Nous donnons une description tropicale du comptage des log-ourbes réelles dans les dégénérescences toriques de variétés toriques. Nous traitons le cas des courbes de genre zéro et toutes les situations non-superabondantes pour les courbes de genre supérieur. La preuve repose sur la théorie des déformations logarithmiques et est une version réelle de l’approche par Nishinou–Siebert du théorème de correspondance tropicale pour les courbes complexes. En dimension deux, nous utilisons des techniques similaires pour étudier le comptage de log-courbes réelles avec signes de Welschinger et nous obtenons une nouvelle preuve du théorème de correspondance tropicale de Mikhalkin pour les invariants de Weslchinger.
We give a tropical description of the counting of real log curves in toric degenerations of toric varieties. We treat the case of genus zero curves and all non-superabundant higher-genus situations. The proof relies on log deformation theory and is a real version of the Nishinou–Siebert approach to the tropical correspondence theorem for complex curves. In dimension two, we use similar techniques to study the counting of real log curves with Welschinger signs and we obtain a new proof of Mikhalkin’s tropical correspondence theorem for Welschinger invariants.
Révisé le :
Accepté le :
Publié le :
Keywords: log Gromov–Witten invariants, Welschinger invariants, toric varieties, tropical geometry, real geometry
Mot clés : Invariants log-Gromov–Witten, invariants de Welschinger, variétés toriques, géométrie tropicale, géométrie réelle
Argüz, Hülya 1 ; Bousseau, Pierrick 2
@article{AIF_2022__72_4_1547_0, author = {Arg\"uz, H\"ulya and Bousseau, Pierrick}, title = {Real {Log} {Curves} in {Toric} {Varieties,} {Tropical} {Curves,} and {Log} {Welschinger} {Invariants}}, journal = {Annales de l'Institut Fourier}, pages = {1547--1620}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {4}, year = {2022}, doi = {10.5802/aif.3507}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3507/} }
TY - JOUR AU - Argüz, Hülya AU - Bousseau, Pierrick TI - Real Log Curves in Toric Varieties, Tropical Curves, and Log Welschinger Invariants JO - Annales de l'Institut Fourier PY - 2022 SP - 1547 EP - 1620 VL - 72 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3507/ DO - 10.5802/aif.3507 LA - en ID - AIF_2022__72_4_1547_0 ER -
%0 Journal Article %A Argüz, Hülya %A Bousseau, Pierrick %T Real Log Curves in Toric Varieties, Tropical Curves, and Log Welschinger Invariants %J Annales de l'Institut Fourier %D 2022 %P 1547-1620 %V 72 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3507/ %R 10.5802/aif.3507 %G en %F AIF_2022__72_4_1547_0
Argüz, Hülya; Bousseau, Pierrick. Real Log Curves in Toric Varieties, Tropical Curves, and Log Welschinger Invariants. Annales de l'Institut Fourier, Tome 72 (2022) no. 4, pp. 1547-1620. doi : 10.5802/aif.3507. https://aif.centre-mersenne.org/articles/10.5802/aif.3507/
[1] Stable logarithmic maps to Deligne–Faltings pairs II, Asian J. Math., Volume 18 (2014) no. 3, pp. 465-488 | DOI | MR | Zbl
[2] Decomposition of degenerate Gromov-Witten invariants, Compos. Math., Volume 156 (2020) no. 10, pp. 2020-2075 | DOI | MR | Zbl
[3] Real loci in (log-) Calabi–Yau manifolds via Kato–Nakayama spaces of toric degenerations (2016) | arXiv
[4] Log geometric techniques for open invariants in mirror symmetry, Ph. D. Thesis, University of Hamburg (2017)
[5] A tropical and log geometric approach to algebraic structures in the ring of theta functions (2017) | arXiv
[6] Topological torus fibrations on Calabi–Yau manifolds via Kato–Nakayama spaces (2020) (to appear in Eur. J. Math.) | arXiv
[7] A proof of N. Takahashi’s conjecture for and a refined sheaves/Gromov–Witten correspondence (2019) | arXiv
[8] The quantum tropical vertex, Geom. Topol., Volume 24 (2020) no. 3, pp. 1297-1379 | DOI | MR | Zbl
[9] Enumeration of curves via floor diagrams, C. R. Math. Acad. Sci. Paris, Volume 345 (2007) no. 6, pp. 329-334 | DOI | MR | Zbl
[10] Floor decompositions of tropical curves: the planar case, Proceedings of Gökova Geometry-Topology Conference 2008 (2009), pp. 64-90 | MR | Zbl
[11] Faithful realizability of tropical curves, Int. Math. Res. Not. (2016) no. 15, pp. 4706-4727 | DOI | MR | Zbl
[12] Block–Göttsche invariants from wall-crossing, Compos. Math., Volume 151 (2015) no. 8, pp. 1543-1567 | DOI | MR | Zbl
[13] Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, 1993, xii+157 pages | DOI | MR
[14] Broccoli curves and the tropical invariance of Welschinger numbers, Adv. Math., Volume 240 (2013), pp. 520-574 | DOI | MR | Zbl
[15] Real Gromov–Witten theory in all genera and real enumerative geometry: construction, Ann. Math., Volume 188 (2018) no. 3, pp. 685-752 | MR | Zbl
[16] Real Gromov–Witten theory in all genera and real enumerative geometry: computation, J. Differ. Geom., Volume 113 (2019) no. 3, pp. 417-491 | DOI | MR | Zbl
[17] Real Gromov–Witten theory in all genera and real enumerative geometry: properties, J. Symplectic Geom., Volume 17 (2019) no. 4, pp. 1083-1158 | DOI | MR | Zbl
[18] Correspondence theorems via tropicalizations of moduli spaces, Commun. Contemp. Math., Volume 18 (2016) no. 3, 1550043, 36 pages | DOI | MR | Zbl
[19] Tropical geometry and mirror symmetry, CBMS Regional Conference Series in Mathematics, 114, American Mathematical Society, 2011, xvi+317 pages | DOI | MR
[20] The tropical vertex, Duke Math. J., Volume 153 (2010) no. 2, pp. 297-362 | DOI | MR | Zbl
[21] Mirror symmetry via logarithmic degeneration data. I, J. Differ. Geom., Volume 72 (2006) no. 2, pp. 169-338 | MR | Zbl
[22] Logarithmic Gromov–Witten invariants, J. Am. Math. Soc., Volume 26 (2013) no. 2, pp. 451-510 | DOI | MR | Zbl
[23] Welschinger invariant and enumeration of real rational curves, Int. Math. Res. Not. (2003) no. 49, pp. 2639-2653 | DOI | MR | Zbl
[24] Logarithmic equivalence of the Welschinger and the Gromov–Witten invariants, Usp. Mat. Nauk, Volume 59 (2004) no. 6(360), pp. 85-110 | DOI | MR
[25] A Caporaso–Harris type formula for Welschinger invariants of real toric del Pezzo surfaces, Comment. Math. Helv., Volume 84 (2009) no. 1, pp. 87-126 | DOI | MR | Zbl
[26] Welschinger invariants revisited, Analysis meets geometry (Trends in Mathematics), Birkhäuser/Springer, 2017, pp. 239-260 | DOI | MR | Zbl
[27] Tropical algebraic geometry, Oberwolfach Seminars, 35, Birkhäuser, 2009, x+104 pages | DOI | MR
[28] Log smooth deformation theory, Tôhoku Math. J., Volume 48 (1996) no. 3, pp. 317-354 | DOI | MR | Zbl
[29] Log smooth deformation and moduli of log smooth curves, Int. J. Math., Volume 11 (2000) no. 2, pp. 215-232 | DOI | MR | Zbl
[30] Logarithmic structures of Fontaine–Illusie, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins University Press, 1989, pp. 191-224 | MR | Zbl
[31] Descendant log Gromov–Witten invariants for toric varieties and tropical curves, Trans. Am. Math. Soc., Volume 373 (2020) no. 2, pp. 1109-1152 | DOI | MR | Zbl
[32] Enumerative tropical algebraic geometry in , J. Am. Math. Soc., Volume 18 (2005) no. 2, pp. 313-377 | DOI | MR | Zbl
[33] Correspondence theorems for tropical curves (2009) | arXiv
[34] Toric degenerations of toric varieties and tropical curves, Duke Math. J., Volume 135 (2006) no. 1, pp. 1-51 | DOI | MR | Zbl
[35] Lectures on logarithmic algebraic geometry, Cambridge Studies in Advanced Mathematics, 178, Cambridge University Press, 2018, xviii+539 pages | DOI | MR
[36] Skeletons of stable maps I: rational curves in toric varieties, J. Lond. Math. Soc., Volume 95 (2017) no. 3, pp. 804-832 | DOI | MR | Zbl
[37] A tropical approach to enumerative geometry, Algebra Anal., Volume 17 (2005) no. 2, pp. 170-214 | DOI | MR
[38] A tropical calculation of the Welschinger invariants of real toric del Pezzo surfaces, J. Algebr. Geom., Volume 15 (2006) no. 2, pp. 285-322 | DOI | MR | Zbl
[39] Patchworking singular algebraic curves. I, Isr. J. Math., Volume 151 (2006), pp. 125-144 | DOI | MR | Zbl
[40] Patchworking singular algebraic curves. II, Isr. J. Math., Volume 151 (2006), pp. 145-166 | DOI | MR | Zbl
[41] Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditions, Ph. D. Thesis, Massachusetts Institute of Technology (2006) (https://www.proquest.com/docview/304947035) | MR
[42] Point like bounding chains in open Gromov–Witten theory (2016) | arXiv
[43] Tropical geometry and correspondence theorems via toric stacks, Math. Ann., Volume 353 (2012) no. 3, pp. 945-995 | DOI | MR | Zbl
[44] Enumeration of rational curves with cross-ratio constraints, Adv. Math., Volume 305 (2017), pp. 1356-1383 | DOI | MR | Zbl
[45] Gluing of plane real algebraic curves and constructions of curves of degrees and , Topology (Leningrad, 1982) (Lecture Notes in Mathematics), Volume 1060, Springer, 1984, pp. 187-200 | DOI | MR | Zbl
[46] Real plane algebraic curves: constructions with controlled topology, Algebra Anal., Volume 1 (1989) no. 5, pp. 1-73 | MR
[47] Patchworking real algebraic varieties (2006) | arXiv
[48] An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, 1994, xiv+450 pages | DOI | MR
[49] Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry, C. R. Math. Acad. Sci. Paris, Volume 336 (2003) no. 4, pp. 341-344 | DOI | MR | Zbl
[50] Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry, Invent. Math., Volume 162 (2005) no. 1, pp. 195-234 | DOI | MR | Zbl
[51] Spinor states of real rational curves in real algebraic convex 3-manifolds and enumerative invariants, Duke Math. J., Volume 127 (2005) no. 1, pp. 89-121 | DOI | MR | Zbl
[52] Open Gromov–Witten invariants in dimension six, Math. Ann., Volume 356 (2013) no. 3, pp. 1163-1182 | DOI | MR | Zbl
Cité par Sources :