Applying the authors’ preceding work, we construct a version of the moduli space of -torsors over the formal punctured disk for a finite group . To do so, we introduce two Grothendieck topologies, the sur (surjective) and luin (locally universally injective) topologies, and define P-schemes using them as variants of schemes. Our moduli space is defined as a P-scheme approximating the relevant moduli functor. We then prove that Fröhlich’s module resolvent gives a locally constructible function on this moduli space, which implies that motivic integrals appearing in the wild McKay correspondence are well-defined.
En appliquant le travail précédent des auteurs, nous construisons une version d’un espace de modules de -torseurs sur le disque perforé formel pour un groupe fini . Dans ce but, nous introduisons deux topologies de Grothendieck, les topologies sur (surjective) et luin (localement universellement injective), et définissons des P-schémas en les utilisant comme variantes de schémas. Notre espace de modules est défini comme un P-schéma approximant le foncteur de modules pertinent. On montre alors que la résolvante de modules de Fröhlich donne une fonction localement constructible sur cet espace de modules, ce qui implique que les intégraux motiviques apparaissant dans la correspondance sauvage de McKay sont bien définis.
Revised:
Accepted:
Published online:
Keywords: Moduli space, Grothendieck topologies, torsors, motivic integration, the wild McKay correspondence, Fröhlich’s module resolvent.
Mot clés : Espace de modules, topologies de Grothendieck, torseurs, intégration motivique, correspondance sauvage de McKay, résolvante de modules de Fröhlich.
Tonini, Fabio 1; Yasuda, Takehiko 2
@article{AIF_2023__73_2_511_0, author = {Tonini, Fabio and Yasuda, Takehiko}, title = {Moduli of formal torsors {II}}, journal = {Annales de l'Institut Fourier}, pages = {511--558}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {2}, year = {2023}, doi = {10.5802/aif.3533}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3533/} }
TY - JOUR AU - Tonini, Fabio AU - Yasuda, Takehiko TI - Moduli of formal torsors II JO - Annales de l'Institut Fourier PY - 2023 SP - 511 EP - 558 VL - 73 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3533/ DO - 10.5802/aif.3533 LA - en ID - AIF_2023__73_2_511_0 ER -
%0 Journal Article %A Tonini, Fabio %A Yasuda, Takehiko %T Moduli of formal torsors II %J Annales de l'Institut Fourier %D 2023 %P 511-558 %V 73 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3533/ %R 10.5802/aif.3533 %G en %F AIF_2023__73_2_511_0
Tonini, Fabio; Yasuda, Takehiko. Moduli of formal torsors II. Annales de l'Institut Fourier, Volume 73 (2023) no. 2, pp. 511-558. doi : 10.5802/aif.3533. https://aif.centre-mersenne.org/articles/10.5802/aif.3533/
[1] Groups, Rings, Modules, Dover Publications, 2014, 480 pages
[2] Éléments de mathématique, Masson, Paris, 1981, vii+422 pages https://mathscinet.ams.org/mathscinet-getitem?mr=643362 (Algèbre. Chapitres 4 à 7. [Algebra. Chapters 4–7]) | MR | Zbl
[3] Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995, xvi+785 pages | DOI | MR | Zbl
[4] Solutions d’équations à coefficients dans un anneau hensélien, Ann. Sci. École Norm. Sup. (4), Volume 6 (1973), pp. 553-603 | DOI | MR | Zbl
[5] Module conductors and module resolvents, proc. London Math. Soc. (3), Volume 32 (1976) no. 2, pp. 279-321 | DOI | MR | Zbl
[6] Almost ring theory, Lecture Notes in Mathematics, 1800, Springer-Verlag, Berlin, 2003, vi+307 pages | DOI | MR | Zbl
[7] Moduli of -covers of curves, Comm. Algebra, Volume 8 (1980) no. 12, pp. 1095-1122 | DOI | MR | Zbl
[8] Triangulated categories of motives in positive characteristic, Ph. D. Thesis, Université Paris 13, Australian National University (2012)
[9] Stacks Project, 2015 (http://stacks.math.columbia.edu)
[10] Moduli of formal torsors, Journal of Algebraic Geometry, Volume 29 (2020), pp. 753-801 | DOI | MR | Zbl
[11] Algebraic and Nori fundamental gerbes, J. Inst. Math. Jussieu, Volume 18 (2019) no. 4, pp. 855-897 https://mathscinet.ams.org/mathscinet-getitem?mr=3963521 | DOI | MR | Zbl
[12] Essentially finite vector bundles on normal pseudo-proper algebraic stacks, Doc. Math., Volume 25 (2020), pp. 159-169 | DOI | MR | Zbl
[13] Grothendieck topologies, fibered categories and descent theory, Fundamental algebraic geometry (Math. Surveys Monogr.), Volume 123, Amer. Math. Soc., Providence, RI, 2005, pp. 1-104 | MR
[14] Mass formulas for local Galois representations and quotient singularities II: Dualities and resolution of singularities, Algebra Number Theory, Volume 11 (2017) no. 4, pp. 817-840 | DOI | MR | Zbl
[15] Mass formulas for local Galois representations and quotient singularities. I: a comparison of counting functions, Int. Math. Res. Not. IMRN (2015) no. 23, pp. 12590-12619 | DOI | MR | Zbl
[16] Toward motivic integration over wild Deligne–Mumford stacks, Higher dimensional algebraic geometry—in honour of Professor Yujiro Kawamata’s sixtieth birthday (Adv. Stud. Pure Math.), Volume 74, Math. Soc. Japan, Tokyo, 2017, pp. 407-437 | DOI | MR | Zbl
[17] The wild McKay correspondence and -adic measures, J. Eur. Math. Soc. (JEMS), Volume 19 (2017) no. 12, pp. 3709-3734 | DOI | MR | Zbl
[18] Motivic integration over wild Deligne-Mumford stacks, 2019 (https://arxiv.org/abs/1908.02932) | Zbl
Cited by Sources: