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MODULI OF FORMAL TORSORS II

by Fabio TONINI & Takehiko YASUDA (*)

Abstract. — Applying the authors’ preceding work, we construct a version of
the moduli space of G-torsors over the formal punctured disk for a finite group
G. To do so, we introduce two Grothendieck topologies, the sur (surjective) and
luin (locally universally injective) topologies, and define P-schemes using them as
variants of schemes. Our moduli space is defined as a P-scheme approximating
the relevant moduli functor. We then prove that Fröhlich’s module resolvent gives
a locally constructible function on this moduli space, which implies that motivic
integrals appearing in the wild McKay correspondence are well-defined.

Résumé. — En appliquant le travail précédent des auteurs, nous construisons
une version d’un espace de modules de G-torseurs sur le disque perforé formel pour
un groupe fini G. Dans ce but, nous introduisons deux topologies de Grothendieck,
les topologies sur (surjective) et luin (localement universellement injective), et dé-
finissons des P-schémas en les utilisant comme variantes de schémas. Notre espace
de modules est défini comme un P-schéma approximant le foncteur de modules
pertinent. On montre alors que la résolvante de modules de Fröhlich donne une
fonction localement constructible sur cet espace de modules, ce qui implique que
les intégraux motiviques apparaissant dans la correspondance sauvage de McKay
sont bien définis.

1. Introduction

In the preceding paper [10], the authors constructed the moduli stack of
G-torsors over Spec k((t)), where k is a field of characteristic p > 0 and G is
a group of the form H⋊C for a p-group H and a tame cyclic group C, which
generalizes and refines Harbater’s work for p-groups [7]. The motivation of
the authors came from the wild McKay correspondence. In this theory,
motivic integrals of the forms

∫
∆G

Ld−v and
∫

∆G
Lw appear, where ∆G is
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512 Fabio TONINI & Takehiko YASUDA

the moduli space of G-torsors over Spec k((t)), v, w are functions ∆G −→
1

|G|Z associated to a representation G −→ GLd(kJtK) and d is its rank. The
first aim of the present paper is to construct a version of the moduli space
∆G for an arbitrary finite group by using the mentioned result from the
previous paper and prove that motivic integrals as above are well-defined
in a version of the complete Grothendieck ring of varieties. After the first
draft of this paper had been written, the main assertion of the wild McKay
correspondence, the equality of

∫
∆G

Ld−v and the stringy motive of the
quotient kJtK-scheme AdkJtK/G associated to the representation, was proved
by the second author in [18], building on the well-definedness of the integral
obtained in this paper.

We do not construct the moduli stack, since it appears difficult. Instead
we construct what we call the P-moduli space. This is a version of the
moduli space, which is even coarser than the coarse moduli space. Actually
this is the coarsest one for which motivic integrals as above still make sense.
We construct the category of P-schemes by modifying morphisms of the
category of schemes. The P-moduli space is the P-scheme approximating
the relevant moduli functor the most. We call it the strong P-moduli space
if it satisfies an additional condition. A precise statement of our first main
result is as follows:

Theorem 1.1 (Theorem 8.9). — Let G be a finite group and let k be
a field. Consider the functor from the category of affine k-schemes to the
category of sets which sends SpecR to the set of isomorphism classes of G-
torsors over SpecR((t)). This functor has a strong P-moduli space, which
is the disjoint union of countably many affine schemes of finite type over k.

The theorem can be generalized to the case where G is a finite étale group
scheme (Corollary 8.10) and it holds in any characteristic. Here we outline
the proof. From the previous work, we have the P-moduli space if G is
the semidirect product of a p-group and a tame cyclic group. We construct
the P-moduli space for an arbitrary G by “gluing” the P-moduli spaces of
semidirect products as above. To do so, we show that every G-torsor over
SpecR((t)) is induced from an H-torsor with H ⊂ G a subgroup which
is a semidirect product as above, locally in SpecR for some Grothendieck
topology. What we use as such a topology is the sur (surjective) topology;
a scheme morphism Y −→ X is a sur covering if it is surjective and lo-
cally of finite presentation. This topology is also incorporated into the very
definition of P-schemes. We also introduce the luin (locally universally in-
jective) topology. It is interesting that such a crude topology as the sur
topology is still useful. The sur and luin topologies and P-schemes would
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MODULI OF FORMAL TORSORS II 513

be of independent interest and we study their basic properties. We note
that Kelly [8, Def. 3.5.1] introduced a Grothendieck topology similar to the
sur topology; he does not assume that a covering Y −→ X is locally of
finite presentation, instead assume that every point x ∈ X admits a lift
y ∈ Y having the same residue field as x.

Advantages of P-moduli spaces are that it is much easier to show their
existence than in the case of usual moduli stacks or schemes and that they
are invariant by some transformations preserving geometric points. For in-
stance if F is a moduli functor or stack and f : F −→ 1

lZ is a locally
constructible function, then a P-moduli space for F is a disjoint union of
P -moduli spaces for {f = r} ⊆ F , the submoduli of F of objects where
f has constant value r (see Proposition 4.27). For instance, we may re-
strict ourselves to those G-torsors over SpecR((t)) which have constant
ramification as a family over SpecR in a suitable sense.

We also prove that the functions v, w mentioned above are locally con-
structible. This together with Theorem 1.1 shows that integrals

∫
∆G

Ld−v

and
∫

∆G
Lw are well-defined. The function v is essentially the same as the

module resolvent introduced by Fröhlich [5] and w is a variant of v. When
the given representation G −→ GLd(kJtK) is a permutation representation,
then v and w are closely related to the Artin and Swan conductors [5, 15].

Acknowledgements

We would like to thank Ofer Gabber for helpful comments, which allowed
us to remove the Noetherianity assumption in Theorem 7.3.

2. Notation, terminology and convention

For a scheme X, we denote by |X| the underlying topological space.
For a category C, the expression A ∈ C means that A is an object of C.
We denote the category of schemes by Sch and the one of affine schemes

by Aff . For a scheme S, we denote the category of S-schemes by Sch/S.
When S is separated, we denote by Aff/S its subcategory of S-schemes
affine over S.

We often identify a ring R with its spectrum SpecR and apply the ter-
minology for schemes also to rings. For instance, for a ring map A −→ B

and a finite group G, we say that B is a G-torsor over A or that B/A is a
G-torsor if SpecB −→ SpecA is a G-torsor.
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514 Fabio TONINI & Takehiko YASUDA

3. Luin and sur topologies

In this section, we introduce two Grothendieck topologies, the luin topol-
ogy and the sur topology, and study their basic properties. We need these
topologies to develop the theory of P-schemes and P-moduli spaces in Sec-
tion 4.

Definition 3.1. — A morphism of schemes f : Y −→ X is said to be
universally bijective (resp. universally injective) if for all maps of schemes
X ′ −→ X the map X ′ ×X Y −→ X ′ is bijective (resp. injective) as map of
sets.

Let S be a base scheme. A morphism of S-schemes f : Y −→ X is said
to be geometrically bijective (resp. geometrically injective, geometrically
surjective) if for all algebraically closed field K and maps SpecK −→
S the map HomS(Spec(K), Y ) −→ HomS(Spec(K), X) is bijective (resp.
injective, surjective).

Remark 3.2. — A morphism of S-schemes f : Y −→ X is geometrically
bijective (resp. injective, surjective) if and only if it is so as a map of
(SpecZ-)schemes. In other words this notion is an absolute property, not a
relative one. We have chosen to include a base scheme to make the definition
compatible with Definition 4.8.

Lemma 3.3. — Let S be a base scheme and f : Y −→ X be a morphism
of S-schemes. We have:

(1) the map f is universally injective if and only it is geometrically
injective;

(2) if the map f is geometrically bijective (resp. geometrically surjec-
tive) then it is universally bijective (resp. surjective); the converse
holds if f is locally of finite type.

Proof.
(1). — This is [9, Tag 01S4], taking into account that, if K −→ L is a

map of fields and Z is a scheme, then Z(K) −→ Z(L) is injective.
(2). — Since the base change of a surjective map is surjective, the “bi-

jective case” follows from (1) and the “surjective” one. If a map if geomet-
rically surjective then it is clearly surjective. For the converse assume that
f is locally of finite type and let x : SpecK −→ X ∈ X(K) be a geometric
point. The fiber Y ×X SpecK is locally of finite type, non empty since f is
surjective, and has a K-rational point since K is algebraically closed. This
defines an element of Y (K) over x ∈ X(K). □

ANNALES DE L’INSTITUT FOURIER



MODULI OF FORMAL TORSORS II 515

Remark 3.4. — Even if the notion of universally injective or bijective is
more common in the literature, we are going to use the notion of geomet-
rically injective or bijective instead. Firstly because, for morphisms locally
of finite type, the two notions coincide. But the main reason is that the sec-
ond notion easily extends in the case of natural transformation of functors
(see Definition 4.8) and it plays a crucial role in the next chapters.

Definition 3.5. — A morphism of schemes g : Y −→ X is called a sur
(surjective) covering if it is locally of finite presentation and surjective.

A morphism of schemes g : Y −→ X is called a luin (locally universally
injective) covering if it is a sur covering and there is a covering {Yi}i of
open subsets of Y such that Yi −→ X is geometrically injective.

A morphism of schemes g : Y −→ X is called a ubi (universally bijective)
covering if it is a geometrically injective sur covering. In particular it is a
geometrically bijective luin covering.

We call a collection of morphisms (Ui −→ X)i∈I in Sch a sur (resp.
luin, ubi) covering if the induced morphism g : Y =

∐
i∈I Ui −→ X is a sur

(resp. luin, ubi) covering.

It is easy to check that luin and sur coverings satisfy the axioms of a
Grothendieck topology. We define the luin topology and the sur topology
by these collections of coverings. By construction fppf coverings are sur
coverings, while Zariski coverings are luin coverings.

If (Ui −→ X)i∈I is a sur (resp. luin) covering, then
∐
i∈I Ui −→ X is

again a sur (resp. luin) covering. Hence, when discuss the luin or sur topol-
ogy, we often consider coverings U −→ X consisting of a single morphism.

We will soon prove (see Corollary 3.12) that sur coverings satisfy the
equivalent conditions of [13, Proposition 2.33], that is for a sur covering
any open affine below is dominated by a quasi-compact open above. This
is the classical quasi-compactness condition required for fpqc coverings.

Definition 3.6 ([9, Tag 005G]). — A subset E ⊆ X of a topological
space is called constructible if it is a finite union of sets of the form U ∩
(X − V ) where U, V −→ X are quasi-compact open immersions. It is said
locally constructible if there exists an open covering {Ui}i of X such that
E ∩ Ui is constructible in Ui.

Every constructible subset of a quasi-compact space is quasi-compact
(see [9, Tag 09YH]). For a quasi-compact and quasi-separated scheme, lo-
cally constructible subsets are constructible (see [9, Tag 054E]). We will
often use this form of Chevalley’s theorem (see [9, Tag 054K]):

TOME 73 (2023), FASCICULE 2
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Theorem 3.7. — A quasi-compact and locally of finite presentation
map of schemes preserves locally constructible subsets.

Lemma 3.8. — Let X = SpecA be an affine scheme and U, V ⊆ X

two quasi-compact open subsets. Then there is a scheme structure on E =
U ∩ (X − V ) such that E −→ X is a finitely presented immersion. If U is
affine we can furthermore assume that E is affine.

Proof. — The quasi-compactness of V implies that there exists a finitely
generated ideal I of A such that Spec(A/I) = X − V . The composition
(SpecA/I) ∩ U −→ SpecA/I −→ SpecA is a finitely presented immersion
whose image is U ∩ (X − V ) and it is affine if U is affine. □

Lemma 3.9. — Let Y be a quasi-compact and quasi-separated scheme
and E ⊆ Y a constructible subset. If E =

⋃
j∈J Ej is union of constructible

subsets of Y then there exists J ′ ⊆ J finite such that E =
⋃
j∈J′ Ej .

Proof. — We use the theory of spectral spaces (see [9, Tag 08YF]). A
quasi-compact and quasi-separated scheme is a spectral space. Any spectral
space endowed with the coarsest topology in which its constructible subsets
are both open and closed is quasi-compact. With respect to this topology,
E is a closed subset of Y , hence quasi-compact and E = ∪j∈JEj is an open
covering. This implies the assertion. □

Corollary 3.10. — Let {fj : Zj −→ Y }j∈J be a collection of lo-
cally finitely presented and quasi-compact maps such that the image of∐
j∈J Zj −→ Y is locally constructible. If V ⊆ Y is a quasi-compact and

quasi-separated open subset of Y (e.g. affine) then there exists a finite
subset J ′ ⊆ J such that

Im

∐
j∈J′

f−1
j (V ) −→ V

 = Im

∐
j∈J

f−1
j (V ) −→ V

 .

Proof. — If E = Im(
∐
j∈J Zj −→ Y ) then the right hand side of the

above equation is E ∩ V , which is constructible in V . By Chevalley’s the-
orem 3.7 the image Ei of f−1

j (V ) −→ V is constructible. The conclusion
follows from Lemma 3.9. □

Corollary 3.11. — Let f : X −→ Y be a geometrically injective map
which is locally of finite presentation. Then f is quasi-compact if and only
if f(X) is locally constructible (e.g. if f is geometrically bijective).

Proof. — The “only if” part is Chevalley’s theorem 3.7, while the “if”
part follows reducing first to the case where Y is affine and then applying
Corollary 3.10 with {Zj}j an open affine covering of X. □
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Corollary 3.12. — Let f : X −→ Y be a sur covering. Then for any
quasi-compact open V of Y there exists a quasi-compact open W of X
such that f(W ) = V . In other words sur coverings satisfy the equivalent
conditions stated in [13, Proposition 2.33].

Proof. — We can assume V = Y affine. In this case it is enough to apply
Corollary 3.10 to the collection {U −→ Y }U with U open affine of X. □

Definition 3.13. — An open covering {Ui}i∈I of a topological space Y
is called locally finite if for all y ∈ Y there exists an open neighborhood Uy
of y such that there are at most finitely many indices i ∈ I with Uy∩Ui ̸= ∅.
If all the Ui are quasi-compact (e.g. affine) this is the same of asking that
for each i ∈ I there are at most finitely many j ∈ I with Ui ∩ Uj ̸= ∅.

Notation 3.14. — Let Y be a set and let {Zi}i∈I be a collection of subsets
Zi ⊂ Y . For a subset J ⊂ I, we define Z◦

J :=
⋂
i∈J Zi \

⋃
i∈Jc Zi.

It is easy to see that Y =
∐
J⊂I Z

◦
J . Moreover, for subsets J1, J2 ⊂ I,

the set ZJ1,J2 :=
⋂
i∈J1

Zi \
⋃
i∈J2

Zi is written as

(3.1) ZJ1,J2 =
∐

J1⊂J, J2⊂Jc

Z◦
J .

Lemma 3.15. — Let Y be a scheme and E ⊆ Y be a locally con-
structible subset. Then there exist affine schemes Zj and locally finitely pre-
sented immersions Zj −→ Y such that the map

∐
j Zj −→ Y has image E.

If Y is quasi-separated and has a locally finite and affine open covering
we can furthermore assume that the maps Zj −→ Y are quasi-compact and
the map

∐
j Zj −→ Y is a finitely presented monomorphism. In particular,

Y has a ubi covering {Zj −→ Y } with Zj affine.

Proof. — We first prove the second assertion. Let Y be a quasi-separated
scheme with a locally finite affine open covering {Ui}i∈I . Consider the de-
composition Y =

∐
J⊂I U

◦
J as sets. From the local finiteness of the covering,

if J is infinite, then U◦
J is empty. Since {Ui} is a covering, if J is empty,

then so is U◦
J . If J is finite and non empty and j ∈ J then U = ∩q∈JUq

is a quasi-compact open subset of Uj because Y is quasi-separated. Since
the covering {Ui}i is locally finite there are only finitely many q ∈ Jc such
that Uq ∩ Uj ̸= ∅ and therefore, using again that Y is quasi-separated, the
union

V =
⋃
q∈Jc

(Uq ∩ Uj)

is a quasi-compact open subset of Uj . Since U◦
J = U∩(Uj−V ) by definition,

Lemma 3.8 yields a structure of scheme on U◦
J such that the morphism

TOME 73 (2023), FASCICULE 2
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U◦
J −→ Uj is a finitely presented immersion and, if Y is also separated so

that U is affine, we can choose U◦
J affine. In general U◦

J is quasi-compact
and separated and, since Y is quasi-separated, also the map U◦

J −→ Y

is a finitely presented immersion. Indeed the map Uj −→ Y is a finitely
presented immersion: it is locally of finite presentation because an open
immersion, quasi-compact because Y is quasi-separated and Uj is quasi
compact, and quasi-compact because it is a monomorphism. Moreover the
map

∐
J U

◦
J −→ Y is a surjective monomorphism.

We use the above construction several times. Firstly, starting from any
locally finite affine open covering {Ui}i∈I , it allows to reduce the problem
to the case where Y is quasi-compact and separated: we can replace Y with
U◦
J and E with its preimage on U◦

J .
In this case, since E is constructible, we can write E =

⋃n
l=1 Vl\Vn+l with

quasi-compact open subsets Vl ⊂ Y . We now apply the above constructions
to a finite affine open covering {Ui}i∈I such that all Vl can be written as
union of some opens in this covering. Since each Vl\Vn+l is a (automatically
disjoint) union of subsets of the form U◦

J , J ⊂ I as in (3.1), so is E,
say E =

∐
J∈Λ U

◦
J for a set Λ of subsets of I. It follows that the map∐

J∈Λ U
◦
J −→ Y is finitely presented, a monomorphism, has image E and all

U◦
J −→ Y are finitely presented immersions. Moreover, since Y is separated,

the U◦
J are affine, as required.

For a general scheme Y , we take an affine covering {Yi}i of Y and a
finitely presented monomorphism

∐
j Zij −→ Yi with image E ∩ Yi and

such that Zij −→ Yi is an affine and finitely presented immersion. It is
clear that

∐
i,j Zij −→ Y satisfies the requests. □

Corollary 3.16. — Let Y be a quasi-separated scheme with a locally
finite and affine open covering. Then if f : Z −→ Y is a luin covering there
exists an ubi covering Z ′ −→ Y which is finitely presented, separated and
has a factorization Z ′ −→ Z

f−−→ Y . In particular a luin covering of Y is
refined by an ubi covering.

Proof. — By Lemma 3.15, there exists a ubi covering {Yj −→ Y } with
Yj affine. For each j, we have the luin covering Zj := Z ×Y Yj −→ Yj . If
Z ′
j −→ Yj is a ubi covering as in the corollary for this luin covering, then∐
j Z

′
j −→ Y is the desired ubi covering. Thus it suffices to show the collary

in the case where Y is affine.
By Corrollary 3.12 there exists a quasi-compact open subset Z̃ ⊆ Z such

that f(Z̃) = Y . In particular Z̃ −→ Y is a luin covering refining the given
one. Thus we can assume that Z is quasi-compact. Now let {Zi}i∈I be a
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finite open covering by affine schemes of Z such that Zi −→ Y is geomet-
rically injective and set f(Zi) = Ei. Since f is quasi-compact and locally
of finite presentation all the Ei are constructible subsets. We have Y =∐

∅̸=J⊂I E
◦
J as sets. For each J , we choose an index iJ ∈ J and let ZJ ⊂ ZiJ

to be the preimage of E◦
J , which is a constructible subset of ZiJ mapping bi-

jectively onto E◦
J . Again from Lemma 3.15, there exists a finitely presented

morphism WJ −→ ZiJ from an affine scheme WJ whose image is ZJ . The
scheme Z ′ =

∐
JWJ with the map Z ′ −→ Y satisfies the requests. □

4. P-schemes and moduli spaces

In this section, we develop the theory of P-schemes and P-moduli spaces.
The category of P-varieties (P-schemes of finite type) can be regarded as
the categorification of the modified Grothendieck ring of varieties (Defini-
tion 5.1). Although it would be more natural from this viewpoint to use the
luin topology to define P-schemes, we actually use the sur topology. This
is a key in later applications, since we have uniformization only locally in
the sur topology (Section 7).

Notation 4.1. — Starting from this section, we make use of Hom sets such
as HomS(−,−), HomSch/S(−,−), HomAff/S(−,−) and we want to clarify
here the notation. If C is a category and X,Y : Cop −→ Set are two functor
then HomC(X,Y ) denotes the set of natural transformations X −→ Y . The
symbols HomSch/S(−,−), HomAff/S(−,−) are used with this meaning for
C = Sch/S,Aff/S respectively. On the other hand, by abuse of notation,
we will often simply write HomS(−,−) if it is clear which category is used:
HomS(X,Y ) would be HomSch/S(X,Y ) for X,Y : (Sch/S)op −→ Set,
HomAff/S(X,Y ) for X,Y : (Aff/S)op −→ Set.

If X and Y are S-schemes, then X,Y can be thought of as functors
hX , hY : (Sch/S)op −→ Set but also as their restriction
haX , h

a
Y : (Aff/S)op −→ Set. By Yoneda’s lemma and Zariski descent we

have canonical isomorphisms

HomS(X,Y ) ∼= HomSch/S(hX , hY ) ∼= HomAff/S(haX , haY )

where HomS(X,Y ) denotes the set of morphisms as S-schemes. We will
simply write HomS(X,Y ) and, depending on the interpretation of X,Y ,
use one of the above sets.

TOME 73 (2023), FASCICULE 2
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4.1. P-morphisms and associated functor

Let S be a base scheme. Let Sch/S (resp. Aff/S) be the category of S-
schemes (resp. affine schemes over S). By Sch′/S we denote either Sch/S
or Aff/S. As is well-known, associating the functor T 7−→ X(T ) to the
scheme X, we have a fully faithful embedding of Sch/S into the category
of functors (Sch′/S)op −→ Set. We often identify an S-scheme with the
associated functor (Sch′/S)op −→ Set.

Definition 4.2. — We denote by ACF/S the category of algebraically
closed fields K together with a map SpecK −→ S. Given a functor
X : (Sch′/S)op −→ Set (e.g. an S-scheme) we denote by XF the restriction

XF : ACF/S −→ (Sch′/S)op −→ Set.

Two elements x : SpecK −→ X and y : SpecK ′ −→ X of XF are equiva-
lent if there exists a commutative diagram

SpecK ′′ SpecK ′

SpecK X
x

y

where K ′′ is a field. We denote by |X| the set of equivalence classes of
maps as above and we call points of X its elements. If x ∈ XF (K), with
an abuse of notation, we will write x ∈ |X|. If f : YF −→ XF is a map of
functors (ACF/S)op −→ Set we denote by |f |, or sometimes simply by f ,
the induced map |Y | −→ |X|.

Remark 4.3. — Given a subset E of |X| we define EF ⊆ XF by

EF (K) = {s ∈ X(K) | s ∈ E ⊆ |X|}.

Conversely given a subfunctor G ⊆ XF we can define the subset |G| ⊆ |X|
of points p for which there exists x ∈ G(K) such that x = p in |X|.
Clearly |EF | = E for all E ⊆ X and, in particular |XF | = |X|. We also
have G ⊆ |G|F with an equality if: for all x ∈ X(K) and K −→ K ′ if
x|K′ ∈ G(K ′) then x ∈ G(K).

Notice that (−)F preserves fiber products of functors (Sch′/S)op −→
Set. If X,Y are two schemes over S with Yoneda functors
hX/S , hY/S : Sch′/S −→ Set then hX/S × hY/S is the Yoneda functor of
the S-scheme X ×S Y , that is hX×SY/S = hX/S × hY/S : Sch′/S −→ Set.
In particular we have (X ×S Y )F = XF × YF .
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Definition 4.4. — Given an S-scheme Y and a functor
X : (Sch′/S)op −→ Set, a P -morphism Y −→ X (over S) is a natu-
ral transformation f : YF −→ XF for which there exist a sur covering
{gi : Zi −→ Y } over S and morphisms f ′

i : Zi −→ X over S making the
following diagrams commutative.

(4.1)

(Zi)F

YF XF

f

(gi)F

(f ′
i)F

We denote by HomP
S(Y,X) ⊆ Hom(YF , XF ) the set of P-morphisms from

Y to X.
Since P -morphisms are stable by composition we define P-Sch/S as the

category whose objects are S-schemes and whose maps are P-morphisms
over S. An S P-scheme means an S scheme regarded as an object of
P-Sch/S.

If X : (Sch′/S)op −→ Set is a functor we define XP : (Sch′/S)op −→
Set as follows: XP(Y ) = HomP

S(Y,X) ⊆ Hom(YF , XF ) is the set of P -
morphisms Y −→ X.

There exists a natural functor Sch/S −→ P-Sch/S sending an S-scheme
to itself and a morphism to the induced P-morphism. Notice moreover that
a P -morphism of schemes Y −→ X, more generally a functor YF −→ XF ,
induces a map on the sets of points |Y | −→ |X| which in general is not
continuous.

Remark 4.5. — We coined the terms, P-morphism and P-scheme, to con-
note “perfect” and piecewise. Indeed relative or absolute Frobenius maps
of varieties in positive characterstic and, more generally, ubi coverings (for
example given by locally closed decompositions) become isomorphisms as
P-morphisms (see Lemma 4.14). In particular their inverses are examples of
P-morphisms which are not necessarily morphisms of schemes. In the case
of decompositions those morphisms do not even define continuous maps on
the underlying topological spaces.

Proposition 4.6. — Let X : (Sch′/S)op −→ Set be a functor.
(1) The functorXP : (Sch′/S)op −→ Set extends naturally to a functor

(P-Sch/S)op −→ Set.
(2) There is a canonical morphism X −→ XP and XF −→ (XP)F ,
|X| −→ |XP| are isomorphisms. Moreover XP −→ (XP)P is an
isomorphism.
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(3) Let Y ∈ Sch′/S, f : Y −→ X a P-morphism and f̄ : Y −→ XP the
corresponding element. Then YF

f−−→ XF
∼= (XP)F coincides with

f̄F : YF −→ (XP)F .
(4) If Y : (Sch′/S)op −→ Set is another functor and using that YF ∼=

(Y P)F we obtain a map

HomS(X,Y P) −→ HomS(XF , YF )

and this map is injective. If X is an S-scheme its image is
HomP

S(X,Y ).
(5) If Y : (Sch′/S)op −→ Set is another functor then a map X −→ Y P

factors uniquely through a map XP −→ Y P. In other words the
map X −→ XP induces a bijection

HomS(XP, Y P) −→ HomS(X,Y P).

In particular if X is an S-scheme then

HomS(XP, Y P) ∼= HomS(X,Y P) ∼= HomP
S(X,Y ) ⊆ HomS(XF , YF ).

(6) If Y : Sch/S −→ Set is a sheaf in the Zariski topology and X is an
S-scheme then

HomP
S(X,Y ) = HomP

S (X,Y|Aff/S) ⊆ HomS(XF , YF ).

In particular the restriction

HomS(X,Y P) −→ HomS(X|Aff/S , (Y|Aff/S)P)

is an isomorphism.
(7) If U is a reduced S-scheme and X is a scheme the map X(U) −→

XP(U) is injective .

Proof.
(1). — Consider the functor X̄ : P-Sch/S −→ Set given by

X̄(Y ) = HomACF/S(YF , XF ). The extension of XP from Sch′/S to
P-Sch/S is the subfunctor of X̄ given by Y 7−→ HomP

S(Y,X).
(2). — If T ∈ ACF/S then the composite map

X(T ) = XF (T ) −→ XP(T ) = (XP)F (T ) ↪→ HomACF/S(TF , XF )

is a bijection from the Yoneda lemma. This shows that the left map is a
bijection and that XF −→ (XP)F is an isomorphism.

The last statement follows easily from the definitions.
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(3). — By definition of P-morphism and XP we can replace Y by a sur
covering and assume that f : YF −→ XF is induced by a map f̂ : Y −→ X.

In this case Y f̂−−→ X −→ XP is exactly f̄ and taking (−)F the conclusion
follows.

(4). — In the first claim one can replace X by a scheme in Sch′/S, in
which case the result follows easily from (3). Assume now that X is an
S-scheme and consider the last claim. If X ∈ Sch′/S the result is again
clear by (3). If X is not necessarily in Sch′/S, then HomS(X,Y P) can
be identified with the set of transformations f : XF −→ YF such that, for
all u : T −→ X with T ∈ Sch′/S, the composition f ◦ uF : TF −→ YF
is a P-morphism. Thus HomP

S(X,Y ) ⊆ HomS(X,Y P). Conversely if f ∈
HomS(X,Y P), then it is Zariski locally a P-morphism and therefore sur
locally induced by a genuine morphism. But this exactly means that f is a
P-morphism, as required.

(5). — Given a map ϕ : X −→ Y P it is easy to see that the unique
extension ϕP : XP −→ Y P is defined as follows. Given a : U −→ XP one
defines

ϕP(a) : UF
aF−−→ (XP)F ∼= XF

ϕ−−→ (Y P)F ∼= YF .

(6). — It is enough to note that from the sheaf condition on Y it follows
that the map

HomSch/S(Z, Y ) −→ HomAff/S(Z|Aff/S , Y|Aff/S)

is an isomorphism for all S-schemes Z.
(7). — Consider a, b : U −→ X such that aF = bF and the Cartesian

diagram.

W U

X X ×S X

h

∆

(a,b)

Since (−)F preserves fiber products, it follows that hF : WF −→ UF is an
isomorphism, that is h : W −→ U is geometrically bijective. In particular
h(W ) = U is closed as a subset of U . As h is an immersion it follows that it
is a closed immersion (see [9, Tag 01IQ]) and therefore also an homeomor-
phism. Since U is reduced the map h : W −→ U is an isomorphism, which
means a = b. □

Lemma 4.7. — Let Y be a scheme over S and X a scheme locally of
finite presentation and quasi-separated over S. Given a natural transfor-
mation f : YF −→ XF the following are equivalent:
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(1) there exist a luin covering g : Z −→ Y over S and a map f ′ : Z −→
X over S such that the diagram

(4.2)

ZF

YF XF

f

gF

f ′
F

is commutative;
(2) the transformation f is a P -morphism;
(3) if Γf : YF −→ YF × XF = (Y ×S X)F is the graph of f then

C = Im(|Γf |) ⊆ Y ×S X is locally constructible.

Proof.
(1)⇒ (2). — Follows by definition.
(2) ⇒ (3). — This is a local statement so that we can assume that Y

is affine. Let Z g−−→ Y be a sur covering and Z
f ′

−−→ X such that the dia-
gram (4.2) is commutative. By Corrollary 3.12 we can furthermore assume
that Z −→ Y is quasi-compact. The set C = Im(|Γf |) is the image of the
graph Γf ′ of f ′ along Z×SX −→ Y ×SX. By Chevalley’s theorem 3.7 it is
therefore enough to show that Γf ′ is locally constructible in Z ×S X. But
X −→ S and therefore Z ×S X −→ Z are locally of finite presentation and
quasi-separated. Therefore a section Z −→ Z ×S X is quasi-compact and
locally of finite presentation. Chevalley’s theorem 3.7 again shows that Γf ′

is locally constructible.
(3)⇒ (1). — By definition of luin coverings the statement is local in Y ,

so that we can assume Y affine. By Lemma 3.15 there are locally finitely
presented immersions Zj −→ Y ×SX from affine schemes such that g : Z =∐
j Zj −→ Y ×SX has image C. The composition u : Z −→ Y ×SX −→ Y

is locally of finite presentation because X −→ S and hence Y ×S X −→
Y are locally of finite presentation. It is surjective because C −→ Y is
surjective. By definition it follows that u : Z −→ Y is a sur covering. We
are going to show that it is a luin covering, more precisely that Zj −→ Y

is geometrically injective, and that ZF
uF−−→ YF

f−−→ Xf is induced by the
morphism Z −→ Y ×S X −→ X, which will end the proof.

We first show that CF = Im Γf ⊆ YF × XF (see Remark 4.3). The
inclusion Im Γf ⊆ CF follows by construction. For the converse, let K ∈
ACF/S and (y, x) ∈ CF (K) ⊆ YF (K)×XF (K). Since C = Im |Γf |, there
exists K −→ K ′ such that (y, x)|K′ = Γf (ȳ) = (ȳ, f(ȳ)) for some ȳ ∈
YF (K ′). Thus ȳ = y|K′ and x|K′ = f(y|K′) = f(y)|K′ , which implies that
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x = f(y) because X(K) −→ X(K ′) is injective. In other words Γf (y) =
(y, x) ∈ Im Γf .

Since Γf : YF −→ CF is an isomorphism and the map gF : ZF −→ (Y ×S
X)F = YF ×XF has image insides CF , there is a factorization gF : ZF

ϕ−−→
YF

Γf−−→ YF ×XF . Moreover there is a commutative diagram.

ZF YF YF ×XF XF

YF
uF

ϕ Γf

id

fgF

It follows that ϕ = uF : ZF −→ YF and that f◦ϕ : ZF −→ XF is induced by
Z −→ Y ×S X −→ X. Since Zj −→ Y ×S X is geometrically injective and
gF = Γf ◦ uF : ZF −→ (Y ×S X)F we can conclude that Zj −→ Z

u−−→ Y

is geometrically injective, as required. □

Definition 4.8. — A natural transformation f : P −→ Q of functors
(ACF/S)op −→ Set is said to be geometrically bijective (resp. geomet-
rically injective, geometrically surjective) if it is an isomorphism (resp.
injective, surjective).

A morphism f : Y −→ X of functors (Sch′/S)op −→ Set is said to be
geometrically bijective (resp. geometrically injective, geometrically surjec-
tive) if so is fF : YF −→ XF . Similarly a P-morphism g : Z −→ X from an
S-scheme is said to be geometrically bijective (resp. geometrically injective,
geometrically surjective) if g, thought of as a map ZF −→ XF , is so.

Remark 4.9. — The above definition extends the one given for mor-
phisms of schemes (see Definition 3.1).

If a morphism f : Y −→ X of functors (Sch′/S)op −→ Set is geometri-
cally bijective (resp. geometrically injective, geometrically surjective) then
|f | : |Y | −→ |X| is bijective (resp. injective, surjective), but the converse is
not true.

Lemma 4.10. — Let f : YF −→ XF be a P-morphism of S-schemes.
If f is an isomorphism in P-Sch/S then it is an isomorphism as natural
transformation. The converse holds if Y and X are locally finitely presented
and quasi-separated over S.

Proof. — The first statement is clear. For the second, by Lemma 4.7 we
have that C = Im(|Γf |) is locally constructible in Y ×SX. Since Im(|Γf−1 |)
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is the image of C via the automorphism Y ×S X ∼= X ×S Y , it follows that
Im(|Γf−1 |) is locally constructible and therefore f−1 : XF −→ YF is a P-
morphism by Lemma 4.7. □

Lemma 4.11. — Let X : (Sch′/S)op −→ Set be a functor.
(1) The functor XP : (Sch′/S)op −→ Set is a sheaf in the sur topology.
(2) If the diagonal of X is representable and of finite presentation then

X −→ XP is a sheafification morphism for the sur topology.
(3) If X is a scheme locally of finite presentation and quasi-separated

over S then X −→ XP is a sheafification morphism for the luin
topology.

Proof.
(1). — Consider X̄ : (Sch′/S)op −→ Set defined by

X̄(Y ) = Hom(YF , XF ).

Since (−)F preserves fiber products and, if V −→ U is a sur covering, the
maps VF (K) −→ UF (K) are surjective for all algebraically closed fields, it
is easy to see that X̄ is a sheaf in the sur topology. Moreover XP ⊆ X̄ is a
subfunctor. By definition of XP we see that if an object of X̄ is sur locally
in XP then it belongs to XP. This implies that XP is a subsheaf of X̄.

(2). — The map X −→ XP is by definition an epimorphism in the sur
topology. We need to check that if a, b ∈ X(U) become equal in XP(U)
then they are sur locally equal. In particular we can assume U affine. Let
W −→ U be the base change of the diagonal X −→ X ×S X along the
map (a, b) : U −→ X ×S X. By hypothesis W is an algebraic space and
W −→ U is of finite presentation. Moreover a, b become equal in X(W ).
Since aF = bF : UF −→ XF we can conclude that WF −→ UF is bijective.
Since W is an algebraic space there exists an étale atlas V −→ W from
a scheme. The resulting map V −→ U is locally of finite presentation,
surjective and therefore a sur covering.

(3). — Now assume that X is a scheme locally of finite presentation
and quasi-separated over S. By Lemma 4.7 it follows that X −→ XP is
an epimorphism in the luin topology. As before we need to check that if
a, b ∈ X(U) become equal in XP(U) then they are luin locally equal. By
the same argument above we see that they are equal after a map W −→
U which is locally of finite presentation, quasi-compact and geometrically
bijective. The difference now is that W is a scheme and therefore W −→ U

is a luin covering. □
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Corollary 4.12. — Let Shsur(Sch′/S) be the category of sur sheaves
on Sch′/S. The functor (−)P determines a fully faithful functor

P-Sch/S −→ Shsur(Sch′/S).

Proof. — For an S-scheme X, the functor XP is a sur sheaf from
Lemma 4.11. From Proposition 4.6 (5), for S-schemes X and Y , we have a
natural bijection

HomS(XP , Y P ) −→ HomP
S (X,Y ),

which proves the corollary. □

4.2. P-moduli spaces

Definition 4.13. — Let F : (Sch′/S)op −→ Set be a functor. A P-
moduli space of F is an S-scheme X together with a morphism π : F −→
XP such that

(1) π is geometrically bijective, that is the induced map πF : FF −→
(XP)F is an isomorphism;

(2) π is universal, that is for any morphism g : F −→ Y P where Y is
a scheme over S, there exists a unique S-morphism f : XP −→ Y P

with f ◦ π = g.
If this is the case, we also call the morphism π a P-moduli space. It is clear
that if exists, a P -moduli space is unique up to unique P-isomorphism.

Lemma 4.14. — Let ϕ : F −→ G be a map of functors (Sch′/S)op −→
Set. If ϕ is geometrically bijective then ϕP : FP −→ GP is a monomorphism.
If ϕ is also an epimorphism in the sur topology then ϕP : FP −→ GP is an
isomorphism.

In particular a locally finitely presented and geometrically bijective mor-
phism of S-schemes, that is an ubi covering, is a P -isomorphism.

Proof. — The first claim follows from Proposition 4.6(4) and (5). For the
second one it is enough to recall that FP and GP are sheaves in the sur
topology. □

Remark 4.15. — Let π : F −→ XP be a geometrically bijective map, so
that, by Lemma 4.14, πP : FP −→ XP is a monomorphism. Then π is a
P-moduli space if and only if for all maps F −→ Y P the map (XP)F ∼=
FF −→ (Y P)F is a P-morphism X −→ Y .

In particular F −→ XP is a P-moduli space if and only if FP −→ XP is
a P -moduli space and vice versa.
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Definition 4.16. — Let F : (Sch′/S)op −→ Set be a functor. A strong
P-moduli space for F is an S-scheme X together with a morphism π : F −→
XP such that πP : FP −→ XP is an isomorphism.

A strong P -moduli space is also unique up to unique P-isomorphism.
From Remark 4.15 it follows that a strong P-moduli space is a P-moduli
space.

Proposition 4.17. — Let F : (Sch′/S)op −→ Set be a functor, X an
S-scheme and π : F −→ XP be a morphism. Then π is an epimorphism in
the sur topology if and only if there exist a sur covering {Zi

gi−−→ X} and
commutative diagrams

Zi X

F XP

gi

π

The map π : F −→ XP is a strong P-moduli space if and only if it is
geometrically bijective and an epimorphism in the sur topology.

Proof. — The first statement follows from the fact that X −→ XP is an
epimorphism in the sur topology. The second one from Lemma 4.14. □

Remark 4.18. — From the point of view of moduli theory a more natural
definition of P-moduli space would have been to admits S-algebraic spaces
in the above definitions. Since a quasi-separated algebraic space has a dense
open subset which is a scheme, it follows that for a finite dimensional
quasi-separated algebraic space Y there exists a geometrically bijective map
X1⨿ · · · ⨿Xn −→ Y in which all Xi are schemes and all maps Xi −→ Y

are immersions. In particular such a Y always has a strong P-moduli space.
So in concrete cases there is no need to use algebraic spaces and also this

let us avoid to deal with locally constructible subsets of algebraic spaces.

Definition 4.19. — By a geometric property Q for a functor
F : (Sch′/S)op −→ Set we mean a subset Q ⊆ |F|. By Remark 4.3 this
can be thought of as a subfunctor Q of FF with the following property:
for all maps a : K −→ K ′ in ACF/S and all x ∈ F(K), if x is mapped
by F(K) −→ F(K ′) to an element of Q(K ′) then x ∈ Q(K). Given a
geometric property Q of F we define the subpresheaf

FQ(V ) = {V A−−→ F | A(V ) ⊆ Q ⊆ |F|}.

A locally constructible property for F is a geometric property Q for F
satisfying the following condition: for every S-scheme V and map A : V −→
F the inverse image A−1(Q) ⊆ V is a locally constructible subset of V .
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Remark 4.20. — If X is an S-scheme a geometric property (resp. locally
constructible property) ofX is a subset (resp. a locally constructible subset)
of X.

Proposition 4.21. — Let X be an S-scheme and Q be a locally con-
structible subset of X. Let also Q =

∐
iQi −→ X be a geometrically

injective map with image Q and where the maps Qi −→ X are finitely
presented immersions. Then the map Q −→ XQ induces an isomorphism
QP ∼= (XQ)P.

Proof. — Since the image of Q −→ X is in Q the map Q −→ XQ is
geometrically bijective. Moreover if V is a scheme with a map V −→ XQ,
that is a map V −→ X with image in Q, then Q×XQ V = Q×X V −→ V

is geometrically bijective, locally of finite presentation and therefore, by
Corollary 3.11, a luin covering. By Lemma 4.14 we get the result. □

Remark 4.22. — If F : (Sch′/S)op −→ Set is a functor then F and FP

have the same geometric properties since |F| = |FP|. Moreover if Q is
such a property then the inclusion FQ −→ F induces an isomorphism
(FQ)P −→ (FP)Q.

Lemma 4.23. — Let F ,G : (Sch′/S)op −→ Set be functors, Q be a
geometric property for G and ϕ : FP −→ GP be a sur epimorphism. If
ϕ−1(Q) ⊆ |F| is locally constructible for F then Q is locally constructible
for G. In particular F and FP have the same locally constructible proper-
ties.

Proof. — Let V A−−→ G. We have to show that A−1(Q) ⊆ V is locally
constructible. In particular we can assume that V is affine. Since ϕ is a
sur epimorphism, shrinking V more if necessary, there is a commutative
diagram

W F FP

V G GP

B

A

ϕg

where g : W −→ V is a sur covering of schemes. By Corollary 3.12 we can
assume that W is quasi-compact and hence g is quasi-compact. As g is
surjective we obtain

g(B−1(ϕ−1(Q))) = A−1(Q)

which is then locally constructible thanks to Chevalley’s theorem 3.7. □
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Proposition 4.24. — Let F : (Sch′/S)op −→ Set be a functor and
Q be a locally constructible property for F . If F has a strong P-moduli
space X which is quasi-separated and admits a locally finite and affine open
covering then FQ has a strong P-moduli space Y which is a disjoint union
of affine schemes. If moreover X is locally of finite presentation over S so
is Y .

Proof. — By Remark 4.22 and Lemma 4.23 we can assume that F = X.
The result follows from Lemma 3.15 and Proposition 4.21. □

Definition 4.25. — If I is a set and F : (Sch′/S)op −→ Set is a func-
tor, a map (or function) g : F −→ I is just a map g : |F| −→ I. The map g
is called locally constructible if g−1(i) ⊆ |F| is locally constructible for all
i ∈ I.

Proposition 4.26. — Let ϕ : G −→ F be a morphism of functors
(Sch′/S)op −→ Set and g : F −→ I be a map. If g is locally constructible
then so is g ◦ ϕ. The converse holds if ϕ is a sur covering. In particular F
and FP have the same locally constructible functions.

Proof. — The first claim follows from definition. For the converse, let
A : V −→ F be a map from an S-scheme. We need to show that g ◦
A : V −→ I is locally constructible. By hypothesis there exists a sur cover-
ing {ϕj : Vj −→ V } such that all g ◦ A ◦ ϕi are locally constructible. Since
being a locally constructible subset is a Zariski local property, we can as-
sume that the sur covering has only one element and that V is affine. In
other words we can assume that F = V , G = W is a scheme, ϕ : W −→ V

is a sur covering and, by Corollary 3.12, that W is quasi-compact. As
ϕ((g ◦ ϕ)−1(i)) = g−1(i) for all i, the conclusion follows from Chevalley’s
theorem 3.7. □

Proposition 4.27. — Let F : (Sch′/S)op −→ Set be a functor and
g : F −→ I be a locally constructible function. Then the maps Fg−1(i) −→
F induce a map ∐

i∈I
(Fg

−1(i))P −→ FP

where
∐

is the union as Zariski sheaves, which is geometrically bijective
and a luin epimorphism. If Xi is a strong P-moduli space for Fg−1(i) then∐
iXi is a strong P-moduli space for F .

Proof. — The map in the statement is well defined because FP is a
Zariski sheaf by Lemma 4.11 and it is clearly geometrically bijective. We
now show that it is an epimorphism. Consider A : V −→ F and set gA =
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A◦ g : V −→ I. We can assume that V is an affine scheme. By Lemma 3.15
for all i ∈ I there exists a finitely presented monomorphism Wi −→ V

whose image is g−1
A (i). It follows that {Wi −→ V } is a luin covering with

factorizations Wi −→ Fg
−1(i) −→ F , as desired.

For the last claim, set X =
∐
iXi and h : X −→ I such that h|Xi

≡ i.
We have Xh−1(i) = Xi. Using Lemma 4.14 we obtain

XP ∼=

(∐
i∈I

(Xh−1(i))P

)P

∼=

(∐
i∈I

XP
i

)P

∼=

(∐
i∈I

(Fg
−1(i))P

)P

∼= FP □

Remark 4.28. — Let X be a locally Noetherian scheme and Un be an
increasing sequence of open subsets of X such that Un+1 contains the
generic points of X \ Un. Then X =

⋃
n Un. Indeed if p ∈ X is a point,

ϕ : Spec(OX,p) −→ X the structure map and C ⊆ X is a closed subset
then the generic points of ϕ−1(C) are the generic points of C contained in
Im(ϕ). In particular one can assume that X has finite dimension, in which
case an induction on the dimension prove the claim.

Lemma 4.29. — Let X be a locally Noetherian scheme. Then there are
finitely presented immersions Ui −→ X with Ui affine and irreducible such
that the map

ϕ :
∐
i

Ui −→ X

is surjective, quasi-compact and a monomorphism. In particular it is geo-
metrically bijective and a P -isomorphism.

Proof. — The last claim follows from Lemma 4.14. Given a locally Noe-
therian scheme X and a generic point ξ choose an open affine subset Xξ

of X which is irreducible and contains ξ (which will be its generic point).
Notice that if ξ and η are two generic points of X then Xξ∩Xη ̸= ∅ implies
ξ = η. Set

V (X) =
∐

ξ generic point of X
Xξ and Z(X) = X \ V (X).

So that V (X) is open and Z(X) is closed. The latter will be though of as
a closed subscheme with reduced structure. Since X is locally Noetherian
the map Z(X) −→ X is a closed immersion of finite type. By induction set
Vn+1(X) = V (Zn(X)), Zn+1(X) = Z(Zn(X)), V0(X) = ∅ and Z0(X) = X.
By construction all maps Zn(X) −→ X are closed immersion of finite type
and Vn(X) −→ X are immersion of finite type. Moreover

X \ Zn(X) =
n∐
k=0

Vk(X)
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as sets. In conclusion the map∐
n

Vn(X) −→ X

is a monomorphism by construction and it is surjective by Remark 4.28. It
remains to show that it is quasi-compact. So let U ⊆ X be a quasi-compact
open subset. Since the union of (X \ Zn(X)) ∩ U covers U , the previous
sequence must stabilize. Moreover since Zn(X) ∩ U is quasi-compact and
Noetherian, it follows that Vn+1(X) ∩ U is a finite disjoint union of its
irreducible components. This ends the proof. □

We are going to introduce some notation to explain next Lemma 4.30,
which is a key ingredient in the proof of Theorem 1.1. A direct system of
stacks {Zn}n∈N is a chain of stacks Z0 −→ · · · −→ Zn −→ Zn+1 −→ · · ·
(see [10, Appendix A]). Such a sequence always admits a stack Z∞ =
colimnZn as colimit (see [10, Proposition A.1 and Proposition A.5], [11,
Remark A.3]). Moreover for an affine scheme U any object U −→ Z∞ is
induced by some U −→ Zn (see [10, just before Proposition A.2]).

Assume that all Zn are separated Deligne-Mumford stacks of finite type
over a field k, so that they admit coarse moduli spaces Zn −→ Z̄n. As a
consequence of [10, Lemma 3.2] we have the following. The colimit Z∞ −→
colimn(Z̄n) = Z̄∞ of the coarse moduli maps Zn −→ Z̄n is a coarse ind-
algebraic space map in the sense of [10, Definition 3.1]. Moreover if the
transition maps Zn −→ Zn+1 are finite and universally injective then so
are the maps Z̄n −→ ¯Zn+1: they are universally injective, thus quasi-finite,
by [10, Lemma 3.2], they are proper because so are the coarse moduli maps
Zn −→ Z̄n. By [10, Proposition 2.9] finite and universally injective is the
same as a composition of a finite universal homeomorphism and a closed
immersion.

Lemma 4.30. — Let {Zn}n∈N be a direct system of separated Deligne-
Mumford stacks of finite type over k with finite and universally injective
transition maps and colimit Z. Then there are affine varieties {Yi}i∈N and
a map ∐

i

Yi −→ Z̄

where ¯(−) denotes the corresponding ind-coarse moduli space, which is geo-
metrically bijective and an epimorphism in the sur topology, so that

∐
i Yi

is a strong P-moduli space for Z̄. Moreover the functor of isomorphism
classes of Z, its Zariski, étale and fppf sheafifications all have the same
strong P-moduli space of Z̄.
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Proof. — Set Un+1 = Zn+1\Zn. It is easy to see that Z̄n⨿ ¯Un+1 −→ ¯Zn+1
is geometrically bijective. Since Z̄ is the limit of the Z̄n the induced map∐
n Ūn −→ Z̄ is geometrically bijective. Moreover it is an epimorphism in

the sur topology because any map U −→ Z̄ from an affine scheme factors
through some Z̄n. Each Ūn is an algebraic space of finite type over k. By
Lemma 4.14 and Remark 4.18 the first part of the statement follows.

Now denote by F the functor of isomorphism classes of Z and by Fsh
its sheafification for some of the topologies in the statement or F itself.
The map Fsh −→ Z̄ is geometrically bijective by definition of coarse ind-
algebraic space (see [10, Definition 3.1]). It is also an epimorphism in the
sur topology: a map V −→ Z̄ from a scheme factors Zariski locally through
Z̄n, sur locally through Zn and therefore through Fsh. From Lemma 4.14
we conclude that (Fsh)P ∼= Z̄P. □

4.3. P-schemes locally of finite type over a locally Noetherian
scheme.

We fix a locally Noetherian scheme S as base.

Remark 4.31. — By Corollary 3.11 a geometrically bijective map
f : X −→ Y between schemes locally of finite type over S is quasi-compact
and, therefore, of finite type.

Lemma 4.32. — Let X and Y be schemes locally of finite type over S
and let f : Y −→ X be a P-morphism over S. Then

• there exists a geometrically bijective morphism Z −→ Y of finite
type such that the composite P -morphism Z −→ Y −→ X is in-
duced by a scheme morphism Z −→ X;

• the map f is a P-isomorphism if and only if f is geometrically
bijective.

Proof. — By Lemma 4.29 we can assume that S is affine and that X and
Y are disjoint unions of affine schemes. In particular X and Y are separated
over S. The first statement follows from Corollary 3.16 and Lemma 4.7, the
second from Lemma 4.10. □

Corollary 4.33. — Two schemes X and Y locally of finite type over
S are P -isomorphic if and only if there exist a scheme Z and geometrically
bijective maps of finite type Z −→ X and Z −→ Y .

Proof. — The “if part” follows directly from Lemma 4.32. Indeed Z is
locally of finite type over S because, for instance, Z −→ X is of finite type.
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Thus Z −→ X, Z −→ Y are P-isomorphisms because they are geometri-
cally bijective.

Let’s focus on the “only if part”. Let f : Y −→ X be a P-isomorphism. By
Lemma 4.32 there is a geometrically bijective morphism Z −→ Y of finite
type such that the composition Z −→ Y −→ X is induced by a scheme
morphism g : Z −→ X. In particular Z is locally of finite type over S. More-
over g is geometrically bijective and, by Remark 4.31, of finite type. □

Lemma 4.34. — Let X be a locally Noetherian scheme and C ⊆ X be a
locally constructible subset. Then there exists a monomorphism Z −→ X

of finite type with image C. Moreover if Z ′ −→ X is another map which is
geometrically injective, locally of finite type and has image C then Z ′ and
Z are P -isomorphic over X.

Proof. — The existence follows from Lemmas 3.15 and 4.29. For the last
statement notice that the projections Z×X Z ′ ⇒ Z,Z ′ are P-isomorphisms
thanks to Lemma 4.32. □

Definition 4.35. — In the situation of Lemma 4.34 we will say that a
scheme is P-isomorphic to C if it is P-isomorphic to Z.

We conclude the section by an useful result for schemes over a field.

Lemma 4.36. — Let X and Y be schemes locally of finite type over k,
f : X −→ Y be a geometrically injective map and x ∈ X. Then, for every
point x ∈ X,

dim ¯{x} = dim ¯{f(x)} = degtr k(x)/k
where degtr denotes the transcendence degree. Moreover dimX ⩽ dimY

and the equality holds if f is also surjective. In particular two schemes
locally of finite type over k and P-isomorphic have the same dimension.

Proof. — The last two statements are a consequence of the first one
and Corollary 4.33. The equality dim ¯{x} = degtr k(x)/k is [9, Tag 02JX].
The equality dim ¯{x} = dim ¯{f(x)} instead follows from the fact that, if
y = f(x), then k(x)/k(y) is finite: the fiber map X ×Y k(y) −→ Spec k(y)
is non-empty, geometrically injective and locally of finite type, which easily
implies thatX×Y k(y) is the spectrum of a local and finite k(y)-algebra. □

4.4. Quotients by P-actions of finite groups

In what follows G will denote a finite group.
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Definition 4.37. — Let X be an S-scheme. A P-automorphism of X
is a P-morphism f : X −→ X which is invertible, that is, there exists a
P-morphism f ′ : X −→ X with f ◦ f ′ = f ′ ◦ f = idX . A P-action of
a finite group G on X means a group homomorphism G −→ AutPS (X),
where AutPS (X) is the group of P-automorphisms of X. A P-morphism
g : X −→ Y between two S-schemes with a P-action of G is equivariant it
is so in the category of P-schemes over S.

When we are given a P-action of a group G on a scheme X, a geometric
P-quotient is a P-morphism π : X −→W of S-schemes such that:

(1) the map π is G-invariant, that is, for every g ∈ G, π ◦ g = π,
(2) the map π is universal among G-invariant P-morphisms, that is,

if π′ : X −→ W ′ is another G-invariant P-morphism of S-schemes,
then there exists a unique P-morphism h : W −→ W ′ such that
h ◦ π = π′,

(3) for each algebraically closed field K over S, the map X(K)/G −→
W (K) is bijective.

A P-morphism π : X −→ W of S-schemes is a strong P-quotient if it is
G-invariant and the induced map XP /G −→ WP is a strong P-moduli
space, where XP /G is the functor U 7−→ XP (U)/G.

Remark 4.38. — Recall that for S-schemes X and Y one has

HomP
S(X,Y ) ∼= HomS(XP, Y P)

by Proposition 4.6(5) more precisely (−)P : P-Sch/S −→ Shsur(Sch′/S) is
fully faithful by Corollary 4.12. In particular: a P -action of G on X is just
an action of G on XP; a G-invariant map X −→ W is a G-invariant map
XP −→ WP, that is a map XP/G −→ WP; an equivariant P-morphism
Y −→ X is an equivariant morphism XP −→ Y P. Moreover it follow easily
that X −→ W is a geometric P -quotient (resp. strong P -quotient) if and
only if XP/G −→WP is a P -moduli space (resp. a strong P -moduli space).

Proposition 4.39. — Let X be an S-scheme with a P -action of G and
X −→ W be a G-invariant P -morphism over S such that X(K)/G −→
W (K) are bijective for all algebraically closed fields K over S. If X −→W

is an epimorphism in the sur topology thenX −→W is a strong P -quotient.
This is the case, for example, if X −→W is a locally of finite presentation
map of S-schemes.

Proof. — Set F = XP/G. By hypothesis the map F −→ WP is geo-
metrically bijective, that is, by Lemma 4.14, the map FP −→ WP is a
monomorphism. The previous map is an isomorphism, that is X −→W is
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a strong P -quotient, if and only if F −→WP is an epimorphism in the sur
topology. This is true if X −→ W is an epimorphism as well. Notice that
X −→ W is surjective because the map X(K) −→ X(K)/G −→ W (K)
is so for all algebraically closed fields K over S. Therefore if X −→ W is
locally of finite presentation then this map is a sur covering. □

Corollary 4.40. — Let X be an S-scheme with an (usual) action of
G. If X −→W is a G-invariant map of S-schemes, it is locally of finite pre-
sentation and X(K)/G −→ W (K) is an isomorphism for all algebraically
closed fields K, then it is also a strong P -quotient. In particular geometric
quotients are strong P -quotients.

Lemma 4.41. — Consider a diagram

Z

X Y

f̃

f

u

of S-schemes where f is a P -morphism and u is a locally finitely presented
and geometrically injective map. If f(X) ⊆ u(Z) as sets then there exists a
unique dashed P -morphism f̃ making the above diagram commutative in
P-Sch/S.

Proof. — Since u is locally of finite type we have that f : XF −→ YF has
value in ZF ⊆ YF . We just have to show that XF −→ ZF is a P -morphism.
In particular we can assume that f is induced by a map of schemes. In this
case we obtain a map X ×Y Z −→ X which is locally of finite presentation
and, by hypothesis, surjective. Thus it is a sur covering of X and the map
X ×Y Z −→ Z lifts (X ×Y Z)F −→ XF −→ ZF . □

Lemma 4.42. — Let X be a scheme of finite type over a field k en-
dowed with a P-action of a finite group G and let U ⊂ X be an open
subset with dim(X \U) < dimX. Then there exists an open subset V ⊂ U
with dim(X \ V ) < dimX which is G invariant, a finite universal homeo-
morphism h : V ′ −→ V and an action of G on V ′ making h equivariant.

Proof. — Notice that the condition dim(X \U) < dimX just means that
U meets the irreducible components of X of maximal dimension dimX.
From Lemma 4.32, there exists a geometrically bijective map Zg −→ U of
finite type such that Zg −→ U

g−−→ X is induced by a scheme morphism.
Taking the fiber products of the Zg over U we can find a common map
h : Z −→ U . Call hg : Z −→ X the lifting of U g−−→ X, with hid = h.
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We first show that G permutes the generic points of the irreducible com-
ponents of X of dimension d = dimX. If ξ is a generic point of such a
component, then ξ ∈ U , g(ξ) = hg(h−1(ξ)) and using Lemma 4.36, it fol-
lows that d = dim ¯{ξ} = dim ¯{g(ξ)}. Since dimX = d we can also conclude
that g(ξ) is a generic point.

The maps hg : Z −→ X are quasi-compact, quasi-separated and geomet-
rically injective. By [9, Tag 02NW] there exists an open dense subset W
of U such that h−1

g (W ) −→ W is finite for all g. Set W ′ = h−1(W ).
In particular h : W ′ −→ W is a finite universal homeomorphism. No-
tice that h(h−1

g (W ) ∩ W ′) = W ∩ g−1(W ) as sets and it is an open
subset of W . Consider V :=

⋂
g∈G g(W ), which is open in W and set

V ′ := h−1(V ) −→ V , which is a finite universal homeomorphism. No-
tice that V contains the generic points of the irreducible components of
maximal dimension. Therefore dim(X \V ) < dimX. Moreover the compo-
sition V ′ ⊆ W ′ hg−−→ X, which set-theoretically is V ′ −→ V

g−−→ X, factors
through V and hg : V ′ −→ V is surjective. Since this map is a restriction of
the finite and geometrically injective map h−1

g (W ) −→W , we can conclude
that hg : V ′ −→ V is a finite universal homeomorphism.

We now modify V ′ in order to define an action on it. Notice that if Ṽ is an
open subset of V with dim(X \ Ṽ ) < dimX, by discussion above it always
contains a G-invariant open with the same property and we can always
replace V by it. Moreover we can always assume X = V . In conclusion we
can shrink as much as we want around the generic points of X of maximal
dimension. In particular we can assume that V = X and V ′ are a disjoint
union of affine integral varieties of the same dimension.

Let G(X) the generic points of X and for ξ ∈ G(X) let ηξ the generic
point of V ′ mapping to ξ. For all ξ ∈ G(X) set also Kξ for the perfect
closure of k(ξ). Recall that if L/k(ξ) is a purely inseparable extension then
there exists a unique k(ξ) linear map L −→ Kξ. Since V ′ −→ X is a finite
universal homeomorphism it follows that k(ξ) −→ k(ηξ) is finite and purely
inseparable. So we can assume k(ηξ) ⊆ Kξ. We have that G permutes
G(X) and, since hg : V ′ −→ X is a finite universal homeomorphism, it
also induces a finite purely inseparable extension k(g(ξ)) −→ k(ηξ). In
particular there exists a unique map ϕg,ξ making the following diagram
commutative.

k(ηξ) Kξ

k(g(ξ)) k(ηg(ξ)) Kg(ξ)

hg
ϕg,ξ
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We claim that the two maps ϕab,ξ, ϕa,b(ξ)◦ϕb,ξ : Kξ −→ Kab(ξ) are the same
map. Let α, β : SpecKab(ξ) −→ SpecKξ be the corresponding maps. By
hypothesis they coincide as P -morphisms if composed with SpecKξ −→ X.
If K̄ is an algebraic closure of Kab(ξ) then the two maps

Spec K̄ −→ SpecKab(ξ) ⇒ SpecKξ −→ Spec k(ξ)

coincide. Using the usual properties of purely inseparable extensions and
the perfect closure we can conclude that α = β. In particular all maps
ϕg,ξ are isomorphisms. If we set K̃ξ as the composite of all extensions
ϕ−1
g,ξ(k(ηg(ξ))) it follows that K̃ξ/k(ηξ) is finite and purely inseparable and
ϕg,ξ restricts to an isomorphism K̃ξ −→ K̃g(ξ). If V ′

ξ is the irreducible
component of ηξ we can find an open dense Uξ and a finite universal home-
omorphism U ′ −→ Uξ with U ′ integral and fraction field K̃ξ. Shrinking
X we can assume k(ηξ) = K̃ξ. The map ϕg−1,g(ξ) yield a generic map
ψg,ξ : V ′

ξ −→ V ′
g(ξ) and shrinking again X we can assume it is defined ev-

erywhere and, more generally, that it defines an action of G on V ′.
The maps V ′ ψg−−→ V ′ h−−→ X and V ′ hg−−→ X coincide in the generic points

and therefore they are generically the same because V ′ is reduced. Again
shrinking X we can assume they coincide. But this exactly means that the
P -action of G on V ′ obtained conjugating the P -isomorphism V ′ −→ X is
induced by the maps ψg on V ′. By 4.6, Proposition (7) we can conclude
that the collection of maps {ψg}g defines a “genuine” action of G on V ′,
which ends the proof. □

Proposition 4.43. — Let X be a scheme locally of finite type over a
field k and with a P -action of a finite group G. Then there exist a locally
of finite type scheme Y with an action of G, a geometrically bijective map
Y −→ X of finite type which is G-equivariant and a decomposition of
Y =

∐
i Yi into G-invariant open affine subsets.

Proof. — From Lemmas 4.29 and 4.41 we can assume X =
∐
Xq where

the Xq are integral schemes of finite type over k. From Lemma 4.32, there
exists a geometrically bijective map ϕ : Zg −→ X of finite type such that
Zg −→ X

g−−→ X is induced by a scheme morphism hg : Zg −→ X. Taking
the fiber products of the Zg over X we can find a common map ϕ : Z −→ X.
Since g(Xq) = hg(ϕ−1(Xq)), this is a locally constructible set of X. More-
over since Xq is quasi-compact and ϕ is of finite type, g(Xq) is contained
in a quasi-compact open of X. In particular Zq =

⋃
g g(Xq) is a locally

constructible subset of X contained in a quasi-compact open subset. More-
over it is G-invariant. We use the notation in Notation 3.14 with I the
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index set of the Zq. Let q ∈ I and consider indexes Zq ⊆ Xq1 ⨿ · · · ⨿Xql
.

We claim that Zq ∩ Zq′ ̸= ∅ implies that q′ = qi for some i. From this and
Notation 3.14 it will follow that, for J ⊆ I finite, ZJ is locally constructible
and

X =
∐

J⊆I finite
ZJ

as sets. If Zq ∩ Zq′ ̸= ∅ there exist g, h ∈ G such that g(Xq) ∩ h(Xq′) ̸= ∅,
that is ∅ ≠ h−1g(Xq) ∩Xq′ ⊆ Zq ∩Xq′ , from which the claim follows.

For all J finite, since ZJ is locally constructible, we have a monomor-
phism YJ −→ X of finite type onto ZJ by Lemma 3.15. Since ZJ is con-
tained in a quasi-compact open of X it follows that YJ is quasi-compact,
that is of finite type. By construction the ZJ are G-invariant and, by
Lemma 4.41, we can lift the P-action of G on X to a P-action of G on YJ .

The argument above shows that we can replace X by a scheme of finite
type. We can also assume X reduced and, by Lemma 4.29, also separated.
Consider the open V and the map h : V ′ −→ V obtained from Lemma 4.42.
By a dimension argument and an induction on dimX we can assume V = X

and that G has a genuine action on X inducing the P -action. Consider a
dense affine open subset W of X and replacing it by

⋂
g g(W ) so that it is

also G-invariant. Again since dim(X \W ) < dimX we can assume X = W

and we are done. □

Theorem 4.44. — Let X be a scheme (locally) of finite type over a
field k endowed with a P-action of a finite group G. Then X has a strong
P-quotient X −→ Y with Y (locally) of finite type over k. Moreover if X
is P-isomorphic to a countable disjoint union of affine k-varieties then so is
the strong P-quotient Y .

Proof. — Notice that if U =
∐
n∈N Un is P-isomorphic to V =

∐
i∈I Vi

where Vi and Un are schemes of finite type over k with Vi ̸= ∅ then I is
at most countable. Indeed there exist geometrically bijective maps of finite
type ϕ : Z −→ U and ψ : Z −→ V thanks to Corollary 4.33. Thus one can
assume Z = U = V and notice that the sets {i ∈ I | Un ∩Vi ̸= ∅} are finite
and cover I. Thanks to the previous observation and by Lemma 4.43 we
can assume X = SpecA affine and that the P -action of G on X is actually
an action. Then X −→ X/G = Spec(AG) is a geometric quotient and AG

is of finite type over k. By Corollary 4.40 the map X −→ X/G is a strong
P -quotient. □
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5. Motivic integration on schemes locally of finite type

In this section we construct a modified Grothendieck ring using the the-
ory of P-schemes.

Definition 5.1. — The modified Grothendieck ring of varieties,
Kmod

0 (Var /k), is the free abelian group generated by the P-isomorphism
classes of k-varieties modulo the relation [X] = [U ] + [V ] if X and U ⨿ V
are P-isomorphic. The product structure is given by [X][Y ] := [X × Y ].

In particular, the usual scissor relation holds: if Y ⊂ X is a closed sub-
variety, then [X] = [Y ] + [X \ Y ]. Moreover, if X and Y are P-isomorphic,
then [X] = [Y ].

Definition 5.2. — We denote by L the class of an affine line [A1
k]

in Kmod
0 (Var /k). We define Mmod

k to be the localization of Kmod
0 (Var)

by L. For a positive integer l, we define Mmod,l
k to be Mmod

k [L1/l] =
Mmod

k [x]/(xl−L). In this ring, we have fractional powers Lr, r ∈ 1
lZ of L.

We then define a completion M̂mod,l
k ofMmod,l

k as follows. Let Fm ⊂Mmod,l
k

be the subgroup generated by the elements [X]Lr with dimX + r ⩽ −m.
We define

M̂mod,l
k := lim←−

m

Mmod,l
k /Fm,

which inherits the ring structure since FmFn ⊂ Fm+n. When l = 1, we
abbreviate Mmod,l

k and M̂mod,l
k to Mmod

k and M̂mod
k respectively.

Recall that a P-morphismX −→ Y of schemes induces a map |X| −→ |Y |
on the set of points.

Definition 5.3. — Let X be a scheme locally of finite type over k,
l ∈ Z \ {0} and f : X −→ 1

lZ be a function, that is a map of sets from
the set of points |X| of X to 1

lZ. The map f is called integrable if there
are non-empty schemes {Xi}i∈I of finite type over k and a P-isomorphism
ϕ :
∐
iXi −→ X such that f ◦ ϕ is constant on all Xi and, for all n ∈ Z,

there are at most finitely many i ∈ I such that dimXi + f(ϕ(Xi)) > n.
We define the integral

∫
X
Lf ∈ M̂mod,l

k ∪{∞} of a function f : X −→ 1
lZ

as follows. If f is integrable,∫
X

Lf :=
∑
i∈I

[Xi]Lf(ϕ(Xi)) ∈ M̂mod,l
k .

Otherwise
∫
X
Lf :=∞.
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Notice that, if we follow the usual convention that dim ∅ = −∞, in the
definition of integrability and of integrals we don’t have to assume that the
schemes Xi are non empty.

The following lemma shows that the notion of integrability and the in-
tegral itself do not depend on the choice of the k-schemes Xi.

Lemma 5.4. — LetX be a scheme locally of finite type over k, l ∈ Z\{0}
and f : X −→ 1

lZ be a function. Let {Yj}j∈J be non-empty schemes of finite
type over k and ϕ : Y =

∐
j Yj −→ X be a P-isomorphism such that f ◦ ϕ

is constant on all Yj . If f is integrable, then for each n ∈ 1
lZ, there are at

most finitely many j ∈ J such that dimYj + f(Yj) > n and∫
X

Lf =
∑
j∈J

[Yj ]Lf(ϕ(Yj)) ∈ M̂mod,l
k .

Proof. — Following the notation of Definition 5.3 we can assume X =∐
iXi. By Corollary 4.33 there exist a scheme Z and geometrically bijective

maps of finite type α : Z −→
∐
iXi, β : Z −→

∐
j Yj . In particular α−1(Xi)

and β−1(Yj) are of finite type and those maps preserve dimension thanks
to Lemma 4.36. We can therefore assume Z = X = Y . Set

In = {i ∈ I | f(Xi) + dimXi > n} and Jn = {j ∈ J | f(Yj) + dim Yj > n}.

Given j ∈ J take a generic point ηj ∈ Yj with dim ¯{ηj} = dim Yj and let
sj ∈ I be such that Xsj

contains the point ηj . We have f(Xsj
) = f(Yj)

and, by Lemma 4.36, dimYj ⩽ dimXsj
. In particular s : J −→ I maps Jn

into In and, in order to show that Jn is finite, it is enough to show that s
has finite fibers. The result follows from

Xi =
∐
j∈J

Xi ∩ Yj

and the fact that sj = i implies that Xi ∩ Yj ̸= ∅.
For the last equality, it is enough to use the (finite) sums

[Xi] =
∑
j

[Xi ∩ Yj ] and [Yj ] =
∑
i

[Xi ∩ Yj ]

in Kmod
0 (Var /k) and that, if Xi ∩ Yj ̸= ∅ then f(Xi) = f(Xi ∩ Yj) =

f(Yj). □

Definition 5.5. — Let F : Sch′/k −→ Set be a functor with a scheme
locally of finite type X as strong P-moduli space and f : F −→ 1

lZ be a
function, which is induced by fX : X −→ 1

lZ (see Definition 4.25). The
map f is called integrable if fX is so. Moreover we set

∫
F Lf =

∫
X
LfX .

TOME 73 (2023), FASCICULE 2



542 Fabio TONINI & Takehiko YASUDA

If Y is a scheme locally of finite type over k and C ⊆ Y a locally
constructible subset a function f : C −→ 1

lZ is just a function of sets
|C| −→ 1

lZ. We define constructibility and integrability for f : C −→ 1
lZ

as the ones for f : X −→ 1
lZ, where X is a scheme P-isomorphic to C.

Moreover we set
∫
C
Lf =

∫
X
Lf .

Notice that, by Proposition 4.21, in the above definition the second def-
inition is a particular case of the previous one.

Proposition 5.6. — Let f : X −→ 1
lZ be a function from a scheme

locally of finite type over k. Then f is integrable if and only if the following
three conditions are satisfied: (1) f is bounded above, (2) for all n ∈ 1

lZ the
set f−1(n) is locally constructible and P-isomorphic to a scheme of finite
type over k and (3)

n− dim(f−1(−n)) −→ +∞ for 1
l
Z ∋ n −→ +∞

where we use the usual convention dim ∅ = −∞.

Proof. — In both cases we can assume X =
∐
iXi with f constant on

all Xi and Xi of finite type and non-empty. If f is integrable then

{i ∈ I | f(Xi) = n} ⊆ {i ∈ I | f(Xi) + dimXi > n− 1}

is finite, that is f−1(n) is P-isomorphic to a scheme of finite type. We
can therefore assume X =

∐
n∈ 1

l Z
Xn with Xn = f−1(n) (and allowing

Xn = ∅). By Lemma 5.4 integrability means that the sets Im = {n ∈ 1
lZ |

n−dimX−n < m} are finite. The limit in the statement means that all Im
are bounded above. Finally if f is bounded above then all Im are bounded
below. Conversely if I0 is bounded below then f is bounded above. □

Remark 5.7. — If we are given a continuous ring homomorphism
M̂mod,l

k −→ R of complete topological rings and continue to denote the
image of L in R by L, then we can similarly define integrals in R ∪ {∞}.
Of course, these integrals coincide with the images of the corresponding
integrals defined in M̂mod,l

k ∪ {∞}.

6. Some results on power series rings

We collect in this section various results and notations about power series
rings.
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Lemma 6.1. — Let R be a ring and S be an R-algebra. Let M be an
RJtK-module and Mt its localization by t, which is an R((t)) = RJtKt-
module. Then we have

(M ⊗RJtK SJtK)t ∼= Mt ⊗R((t)) S((t)).

Proof. — This follows from

(M ⊗RJtK SJtK)⊗SJtK SJtKt ∼= Mt ⊗RJtKt
SJtKt. □

Definition 6.2. — Let R be a ring and S be an R-algebra. For an
RJtK-module M , we define the complete tensor product as

M⊗̂RS = M ⊗RJtK SJtK.

Remark 6.3. — If N is an R((t))-module then by Lemma 6.1 we have

N⊗̂RS ∼= N ⊗R((t)) S((t)).

In particular if M is an RJtK-module and S an R-algebra then we have
identifications

(M⊗̂RS)t ∼= Mt ⊗R((t)) S((t)) ∼= Mt⊗̂RS.

Lemma 6.4. — Let R be a ring, S be a Noetherian R-algebra and M

be a finitely generated RJtK-module. Then M ⊗R S −→ M⊗̂RS is the
completion with respect to the ideal (t) ⊆ RJtK, that is we have a natural
isomorphism

lim←−
n∈N

((M/tnM)⊗R S) ∼= M ⊗RJtK SJtK.

Proof. — The ring SJtK is Noetherian and t-adically complete. Since
M ⊗RJtK SJtK is a finitely generated SJtK-module, it is t-adically complete
and the projective limit of

Nn :=
(
M ⊗RJtK SJtK

)
⊗SJtK (SJtK/(tn)) (n ∈ N).

Since
SJtK/(tn) ∼= SJtK⊗RJtK (RJtK/(tn)) ∼= RJtK/(tn)⊗R S,

we have

Nn ∼=
(
M ⊗RJtK SJtK

)
⊗RJtK (RJtK/(tn))

∼= (M/tnM)⊗RJtK/(tn) (SJtK/(tn))
∼= (M/tnM)⊗R S.

The lemma follows. □
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Remark 6.5. — By [10, Lemma 2.4] if S is a finite and finitely presented
R-algebra then

ωS/R : RJtK⊗R S −→ SJtK

is an isomorphism. In particular M⊗̂RS ∼= M⊗RS for all RJtK-modules M .

Lemma 6.6. — LetR be a ring, k > 0 and g ∈ RJsK∗. Then there exists a
unique mapRJtK −→ RJsK ofR-algebras mapping t to skg and 1, s, . . . , sk−1

is an RJtK-basis of RJsK. In particular if R −→ R′ is a map of rings then
RJsK⊗̂RR′(= RJsK⊗RJtK R

′JtK) ∼= R′JsK and R((s))⊗̂RR′ ∼= R′((s)).

Proof. — There are compatible maps R[t]/(tn) −→ R[s]/(sn) mapping t
to skg and passing to the limit we get a map RJtK −→ RJsK. Uniqueness is
easy to prove. Consider the map

ϕ : RJtKk −→ RJsK

mapping the canonical basis to 1, s, . . . , sk−1. Notice that RJsK/tnRJsK ∼=
R[s]/(snk) because g is invertible. Thus tensoring the above map byRJtK/(tn)
we obtain a map

ϕn : (R[t]/(tn))k −→ R[s]/(snk).

In order to show that ϕ is an isomorphism it is enough to show that all ϕn
are isomorphisms. Since ϕn is a map between free R-modules of the same
rank, it is enough to show that ϕn is surjective. By Nakayama’s lemma we
can assume n = 1, where the result is clear.

Using that ϕ is an isomorphism it is easy to conclude that the map
RJsK⊗̂RR′ −→ R′JsK is an isomorphism. Since t = skg we also have RJsKt =
R((s)), so that also the last isomorphism holds. □

Lemma 6.7. — Let R be a ring, k > 0, ζ1, ζ2 ∈ RJsK∗ and consider
RJsiK as an RJtK module via RJtK −→ RJsK, t 7−→ skζi for i = 1, 2. If
σ : R((s1)) −→ R((s2)) is an isomorphism of R((t))-algebras then, up to
modding out R by finitely many nilpotents, we have that σ(RJs1K) = RJs2K,
more precisely there exists u ∈ RJs2K∗ such that σ(s1) = us2. Moreover
σ|RJs1K : RJs1K −→ RJs2K is the unique R-linear map sending s1 to us2.

Proof. — From Lemma 6.6 we see that RJsiK is free of rank k over RJtK,
in particular RJtK ⊆ RJsiK is an integral extension. Notice moreover that
RJsiKt = R((si)). Set σ(s1) =

∑
m∈Z σms

m
2 ∈ R((s2)). If R is a field then

σ(s1) ∈ s2RJs2K∗: RJsiK is a DVR with maximal ideal (si) and it is the
integral closure of RJtK inside R((si)), so that

σ|RJs1K : RJs1K
∼=−−→ RJs2K and (σ(s1)) = (s2).
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This means that all the σm for m ⩽ 0 lie in all the prime ideals, that is
they are nilpotent, and no prime ideal contains σ1, that is σ1 is invertible.
Modding out finitely many nonzero σm with m ⩽ 0 (there are at most
finitely many of them), we can assume that σ(s1) = us2 as in the state-
ment. Since RJs1K is generated by s1 as an RJtK algebra it also follows that
σ(RJs1K) ⊆ RJs2K. Doing the same for σ−1 one also gets the equality. The
last statement follows from Lemma 6.6. □

Lemma 6.8. — Let R be a ring, k > 0 and ζ ∈ RJsK∗. Consider RJsK as
an RJtK module via RJtK −→ RJsK, t 7−→ skζ and assume that R((s)) has a
structure of G-torsor over R((t)), where G is a finite group. Then k = |G|
and, up to modding out R by finitely many nilpotents, we have that:

(1) for all g ∈ G we have that g(RJsK) = RJsK, more precisely there
exists ug ∈ RJsK∗ such that g(s) = ugs and g|RJsK : RJsK −→ RJsK
is the unique R-linear map sending s to ugs;

(2) if H < G is a subgroup and s′ =
∏
h∈H h(s) then s′ = s|H|v with

v ∈ RJsK∗, the map RJyK −→ RJsK, y 7−→ s′ is an isomorphism onto
RJsKH , (RJsKH)t = (RJsKt)H and t = s′|G|/|H|w with w ∈ RJs′K∗.
In particular RJsK is a free RJsKH -module of rank |H| and RJsKH

is a free RJtK-module of rank |G|/|H|.

Proof. — From Lemma 6.6 we see that RJsK is free of rank k over RJtK.
Since RJsKt/R((t)) is a G-torsor we can conclude that k = |G|. Point (1)
follows from Lemma 6.7. Let us consider point (2). We have s′ = s|H|v

where v =
∏
h uh ∈ RJsK∗ for uh ∈ RJsK∗ as in (1). By Lemma 6.6 the map

ϕ : RJyK −→ RJsK, ϕ(y) = s′, is well defined, injective and 1, s, . . . , s|H|−1

is an RJyK-basis. Since s′ ∈ RJsKH it is easy to see that ϕ maps into RJsKH .
Since RJsKs′ = R((s)) we have

R((y)) ⊆ R((s))H = (RJsKH)s′ ⊆ R((s)).

Since R((s))/R((s))H is an H-torsor the R((s))H -module R((s)) is pro-
jective of rank |H| and generated by 1, s, . . . , s|H|−1, which is therefore a
R((s))H -basis: the induced map

(R((s))H)|H| −→ R((s))

is a surjective map of projective R((s))H -modules of the same rank, thus
an isomorphism. Let x ∈ RJsKH ⊆ RJsK and write

x = x0 + x1s+ · · ·+ x|H|−1s
|H|−1 with xi ∈ RJyK.

Since we also have xi ∈ R((s))H and the writing is unique we conclude
that x1 = · · · = x|H|−1 = 0 and x = x0 in R((s))H . The injectivity of
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RJyK −→ R((s))H implies that x ∈ RJyK. This shows that RJs′K = RJsKH

and
(RJsKH)t = R((s′)) = R((s))H = (RJsKt)H .

Finally since t ∈ RJsKH we have t = s′bq, where q ∈ RJs′K, q(0) ̸= 0.
Thus t = sb|H|vbq = s|G|ζ. Looking at the first non vanishing coefficient we
conclude that b|H| = |G| and that q is invertible. □

Lemma 6.9. — If {Ui}i is a Zariski covering of SpecR((t)) for some
ring R then there exists a ubi covering {SpecRj −→ SpecR}j such that
SpecRj((t)) −→ SpecR((t)) factors through some of the Ui.

Proof. — We can assume Ui = SpecR((t))si for s1, . . . , sn ∈ RJtK such
that (s1, . . . , sn) = R((t)). This means there exist a1, . . . , an ∈ RJtK and
r ∈ N such that

a1s1 + · · ·+ ansn = tr.

If we write si =
∑
j si,jt

j we can conclude that (si,j | j ⩽ r) = R. For the
finite set S of nonzero si,j with j ⩽ r, we let Vs = SpecRs, then define
V ◦
J = SpecRJ for each subset J ⊂ S. We can give scheme structures to
V ◦
J ’s such that the map

∐
J V

◦
J −→ SpecR is a ubi covering and for each

i, j and J , the element si,j is either 0 or invertible in RJ . For each J ,
there exists an index i0 such that si0 = tqω with ω ∈ RJJtK∗. In particular
si0 ∈ RJ((t))∗. This implies that the map SpecRJ((t)) −→ SpecR((t))
factors through Ui0 . □

7. Uniformization

If K is an algebraically closed field, then any finite étale K((t))-algebra
A is K-isomorphic to a product of the power series field, K((u))n, for some
n ∈ N, and its integer ring OA is isomorphic to KJuKn. This is no longer
true if we replace K with a general ring. The goal of this section is to show
that this however becomes true after taking a sur covering of SpecK.

Definition 7.1. — Let R be a ring and A be a finite étale R((t))-
algebra. We say that A is uniformizable (over R) if there exist a finite de-
composition R ∼=

∏l
i=1 Ri, ni ∈ N and isomorphisms A⊗RRi(= A⊗̂RRi) ∼=

Ri((s))ni such that each composition Ri((t)) −→ A⊗RRi −→ Ri((s)) maps
t to a series of the form skg for some k > 0 and g ∈ RiJsK∗.

Remark 7.2. — If A/R((t)) is an uniformizable finite étale R((t))-algebra
and we use notation from Definition 7.1 then O =

∏
iRiJsK

ni is a finite and
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flat RJtK algebra with an isomorphism Ot ∼= A. It is not clear if a general
finite étale R((t))-algebra always admits a finite and flat extension on RJtK,
not even fpqc locally.

Theorem 7.3 (Uniformization). — Let R be a ring and A be a finite
and étale R((t))-algebra. Then there exists a surjective and finitely pre-
sented map SpecS −→ SpecR such that A⊗̂RS is uniformizable. In other
words A is uniformizable sur locally in R.

Proof. — Let S0 be the henselization of R[t] with respect to the ideal
(t). From [4, Th. 7 and pages 588-589] or [6, Th. 5.4.53], there exists a
finite étale cover S0[t−1] −→ A0 such that A0 ⊗S0[t−1] R((t)) ∼= A. In
turn there exist an étale neighborhood R[t] −→ S1 of (t), that is with
R ∼= S1/tS1, and a finite étale cover S1[t−1] −→ A1 such that A1 ⊗S1[t−1]
S0[t−1] ∼= A0 and A1 ⊗S1[t−1] R((t)) ∼= A. Since S1 and A1 are finitely
generated over R, there exist a finitely generated subalgebra R′ ⊂ R, an
étale neighborhood R′[t] −→ S2 and a finite étale cover S2[t−1] −→ A2
which induce R[t] −→ S1 and S1[t−1] −→ A1 by the scalar extension
R/R′. Then A ∼= A2⊗S2[t−1]R((t)). If we put A′ = A2⊗S2[t−1]R

′((t)), then
A ∼= A′ ⊗R′((t)) R((t)). Therefore it suffices to show that R′((t)) −→ A′ is
sur locally uniformizable.

We claim that there exist a sur covering
∐
i SpecRi −→ SpecR′ and a

commutative diagram for each i,

A2 ⊗R′ Ri

((

// SpecQi

ww
SpecS2 ⊗R′ Ri

such that
(1) Ri is a domain,
(2) we have (Qi)t ∼= A2 ⊗R′ Ri,
(3) the lower left arrow is the one induced from S2 −→ S2[t−1] −→ A2,
(4) the lower right arrow is a finite morphism,
(5) each connected component of (SpecQi/tQi)red maps isomorphically

onto SpecRi = SpecS2 ⊗R′ Ri/t(S2 ⊗R′ Ri),
(6) up to shrink S2 to a smaller neighborhood of (t),

√
tQi is a principal

ideal generated by some qi ∈ Qi.
Let’s see how to conclude from this. By [3, Corollary 7.5], the ring Qi⊗RiJtK
is a product of rings P1 × · · · × Pl such that the reduction of Pj/tPj is Ri.
The map RJxK −→ Pi, x −→ qi is well defined and surjective because Pi is
t-adically and therefore qi-adically complete. Since dimRJxK = dimPi and
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RJxK is a domain the map RJxK −→ Pi is an isomorphism. In conclusion
Qi ⊗RiJtK ∼= RiJqiKni for some ni ∈ N.

This implies that A2 ⊗S2[t−1] Ri((t)) ∼= A′ ⊗R′((t)) Ri((t)) ∼= Ri((qi))ni .
The image of t in each factor RiJqiK is of the form qki g for some k > 0
and g ∈ RiJqiK \ qiRiJqiK. Inverting the constant term of g for each factor,
we get an open dense subscheme SpecR′

i ⊂ SpecRi such that R′
i((t)) −→

A′ ⊗R′((t)) R
′
i((t)) is uniformizable. By Noetherian induction, we conclude

that Ri((t)) −→ A′ ⊗R′((t)) Ri((t)) is sur locally uniformizable. Therefore
R′((t)) −→ A′ is also sur locally uniformizable and the theorem follows.

It remains to prove the claim. Note that R′ is finitely generated over
Z, in particular, a Noetherian ring of finite dimension. By Lemma 4.29,
we may assume that R′ is a domain and it is enough to show that there
exists one dominant finite-type morphism SpecRi −→ SpecR′ satisfying
the above conditions. Let K be an algebraic closure of the fraction field
K ′ of R′. The map SpecA2 ⊗R′ K −→ SpecS2[t−1] ⊗R′ K is an étale
finite cover of affine algebraic curves over K. Taking a partial compacti-
fication of SpecA2 ⊗R′ K, we can extend this cover to a finite (not nec-
essarily étale) cover SpecQK −→ SpecS2 ⊗R′ K with SpecQK smooth.
Let p1, . . . , pm : SpecK −→ SpecQK be the points lying over the point
SpecK = V (t) ↪→ SpecS2⊗R′ K. We take a sufficiently large intermediate
field L between K and K ′ which is finite over K ′ and such that QK and
morphisms SpecQK −→ SpecS2⊗R′K and pi are all defined over L (see [9,
Tag 01ZM], [9, Tag 01ZN]). Denote by QL −→ SpecS2⊗R′ L the obtained
map. As QL⊗LK ∼= QK we can conclude that QL is smooth over L. Replac-
ing R′ with its integral closure in L, we can assume K ′ = L. Since SpecQK′

is normal, we can extend SpecQK′ −→ Spec(S2⊗R′ K ′) to SpecS2 by tak-
ing the normalization SpecQ −→ SpecS2. As SpecQt −→ SpecS2[t−1]
and SpecA2 −→ SpecS2[t−1] are isomorphic over K, shrinking SpecR′ we
can assume that Qt ∼= A2 (see [9, Tag 081E]). So far we have proved that
SpecQ satisfies points (1) to (4).

For (5), consider Spec(Q/tQ)red −→ Spec(S2/tS2) = SpecR′. We have

(Q/tQ)red ⊗R′ K ′ ∼= (QK′/tQK′)red ∼= K ′m

because (QK′/tQK′) is a finite K ′ algebra with only rational points. Thus,
shrinking R′, we can assume (Q/tQ)red ∼= R′m, that is point (5).

We now focus on (6). Since SpecQ −→ SpecR′ is generically smooth,
by [9, Tag 0C0C] we can assume it is smooth. Since R′ is excellent, we can
also assume that R′ is regular, so that Q is regular as well. Let J =

√
tQ.

If x = tS2 ∈ SpecS2 is the unique point over 0 = (t) ∈ SpecR′[t], we have
that that Qx is a finite extension of (S2)x ∼= R[t](t). In particular Qx⊗R′K ′
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is a semilocal regular ring of dimension 1, thus a finite product of semilocal
Dedekind domains. By [1, Chapter 13, Corollary 1.4] it is therefore a PID,
so that (Jx) ⊗R′ K ′ ∼= Qx ⊗R′ K ′. By [9, Tag 01ZM] we can assume it
extends to an isomorphism Jx ∼= Qx. Shrinking S2 étale locally around x,
we can finally assume J ∼= Q, which yields condition (6). □

8. The P-moduli space of formal torsors

Let k be a base field and G be a finite group. We prove the existence of
P-moduli space of torsors over k((t)) for a fixed finite group G or the one
of finite étale covers of k((t)) of fixed degree.

Notation 8.1. — We set p = char k, allowing it also to be 0. In this
section, with abuse of notation, we often consider groups of the form H⋊C
where H is a p-group and C is a tame cyclic group. If p > 0 this means
that C is a cyclic group whose order is coprime with p. If p = 0 instead
this means that H = 0, while C is any cyclic group.

Definition 8.2. — The functor ∆n : (Aff/k)op −→ Set maps a ring R
to the set of isomorphism classes of finite étale covers of R((t)) of constant
degree n. For a morphism f : SpecS −→ SpecR of affine k-schemes the
pull-back map f∗ : ∆n(R) −→ ∆n(S) sends an étale R((t))-algebra A to
A⊗̂RS = A⊗R((t)) S((t)).

We define a functor ∆G : (Aff/k)op −→ Set mapping a ring R to the
set of isomorphism classes of G-tosors over R((t)). The pullback is defined
similarly to the one of ∆n.

Since finite étale algebras correspond to Sn-torsors by [12, Prop. 1.6], we
have an isomorphism ∆n

∼= ∆Sn
.

Remark 8.3. — Notation above slightly differs to the notation used in [10],
where ∆G denotes the analogous fiber category.

Lemma 8.4. — Suppose that G is the semidirect product H ⋊ C of a
p-group H and a tame cyclic group C. Then the functor ∆G has a strong P-
moduli space which is the disjoint union of countably many affine schemes
of finite type over k.

Proof. — This follows from [10, Theorem A] and Lemma 4.30. □

Definition 8.5. — For F : (Aff/k)op −→ Set and A ∈ F(V ), a geo-
metric fiber of A is the image of A under the map F(V ) −→ F(K) associ-
ated with some geometric point SpecK −→ V .
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Definition 8.6. — We denote by ∆◦
n (resp. ∆◦

G) the subfunctor of ∆n

(resp. ∆G) consisting of étale R((t))-algebras A whose geometric fibers are
connected: for every algebraically closed R-field K, the induced algebra
A⊗̂RK is a field.

Lemma 8.7. — The property “being connected” is locally constructible
for both ∆G and ∆n.

Proof. — Let F = ∆G or F = ∆n and let Q ⊆ |F| denote the property
in the statement. Given ψ : V −→ F we have to show that |ψ|−1(Q) =
QV ⊆ V is locally constructible. By Lemma 4.23 the problem is sur local
in V . By Theorem 7.3 we can therefore assume that V = SpecR and that
ψ corresponds to a torsor/étale map R((t)) −→ A = R((s))m with t = skg,
g ∈ RJsK∗ and k,m > 0. The subset QV is locally constructible in V

because, if m = 1 then QV = V , while if m > 1 then QV = ∅. □

Lemma 8.8. — Let f : X −→ S be a G-torsor over a scheme S and let
X =

∐
i Ui be a finite decomposition into open subsets. Then:
• there exist finite decompositions into open subsets S =

∐
j Sj and

f−1(Sj) =
∐
k Vjk with the following properties: for all j, k there

exists i such that Vjk ⊆ Ui; the group G permutes the Vjk and, for
all j, G acts transitively on {Vjk}k;

• if G permutes transitively the Ui and Gi is the stabilizer of Ui in G
then Ui is an Gi-torsor over S.

Proof. — Let T = {g(Ui)}i,g∈G and, for J ⊆ T , set

TJ =
( ⋂
V ∈J

V

)
∩

( ⋂
V /∈J

(X − V )
)

so that X is the disjoint union of the TJ and all Ui are a disjoint union of
some of the TJ . Notice that G permutes the TJ : given g ∈ G and J ⊆ T one
has that g(TJ) = Tg(J) where g(J) = {g(V ) | V ∈ J}. This also implies that
f(TJ)∩f(TJ′) ̸= ∅ only if there exists g ∈ G such that g(TJ) = TJ′ , in which
case f(TJ) = f(TJ′): if s = f(x) = f(y) with x ∈ TJ and y ∈ TJ′ then there
exists g ∈ G such that g(x) = y ∈ g(TJ) ∩ TJ′ , so that g(TJ) = TJ′ . Up to
removing repetitions the sets f(TJ) yield the desired decomposition of S.

We now consider the last statement. If S′ −→ S is any map with S′ ̸= ∅
denote by ψ : X ′ −→ X its base change along f : X −→ S. The collec-
tion {ψ−1(Ui)}i defines a partition of X ′ over which G acts transitively.
In particular ψ−1(Ui) ̸= ∅ for all i. We claim that Gi is also the stabi-
lizer of ψ−1(Ui) in G. Indeed if g(ψ−1(Ui)) = ψ−1(g(Ui)) = ψ−1(Ui) then
g(Ui) ∩ Ui ̸= ∅ and therefore g(Ui) = Ui. In particular we can assume
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X = G × S and, by transitivity, that {1} × S ∈ Ui, so that Gi × S ⊆ Ui.
In order to prove that this last inclusion is an equality, it suffices to show
the corresponding equality over each point of S and thus we can further
assume S = SpecK, for some field K. In this case

g ∈ Ui =⇒ g = g · 1 ∈ g(Ui) ∩ Ui ̸= ∅ =⇒ g(Ui) = Ui =⇒ g ∈ Gi. □

Theorem 8.9. — Let k be a field, G a finite group and letQ be a locally
constructible property for ∆G. Then ∆Q

G (e.g. ∆G or ∆◦
G) has a strong P-

moduli space which is a countable disjoint union of affine k-varieties.

Proof. — By Proposition 4.24 and Lemma 4.29 it is enough to consider
the case of ∆G.

In the semidirect case G = H ⋊ C, for a p-group H and a tame cyclic
group C, the claim follows from Lemma 8.4. In this case we denote the
P-moduli space of ∆◦

G by ∆̄◦
G.

Let now G be an arbitrary finite group. Let Λ be the set of representatives
of G-conjugacy classes of subgroups H ⊂ G which are isomorphic to the
semi-direct product B ⋊ C of a p-group B and a tame cyclic group C.
Let also AutG(H) denote the subgroup of automorphisms of H induced by
conjugation of an element of G. There exists a natural action of AutG(H)
on ∆◦

H , inducing a natural P-action on ∆̄◦
H . From Proposition 4.44, there

exists the strong P-quotient ∆̄◦
H/AutG(H), which is a strong P-moduli

space of the quotient functor ∆◦
H/AutG(H) and it is P-isomorphic to a

disjoint union of k-varieties.
Consider the map indGH : ∆◦

H −→ ∆G. This is AutG(H)-invariant and
induces maps ∆◦

H/AutG(H) −→ ∆G and∐
H∈Λ

∆◦
H/AutG(H) −→ ∆G.

We claim that this is geometrically injective and an epimorphism in the sur
topology. Since the source of this map has a strong P-moduli space as in
the theorem, from Lemma 4.14, the claim implies the theorem. It remains
to show the claim.

Epimorphism. Follows from Corollary 7.3 and Lemma 8.8 and the fact
that Galois extensions of K((t)) with K algebraically closed has Galois
group a semidirect product of a p-group and a cyclic tame group.

Geometrically injective. If K is an algebraically closed field then
∆◦
H(K)/AutG(H) is the set of isomorphism classes of Galois extensions

L/K((t)) modded out by the equivalence relation induced by the action
of AutG(H). Given such an object the corresponding G-torsor is indGH L.
Let L ∈ ∆◦

H(K) and L′ ∈ ∆◦
H′(K) for H,H ′ ∈ Λ be such that indGH L ∼=
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indGH′ L′ as G-torsors. It follows that L′ is one of the component of indGH L
and H ′ is its stabilizer. Thus H ′ = gHg−1 for g ∈ G and L′ = L with the
H ′ action induced by H. But since Λ is a set of representative we obtain
H ′ = H and therefore L,L′ ∈ ∆◦

H(K) are in the same orbit for the action
of AutG(H). □

Corollary 8.10. — Theorem 8.9 holds also when G is a finite étale
group scheme over k.

Proof. — Let k′/k be a finite Galois extension with Galois group H such
that G⊗k k′ is a constant group. After the base change to k′, the functor
∆Q
G has a strong P-moduli space. This space has a P-action of H. It suffices

to take the strong P-quotient, which exists from Proposition 4.44. □

9. Local constructibility of weighting functions

In the wild McKay correspondence, there appear motivic integrals of the
form

∫
∆G

Lf for some weighting functions f : ∆G −→ 1
|G|Z. In this section,

we show that these functions f are locally constructible, which proves that
these integrals indeed make sense.

We first recall the definitions of these functions. We fix a free kJtK-module
M = kJtK⊕r of rank r endowed with a kJtK-linear G-action. For a k-algebra
B, we let MB := M⊗̂kB.

Definition 9.1. — For a field extension K/k and a G-torsor A/K((t)),
we define a number vM (A) ∈ 1

|G|Z by

vM (A) := 1
|G|

lKJtK

(
HomkJtK(M,OA)

OA ·HomG
kJtK(M,OA)

)
,

where HomG
kJtK(M,OA) is the set of G-equivariant kJtK-linear maps, OA

is the integral closure of KJtK inside A and lKJtK denotes the length of a
KJtK-module. The natural map

MK −→ EK := HomKJtK(HomG
KJtK(MK ,OA),OA), f 7−→ (ψ 7−→ ψ(f))

induces a map

ηA : SpecS•
OA
EK −→ SpecS•

KJtKMK ,

where S•
RM denotes the symmetric algebra of an R-module M . Let

o ∈ (SpecS•
KJtKMK)(K)
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be the K-point at the origin. We define

wM (A) := dim η−1
A (o)− vM (A) ∈ 1

|G|
Z.

Using the above functions we define maps

vM , wM : ∆G −→
1
|G|

Z.

We will just write v = vM and w = wM when this creates no confusion.

Remark 9.2. — For slight differences of definitions of v and w appearing
in the literature, see [17, Rem. 8.2] and errata to the paper [14], available
online.(1)

We are going to prove that the maps v, w : ∆G −→ 1
|G|Z are well defined

and locally constructible. If we set N = HomkJtK(M,kJtK) and think of it
as a kJtK-module with an action of G we have isomorphisms

N ⊗kJtK OA ∼= HomkJtK(M,OA) ∼= NK ⊗KJtK OA ∼= HomKJtK(MK ,OA).

Lemma 9.3. — The KJtK-module HomG
kJtK(M,OA) is free of rank r and

the map

HomG
kJtK(M,OA)⊗KJtK OA −→ OA ·HomG

kJtK(M,OA) ⊆ HomkJtK(M,OA)

is an isomorphism. In particular the number v(A) is well defined, that is
finite.

Proof. — We can assume K = k. The module HomG
kJtK(M,OA) is con-

tained in a free kJtK-module and therefore it is free. In order to compute
its rank and prove that the map in the statement is injective we can check
what happens after localizing by t. If we set R = k((t)) and Nt = Q we
have that the map (Q ⊗R A)G ⊗R A −→ Q ⊗R A, fppf locally on R after
trivializing A, become

(Q⊗R R[G])G ⊗R R[G] −→ Q⊗R R[G].

In particular (Q⊗RR[G])G ∼= Q, the corresponding map Q −→ Q⊗RR[G]
is the coaction and the above map is an isomorphism. □

Remark 9.4. — The function v is equal to the t-order of the ideal
r∗(L|o,M) ⊂ OA, Fröhlich’s module resolvent [5, Sec. 3]. This follows from
determinantal descriptions of both values (see [16, Def. 6.5], [15, Def. 3.3]
and [5, Sec. 3]).

(1) https://msp.org/ant/2017/11-4/p02.xhtml.
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Lemma 9.5. — Let K ′/K/k be field extensions, A/K((t)) a G-torsor
and AK′ = A⊗̂KK ′ the associated G-torsor over K ′((t)). Then v(A) =
v(AK′) and w(A) = w(AK′). In particular the maps v, w : ∆G −→ 1

|G|Z
are well defined.

Proof. — Recall that the operations of taking invariants and flat base
change commute. From Lemma 9.3 and the fact that

lK′JtK(Q⊗̂KK ′) = lKJtK(Q) for Q ∈ Mod(KJtK)

one gets v(A) = v(AK′). Similarly one obtains that η−1
AK′ (o) ∼= η−1

A (o)×KK ′

and therefore the equality for the dimensions. □

Lemma 9.6 (cf. [15, Lem. 3.4]). — Let H be a subgroup of G. Then we
have the equalities of functions

vResH M = vM ◦ indGH , wResH M = wM ◦ indGH : ∆H −→ ∆G −→
1
|G|

Z.

Proof. — Assume aG-torsorA/K((t)) is induced by anH-torsorB/K((t)).
We have isomorphisms

A ∼= indGH B ∼= B|G/H|, OA ∼= indGH OB ∼= O
|G/H|
B

and HomG
kJtK(M,OA) ∼= HomH

kJtK(M,OB). Moreover

OA HomG
kJtK(M,OA) ∼= (OB HomH

kJtK(M,OB))|G/H|

inside (HomkJtK(M,OB))|G/H| ∼= HomkJtK(M,OA). This proves that v(A) =
v(B). Finally one can check that

ηA : ArOA
= ArOB

⨿ · · · ⨿ ArOB
−→ ArKJtK

and that all maps ArOB
−→ ArKJtK are isomorphic to ηB . It follows that

dim η−1
A (o) = dim η−1

B (o). □

To show properties of v and w, we give slightly different descriptions of
these functions. For simplicity assume that A is uniformizable and con-
nected, that is a Galois extension of K((t)) with group G and OA = KJsK.
Let

aj = t(a1j , . . . , arj) ∈ N ⊗kJtK OA ∼= OrA (j = 1, . . . , r)
be a KJtK-basis of (N⊗kJtKOA)G , which, by Lemma 9.3, is also an OA-basis
of OA(N ⊗kJtK OA)G. Since lKJtK = lKJsK and using standard properties of
DVR’s we get

(9.1) v(A) = ordA det(aij)
|G|

,
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where ordA denotes the normalized additive valuation on A, that is, the
order in s.

Let e1, . . . , er be the standard basis of M and b1, . . . , br ∈ EK the dual
basis of a1, . . . , ar. The map MK −→ EK sends ei to

∑
j aijbj . If Ω is the

residue field of OA then

(η−1
A (o))red = Spec

(
Ω[X, . . . ,Xr]
(
∑
j āijXj)

)
where āij is the image of aij ∈ OA in Ω. It follows that

(9.2) dim η−1
A (o) = r − rank(āij).

Lemma 9.7. — Let A/B((t)) be a G-torsor such that A = B((s)) is
uniformizable and OA = BJsK is G invariant. Assume moreover that B is a
Noetherian ring. Then there exist a sur covering SpecB′ −→ SpecB such
that (N ⊗kJtK (OA⊗̂BB′))G is a free B′JtK-module of rank r and, for any
ring map B′ −→ C, the base change map

[N ⊗kJtK (OA⊗̂BB′)]G⊗̂B′C −→ [N ⊗kJtK (OA⊗̂BC)]G

is an isomorphism.

Proof. — By Remark 4.28 we may suppose that B is a domain and show
that there exists an affine open dense subscheme SpecB′ ↪→ SpecB satis-
fying the requests of the lemma. Given a B-algebra C we set AC = A⊗̂BC,
OAC

= OA⊗̂BC ∼= CJsK and

ϕAC
: N ⊗kJtK OAC

−→
⊕
g∈G

N ⊗kJtK OAC
, α 7−→ (gα− α)g

so that (N ⊗kJtK OAC
)G = KerϕAC

. Let S be the localization of BJtK at
the prime ideal (t), which is a discrete valuation ring. Let us consider the
map

ϕA ⊗BJtK S : N ⊗kJtK OA ⊗BJtK S −→
⊕
g∈G

N ⊗kJtK OA ⊗BJtK S.

From [2, VII. 21], there exist S-bases α1, . . . , αe and β1, . . . , βf of the source
and the target, and elements c1, . . . , ce ∈ S such that ϕ ⊗BJtK S sends αi
to ciβi. Moreover, we may suppose that for some d ∈ {1, . . . , e}, we have
ci = 0, i ⩽ d and ci ̸= 0, i > d.

Identifications N ∼= kJtK⊕r and OA ∼= BJtK|G| induce an identification

N ⊗kJtK OA ⊗BJtK S ∼= Sr|G|.

Through this identification, αi and βi are expressed as tuples (αi,j)j and
(βi,j)j of elements of S. Note that an element of S is a fraction u/v with
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u, v ∈ BJtK such that v has nonzero constant term, denoted by v0, and v is
invertible in the ring Bv0JtK. In particular there exists v ∈ BJtK− (t) such
that the S-bases αi and βj are also bases over BJtKv. Replacing B by Bv0

we can therefore assume that this holds globally. In particular ci ∈ BJtK
and we may further suppose that the leading coefficients of ci, i > d are
units, that is they are invertible. Then, for any ring map B −→ C, the map
ϕAC

= ϕA ⊗BJtK CJtK is similarly given by αi 7−→ ciβi, where ci ∈ CJtK are
zero for i ⩽ d and units for i > d. This ends the proof. □

Theorem 9.8. — The functions v, w : ∆G −→ 1
|G|Z are locally con-

structible (see Definition 4.25). Similarly for the restrictions of v and w to
∆Q
G for a locally constructible property Q.

Proof. — The second assertion is a direct consequence of the first by
Theorem 8.9 and Proposition 4.26. We are going to prove the first asser-
tion, that is prove that, if Z −→ ∆G is a map from a scheme, then the
restrictions v|Z and w|Z are locally constructible. By Proposition 4.26 and
Corollary 7.3 we can assume that Z = SpecB and that the associated
G-torsor A/B((t)) is uniformizable. We can further assume that B is a
domain and, by Lemmas 6.8, 8.8 and 9.6 we may suppose that A = B((s))
is also a domain and OA = BJsK is G-invariant. In particular we can now
apply Lemma 9.7 and assume the conclusion of this lemma. Let a1, . . . , ar
be a BJtK-basis of (N ⊗kJtK OA)G and write

aj = (aij)i ∈ (N ⊗kJtK OA) ∼= OrA.

We want to use equation (9.1). Write

d = det(aij) ∈ OA = BJsK

as
∑
i⩾0 dis

i, di ∈ B. Then the locus where this determinant has s-order
⩾ l is the closed subset

{v ⩾ l/|G|} = {p ∈ SpecB | ordAk(p)(d) ⩾ l} =
⋂
i<l

V (di) ⊂ SpecB.

As for the function w, let āij be the image of aij in B and consider the
matrix (āij) ∈ Br

2 . From equation (9.2), we need to show that the map

SpecB ∋ x 7−→ rank(āij)x

is locally constructible. The locus where this rank is less than s is the zero
locus of the s× s minors of (āij) and is a closed subset. This completes the
proof. □
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Corollary 9.9. — Let l be a positive integer such that v(∆G) ⊂ 1
lZ

(e.g. l = |G|). Integrals
∫

∆G
Ld−v and

∫
∆G

Lw are well-defined as elements
of M̂mod,l

k ∪ {∞}.
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