], if A is an algebraic subset of Cn of dimen-
sion at most n− 2, then the complement Cn \ A is algebraically elliptic.
Such complements are homogeneous only in exceptional cases.

In conclusion, the notions of algebraic subellipticity and algebraic homo-
geneity are complementary: neither implies the other.

The next example requires some preparation. Let X be a quasiprojec-
tive algebraic manifold. For any nonnegative integer k, a cohomology class
in H2k(X;Z) is said to be algebraic if it corresponds via the cycle map
to an algebraic cycle of codimension k on X, see [15, Chapter 19]. The
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set H2k
alg(X;Z) of all algebraic cohomology classes in H2k(X;Z) forms a

subgroup. The groups H2k
alg(−;Z) have the expected functorial property: If

f : X → Y is a regular map between quasiprojective algebraic manifolds,
then

f∗(H2k
alg(Y ;Z)) ⊆ H2k

alg(X;Z),

where f∗ : H2k(Y ;Z) → H2k(X;Z) is the homomorphism induced by f .
Now, fix a positive integer k. If U is a Zariski open subset of Cm, then

H2k
alg(U ;Z) = 0 (it is sufficient to note that each algebraic cycle on U is the

restriction of an algebraic cycle on Cm, and H2k(Cm;Z) = 0). Therefore,
given a regular map φ : K → Y from a compact subset K of Cm into a
quasiprojective algebraic manifold Y , we get

φ∗(H2k
alg(Y ;Z)) = 0 in H2k(K;Z).

This is the case since φ is the restriction of a regular map ψ : U → Y

defined on a Zariski open neighborhood U ⊆ Cm of K, and

ψ∗(H2k
alg(Y ;Z)) ⊆ H2k

alg(U ;Z) = 0,

where the inclusion holds by the functorial property of H2k
alg(−;Z).

Example 1.8. — Let m,n, p be integers satisfying 1 ⩽ m ⩽ 2n − 1 < p

and let rj , Rj be real numbers with 0 < rj < Rj for j = 1, . . . ,m. The
annulus

Kj := {z ∈ C : rj ⩽ |z| ⩽ Rj}

is a compact holomorphically convex subset of C× = C \ {0}, and hence
the Cartesian product K := K1 × · · · × Km is a compact holomorphically
convex subset of the m-fold product X := (C×)m. Clearly, X is an affine
algebraic manifold. We claim that each regular map φ : K → G(n, p) into
the Grassmannian G(n, p) is null homotopic. The proof depends on some
topological constructions. Let U(n, p) denote the tautological vector bundle
over G(n, p). To any continuous map h : K → G(n, p) one can assign the
pullback vector bundle h∗U(n, p) over K. This gives rise to a map

σ : [K,G(n, p)] → K̃C(K)

from the set [K,G(n, p)] of homotopy classes of continuous maps K →
G(n, p) into the group K̃C(K) of stable equivalence classes of topologi-
cal C-vector bundles over K. Since K has the homotopy type of the m-
dimensional torus (S1)m, it follows from [21, Chap. 8, Theorems 2.6 and
4.2] that the map σ is bijective (the inequalities 1 ⩽ m ⩽ 2n − 1 < p are

ANNALES DE L’INSTITUT FOURIER
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needed here). Now, the map φ : K → G(n, p) being regular, in view of the
discussion preceding Example 1.8, we get

φ∗(H2k(G(n, p));Z) = 0 in H2k(K;Z)

for all positive integers k (note that H2k
alg(G(n, p);Z) = H2k(G(n, p);Z)).

Therefore, for the pullback vector bundle φ∗U(n, p) over K, we get

ck(φ∗U(n, p)) = φ∗(ck(U(n, p))) = 0,

where ck(−) stands for the kth Chern class. By [2, §2.5], the vector bundle
φ∗U(n, p) is topologically stably trivial. We conclude that the map φ is
null homotopic, as claimed.

We know precisely the size of the set [K,G(n, p)] of homotopy classes.
Indeed, σ is a bijection and, by [2, §2.5], K̃C(K) is a free Abelian group of
rank equal to the rank of the direct sum

⊕
k>0 H

2k(K;Z). In particular,
the set [K,G(n, p)] is infinite if m ⩾ 2. Finally, let us note that each con-
tinuous map K → G(n, p) is homotopic to the restriction of a holomorphic
map X → G(n, p). This is the case since K is a retract of X, and each con-
tinuous map X → G(n, p) is homotopic to a holomorphic map by Grauert’s
theorem [16] (see [18] and [13, Theorem 5.4.4] for more general results).

Given an affine (complex) algebraic variety X defined over R, we denote
by X(R) the set of real points of X. Note that each compact subset of
X(R) is holomorphically convex in X. Indeed, we may assume that X is
an algebraic subset of Cm, for some m, defined by polynomial equations
with real coefficients. Then X(R) = X ∩ Rm is an algebraic subset of Rm.
It is well-known that every compact subset of Rm is holomorphically con-
vex in Cm. Consequently, each compact subset of X(R) is holomorphically
convex in Cm, hence it is also holomorphically convex in X.

Let X be an affine (complex) algebraic manifold defined over R, K a
compact subset of X(R), and Y an algebraic manifold. We may regard
both X(R) and Y as real analytic manifolds. Clearly, a map f : K → Y

is holomorphic if and only if there exists a real analytic map φ : W → Y

defined on an open neighborhood W ⊆ X(R) of K such that φ|K = f .
By [17], Y admits a real analytic embedding in some real Euclidean space
(this is straightforward and does not require [17] if Y is quasiprojective).
Hence, according to [28, Theorem 2], each continuous map from W into Y
can be uniformly approximated on K by real analytic maps from W into
Y . Consequently, each continuous map from K into Y can be uniformly
approximated on K by holomorphic maps from K into Y .

In our last example below we refer to real algebraic sets and real regular
maps (see [4] for a detailed treatment of these notions).

TOME 73 (2023), FASCICULE 3
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Example 1.9. — Let M be a compact connected C∞ manifold of dimen-
sion n. We assert that there exists an affine (complex) algebraic manifold
X defined over R such that its real part K = X(R) is diffeomorphic to M
and every continuous map from K into the complex unit n-sphere Σn can
be approximated by (complex) regular maps from K into Σn. This can be
proved as follows. By [5, Proposition 4.5], there exists a nonsingular real
algebraic set K in Rm, for some m, such that K is diffeomorphic to M and
each continuous map from K into Sn is homotopic to a (real) regular map
from K into Sn. Let Z be the Zariski closure of K in Cm. The singular
locus S of Z is an algebraic subset of Cm defined by polynomial equations
P1 = 0, . . . , Pk = 0, where the polynomials Pi have real coefficients. Setting
P := P 2

1 + · · · + P 2
k , we get

S(R) = {x ∈ Rm : P (x) = 0}.

By construction, K = Z(R) is disjoint from S(R), and hence

X := Z \ {x ∈ Cm : P (x) = 0}

is an affine (complex) algebraic manifold defined over R, with X(R) = K.
Let f : K → Σn be a continuous map. Our goal is to prove that f can
be uniformly approximated on K by regular maps. Let j : Sn ↪→ Σn be
the inclusion map and let ρ : Σn → Sn be a deformation retraction. The
composite ρ ◦ f : K → Sn is homotopic to a (real) regular map h : K → Sn.
Setting g = j ◦h, we have ρ◦g = h, and hence the maps ρ◦f, ρ◦g : K → Sn

are homotopic. Consequently, the maps f, g : K → Σn are also homotopic.
Since f is uniformly approximable by holomorphic maps from K into Σn,
we may assume that f itself is a holomorphic map. In view of Theorem 1.1
the proof is complete.

Regular maps are in general too rigid for approximation of holomorphic
maps. Nash maps, which form an intermediate class between regular and
holomorphic maps, are more flexible. Demailly, Lempert and Shiffman [10]
and Lempert [26] proved that a holomorphic map from a Runge domain in
an affine variety into a quasiprojective variety can be uniformly approxi-
mated on compact sets by Nash maps.
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2. Sections of amenable submersions

In this section we work with vector bundles which are always either
holomorphic or algebraic vector bundles. Let Y be a complex (holomorphic)
manifold or an algebraic manifold. Given a vector bundle p : E → Y over
Y , with total space E and bundle projection p, we may refer to E as a
vector bundle over Y . If y ∈ Y , we let Ey := p−1(y) denote the fiber of E
over y and write 0y for the zero vector in Ey. The set Z(E) = {0y : y ∈ Y }
is called the zero section of E. In particular, if E = Y × Cn is the product
vector bundle over Y , then Ey = {y}×Cn, 0y = (y, 0), and Z(E) = Y ×{0}
(here 0 is the zero vector in Cn). We write TY for the tangent bundle to
Y and TyY for the tangent space to Y at y ∈ Y .

Next we introduce some notations and definitions, and prove three tech-
nical lemmas.

Notation 2.1. — Let X,Z be two algebraic manifolds and let h : Z →
X be a regular map which is a surjective submersion. Furthermore, let
V (h) denote the algebraic vector subbundle of the tangent bundle TZ to
Z defined by

V (h)z = Ker(dzh : TzZ → Th(z)X) for all z ∈ Z,

where dzh is the derivative of h at z. Clearly, V (h)z is the tangent space
to the fiber h−1(h(z)).

For any subset A of X, a map α : A → Z is called a section of h : Z → X

if h(α(x)) = x for all x ∈ A. Given an open subset U of X, we call a
continuous map F : U × [0, 1] → Z a homotopy of holomorphic sections if
for every t ∈ [0, 1] the map Ft : U → Z, x 7→ F (x, t) is a holomorphic sec-
tion. Now, let K be a compact subset of X. A section f : K → Z is said
to be holomorphic (resp. regular) if it is the restriction of a holomorphic
(resp. regular) section f̃ : U → Z defined on an open (resp. Zariski open)
neighborhood U ⊆ X of K. We say that a holomorphic section f : K → Z

can be approximated by regular sections defined on K if for every neigh-
borhood U of f in the space C(K,Z) of all continuous maps there exists
a regular section φ : K → Z that belongs to U . Two holomorphic sections
f0, f1 : K → Z are said to be homotopic through holomorphic sections if
there exist an open neighborhood U ⊆ X of K and a homotopy of holo-
morphic sections F : U × [0, 1] → Z such that F0|K = f0 and F1|K = f1.

Definition 2.2. — Let h : Z → X be the submersion of Notation 2.1.
(1) A cascade for h : Z → X is a triple (E,E0, s), where E = Z × Cn

is the product vector bundle over Z, for some n, and s : E0 → Z is

TOME 73 (2023), FASCICULE 3
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a regular map defined on a Zariski open neighborhood E0 ⊆ E of
the zero section Z(E) = Z × {0} of E such that

s(Ez ∩ E0) ⊆ h−1(h(z)) and s(z, 0) = z for all z ∈ Z.

(2) A cascade (E,E0, s) for h : Z → X is said to be dominating if the
derivative

d(z,0)s : T(z,0)E → TzZ

maps the subspace Ez = T(z,0)Ez of T(z,0)E onto V (h)z, that is,

d(z,0)s(Ez) = V (h)z

for all z ∈ Z.
(3) The submersion h : Z → X is called amenable if it admits a domi-

nating cascade.

Notation 2.3. — Suppose that (E = Z × Cn, E0, s) is a dominating cas-
cade for the submersion h : Z → X. Let f : U → Z be a holomorphic section
of h : Z → X defined on some open subset U of X. Let Ef = U × Cn be
the product vector bundle over U and define

E0
f := {(x, v) ∈ U × Cn : (f(x), v) ∈ E0}

sf : E0
f → Z, sf (x, v) := s(f(x), v).

Clearly, E0
f ⊆ Ef is an open neighborhood of the zero section Z(Ef ) =

U × {0} of Ef , and sf is a holomorphic map.

Lemma 2.4. — With Notation 2.3, assume that the open subset U of
X is Stein. Then there exists a holomorphic vector subbundle Ẽf of Ef

having the following property: If Ẽ0
f := Ẽ ∩ E0

f and s̃f : Ẽ0
f → Z is the

restriction of sf , then s̃f maps biholomorphically an open neighborhood
of the zero section Z(Ẽf ) = U × {0} in Ẽ0

f onto an open neighborhood of
f(U) in Z.

Proof. — For an arbitrary point x ∈ U the zero vector in the fiber
(Ef )x = {x} × Cn is (x, 0). Moreover, the derivative

d(x,0)sf : T(x,0)Ef → Tf(x)Z

induces a surjective linear map

φx : (Ef )x → V (h)f(x)

(we regard (Ef )x = T(x,0)(Ef )x as a vector subspace of T(x,0)Ef ). Note
that the union K :=

⋃
x∈U Kerφx is a holomorphic vector subbundle of Ef .

Since U is a Stein open subset of X, it follows from Cartan’s theorem B that
Ef can be expressed as a direct sum Ef = Ẽf ⊕ K for some holomorphic
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vector subbundle Ẽf of Ef , see [13, Corollary 2.6.6]. Set Ẽ0
f := Ẽf ∩ E0

f

and let s̃f : Ẽ0
f → Z be the restriction of sf : Ef → Z. We have s̃f (x, 0) =

s(f(x), 0) = f(x) for all x ∈ U , hence s̃f induces a biholomorphism between
Z(Ẽf ) = U × {0} and f(U). Moreover, by construction, the derivative

d(x,0)s̃f : T(x,0)Ẽf → Tf(x)Z

is an isomorphism for all x ∈ U . Consequently, s̃f is a local biholomorphism
at each point (x, 0). Therefore the lemma follows from [8, (12.7)]. □

Lemma 2.5. — Suppose that (E = Z × Cn, E0, s) is a dominating cas-
cade for the submersion h : Z → X. Let U be an open Stein subset of X and
let F : U × [0, 1] → Z be a homotopy of holomorphic sections of h : Z → X.
Let U0 be an open subset of X whose closure U0 is compact and contained
in U . Let t0 ∈ [0, 1]. Then there exist a neighborhood I0 of t0 in [0, 1] and
a continuous map η : U0 × I0 → Cn such that

(1) (F (x, t0), η(x, t)) ∈ E0 for all (x, t) ∈ U0 × I0,
(2) η(x, t0) = 0 for all x ∈ U0,
(3) s(F (x, t0), η(x, t)) = F (x, t) for all (x, t) ∈ U0 × I0,
(4) for every t ∈ I0 the map U0 → Cn, x 7→ η(x, t) is holomorphic.

Proof. — Define a holomorphic section f : U → Z by f(x) = F (x, t0).
By Lemma 2.4, there exists a holomorphic subbundle Ẽf of Ef such that if
Ẽ0

f = Ẽf ∩E0 and s̃f : Ẽ0
f → Z is the restriction of sf , then s̃f maps biholo-

morphically an open neighborhood M ⊆ Ẽ0
f of the zero section Z(Ẽf ) =

U × {0} onto an open neighborhood N ⊆ Z of f(U). Let σ : M → N be
the restriction of s̃f . Since U0 is a compact subset of U , we can choose
an open neighborhood I0 of t0 in [0, 1] such that Ft(U0) ⊆ N for all
t ∈ I0. Therefore, for every t ∈ I0, there exists a unique holomorphic
map ξt : U0 → M satisfying Ft(x) = σ(ξt(x)) for all x ∈ U0. Writing ξt(x)
as ξt(x) = (αt(x), ηt(x)), where αt : U0 → U and ηt : U0 → Cn are holo-
morphic maps, for all (x, t) ∈ U0 × I0 we get

Ft(x) = s̃f (αt(x), ηt(x)) = s(f(αt(x)), ηt(x)),

hence also

x = h(Ft(x)) = h(s(f(αt(x)), ηt(x))) = αt(x),

where the last equality follows from Definition 2.2(1). Consequently,
αt(x) = x for all (x, t) ∈ U0 × I0. By construction, η : U0 × I0 → Cn,
(x, t) 7→ ηt(x) is a continuous map and conditions (1)–(4) hold. □
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Lemma 2.6. — Suppose that the submersion h : Z → X is amenable.
Let U be an open Stein subset of X and let F : U × [0, 1] → Z be a
homotopy of holomorphic sections of h : Z → X. Let U0 be an open subset
of X whose closure U0 is compact and contained in U . Then there exists a
dominating cascade (E = Z × Cm, E0, s) for h : Z → X and a continuous
map η : U0 × [0, 1] → Cm such that

(1) (F (x, 0), η(x, t)) ∈ E0 for all (x, t) ∈ U0 × [0, 1],
(2) η(x, 0) = 0 for all x ∈ U0,
(3) s(F (x, 0), η(x, t)) = F (x, t) for all (x, t) ∈ U0 × [0, 1],
(4) for every t ∈ [0, 1] the map U0 → Cm, x 7→ η(x, t) is holomorphic.

Proof. — Let (Ẽ = Z × Cn, Ẽ0, s̃) be a dominating cascade for the sub-
mersion h : Z → X. In view of Lemma 2.5 and the compactness of the
interval [0, 1] (see the Lebesgue lemma for compact metric spaces [7, p. 28,
Lemma 9.11]), there exists a partition 0 = t0 < t1 < · · · < tk = 1 of [0, 1]
such that for i = 1, . . . , k there exists a continuous map ηi : U0 × [ti−1, ti] →
Cn with the following properties:

• (F (x, ti−1), ηi(x, t)) ∈ Ẽ0 for all (x, t) ∈ U0 × [ti−1, t1],
• ηi(x, ti−1) = 0 for all x ∈ U0,
• s̃(F (x, ti−1), ηi(x, t)) = F (x, t) for all (x, t) ∈ U0 × [ti−1, ti],
• for every t ∈ [ti−1, ti] the map U0 → Cn, x 7→ ηi(x, t) is holomor-

phic.
For i = 1, . . . , k we define recursively a dominating cascade (E(i), E(i)0, s(i))
by

(E(i), E(i)0, s(i)) := (Ẽ, Ẽ0, s̃) if i = 1,

while for i ⩾ 2 we set

E(i) := Z × (Cn)i

E(i)0 :=
{

(z, v1, . . . , vi) ∈ E(i) :
(z, v1, . . . , vi−1) ∈ E(i− 1)0,

(si−1(z, v1, . . . , vi−1), vi) ∈ E(1)0

}
,

s(i) : E(i)0 → Z, s(i)(z, v1, . . . , vi) := s(1)(s(i−1)(z, v1, . . . , vi−1), vi),

where z is in Z and v1, . . . , vi are in Cn.
In particular, (E,E0, s) := (E(k), E(k)0, s(k)) is a dominating cascade

for h : Z → X. By construction, E = Z × Cm, where Cm = (Cn)k is the
k-fold product of Cn. Now, consider a map η : U0 × [0, 1] → Cm = (Cn)k

defined by
η(x, t) := (η1(x, t), 0, . . . , 0)
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for all (x, t) ∈ U0 × [t0, t1], and

η(x, t) := (η1(x, t), . . . , ηi−1(x, t), ηi(x, t), 0, . . . , 0)

for all (x, t) ∈ U0 × [ti−1, ti] with i = 2, . . . , k. One readily checks that η is
a well-defined continuous map satisfying (1)–(4). □

We have the following result on approximation of holomorphic sections
by regular sections.

Theorem 2.7. — Let h : Z → X be an amenable regular submersion
from an algebraic manifold Z onto an affine algebraic manifold X. Let K
be a compact holomorphically convex subset of X and let f : K → Z be a
holomorphic section of h : Z → X that is homotopic through holomorphic
sections to a regular section defined on K. Then f can be approximated
by regular sections defined over K.

Proof. — By assumption, there exist an open neighborhood U ⊆ X of
K and a homotopy F : U× [0, 1] → Z of holomorphic sections of h : Z → X

such that F0|K is a regular section and F1|K = f . Shrinking U if necessary,
we may assume that U is Stein. Choose an open subset U0 of X such that
its closure U0 is compact and K ⊆ U0 ⊆ U0 ⊆ U . Let (E = Z ×Cm, E0, s)
and η : U0 × [0, 1] → Cm be as in Lemma 2.6. In particular, by (3), we get

s(F0(x), η1(x)) = F1(x) for all x ∈ U0,

where η1 : U0 → Cm, η1(x) = η(x, 1).
Since X is an affine algebraic manifold, we may assume that X is an

algebraic subset of CN . Hence, by [19, p. 245, Theorem 18], every holo-
morphic function on X is the restriction of a holomorphic function on CN .
It follows that the compact set K is polynomially convex in CN , being
holomorphically convex in X. Now, represent U0 as U0 = W ∩ X, where
W is an open neighborhood of K in CN . Choose a Stein open neighbor-
hood W1 of K in W . Then the intersection U1 := U0 ∩ W1 is a closed
complex submanifold of W1. By [19, p. 245, Theorem 18] once again, the
holomorphic map η1|U1 : U1 → Cm has a holomorphic extension W1 → Cm.
Therefore, according to the Oka–Weil theorem [20, Theorem 2.7.7], the map
η1|K : K → Cm can be uniformly approximated on K by polynomial maps
CN → Cm. If β : CN → Cm is a polynomial map with β|K sufficiently close
to η1|K , then (F0(x), β(x)) ∈ E0 for all x ∈ K, and

φ : K → Z, x 7→ s(F0(x), β(x))

is a regular map close to f . By Definition 2.2(1), φ is a section of h : Z → X,
which completes the proof. □
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Our next task is to derive from Theorem 2.7 a result on approximation
of holomorphic maps. To this end the following is useful.

Definition 2.8. — Let Y be an algebraic manifold.

(1) A cascade for Y is a triple (E,E0, s), where E = Y × Cn is the
product vector bundle over Y , for some n, and s : E0 → Y is a
regular map defined on a Zariski open neighborhood E0 ⊆ E of
the zero section Z(E) = Y × {0} of E such that s(y, 0) = y for all
y ∈ Y .

(2) A cascade (E,E0, s) for Y is said to be dominating if the derivative

d(y,0)s : T(y,0)E → TyY

maps the subspace Ey = T(y,0)Ey of T(y,0)E onto TyY , that is,

d(y,0)s(Ez) = TyY for all y ∈ Y.

(3) The algebraic manifold Y is called amenable if it admits a domi-
nating cascade.

Note that Definition 2.8 is a special case of Definition 2.2 for the trivial
submersion h : Y → X, where X is reduced to a single point. A cascade
(resp. dominating cascade) (E,E0, s) for Y with E0 = E is just what has
been called in the literature an algebraic spray (resp. algebraic dominating
spray) for Y on the product vector bundle E [12, 13, 14, 18, 22, 24, 25].

Let X and Y be complex (holomorphic) manifolds. Given a compact
subset K of X, we say that two holomorphic maps f0, f1 : K → Y are
homotopic through holomorphic maps if there exist an open neighborhood
U ⊆ X of K and a continuous map F : U × [0, 1] → Y such that for every
t ∈ [0, 1] the map Ft : U → Y , x 7→ F (x, t) is holomorphic and F0|K = f0,
F1|K = f1.

Theorem 2.9. — Let X be an affine algebraic manifold, K a compact
holomorphically convex subset of X, and Y an amenable algebraic man-
ifold. Let f : K → Y be a holomorphic map that is homotopic through
holomorphic maps to a regular map from K into Y . Then f can be approx-
imated by regular maps from K into Y .

Proof. — First observe that the canonical projection π : X × Y → X is
amenable, that is, admits a dominating cascade. Indeed, by assumption,
there is a dominating cascade (E = Y × Cn, E0, s) for Y . We obtain a
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dominating cascade (Ẽ, Ẽ0, s̃) for π : X × Y → X, where

Ẽ := (X × Y ) × Cn,

Ẽ0 := {((x, y), v) ∈ Ẽ : (y, v) ∈ E0}

s̃ : Ẽ0 → X × Y, s̃((x, y), v) := s(y, v).

Clearly, φ : K → X × Y , x 7→ (x, f(x)) is a holomorphic section of π : X ×
Y → X. By assumption once again, φ is homotopic through holomor-
phic sections to a regular section defined on K. Hence, in view of Theo-
rem 2.7, the section φ can be approximated by regular sections defined on
K. Consequently, f : K → Y can be approximated by regular maps from
K into Y . □

For the proof of Theorem 1.1 we need two additional auxiliary results.

Proposition 2.10. — Every algebraic manifold that is homogeneous
for some linear algebraic group is amenable.

Proof. — Let G be a linear algebraic group and let G0 be the irreducible
component of G that contains the identity element 1. Set n := dimG. By
a result of Chevalley [9, Corollary 2], G0 is a rational variety, and hence
there exist a nonempty Zariski open subset U of Cn and a regular map
ψ : U → G0 such that the image ψ(U) is a Zariski open subset of G0 and
ψ induces a biregular isomorphism from U onto ψ(U). Using a translation
in Cn we may assume that U contains the origin 0 ∈ Cn. Then the map
φ : U → G, v 7→ ψ(v)ψ(0)−1 is regular, φ(0) = 1, and the derivative of
φ at 0 is a linear isomorphism. Now, let Y be a homogeneous algebraic
manifold for G. We obtain a dominating cascade (E,E0, s) for Y , where
E := Y ×Cn, E0 := Y ×U , and s : E0 → Y is defined by s(y, v) := φ(v) · y
for all (y, v) ∈ E0. □

Lemma 2.11. — Let X be a Stein manifold, K a compact holomorphi-
cally convex subset of X, and Y a complex manifold that admits a transi-
tive action of a complex Lie group. Let f0, f1 : K → Y be two homotopic
holomorphic maps. Then f0 and f1 are homotopic through holomorphic
maps.

This lemma is contained in [16] and is a special case of a much more
general parametric h-principle [13, Theorem 5.4.4].

Proof of Theorem 1.1. — By Proposition 2.10, the algebraic manifold Y
is amenable. Hence (2) implies (1) in view of Theorem 2.9 and Lemma 2.11.
Obviously, (1) implies (2) since any two sufficiently close continuous maps
in C(K,Y ) are homotopic. □
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