Singular subalgebroids
Annales de l'Institut Fourier, Online first, 82 p.

We introduce singular subalgebroids of an integrable Lie algebroid, extending the notion of Lie subalgebroid by dropping the constant rank requirement. We lay the bases of a Lie theory for singular subalgebroids: we construct the associated holonomy groupoids, adapting the procedure of Androulidakis–Skandalis for singular foliations, in a way that keeps track of the choice of Lie groupoid integrating the ambient Lie algebroid. In the regular case, this recovers the integration of Lie subalgebroids by Moerdijk–Mrčun. The holonomy groupoids are topological groupoids, and are suitable for noncommutative geometry as they allow for the construction of the associated convolution algebras. Further we carry out the construction for morphisms in a functorial way.

Nous introduisons les sous-algébroïdes singuliers d’un algébroïde de Lie intégrable, qui étendent la notion de sous-algébroïde de Lie par la suppression de la condition de rang constant. Nous posons les bases d’une théorie de Lie pour les sous-algébroïdes singuliers  : nous construisons les groupoïdes d’holonomie associés, en adaptant la procédure d’Androulidakis–Skandalis pour les feuilletages singuliers, de manière à tenir compte du choix du groupoïde de Lie intégrant l’algébroïde de Lie. Dans le cas régulier, on retrouve bien l’intégration des sous-algébroïdes de Lie par Moerdijk–Mrčun. Les groupoïdes d’holonomie sont des groupoïdes topologiques, et ils sont adaptés à la géométrie non commutative car ils permettent la construction des algèbres de convolution associées. Enfin, nous réalisons la construction des morphismes de manière fonctorielle.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/aif.3493
Classification: 22A22,  17B66,  22E60,  53D17
Keywords: Lie subalgebroid, singular foliation, holonomy groupoid, Lie groupoid.
Zambon, Marco 1

1 KU Leuven Department of Mathematics Celestijnenlaan 200B, BE-3001 Leuven (Belgium)
@unpublished{AIF_0__0_0_A84_0,
     author = {Zambon, Marco},
     title = {Singular subalgebroids},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2022},
     doi = {10.5802/aif.3493},
     language = {en},
     note = {Online first},
}
TY  - UNPB
TI  - Singular subalgebroids
JO  - Annales de l'Institut Fourier
PY  - 2022
DA  - 2022///
PB  - Association des Annales de l’institut Fourier
N1  - Online first
UR  - https://doi.org/10.5802/aif.3493
DO  - 10.5802/aif.3493
LA  - en
ID  - AIF_0__0_0_A84_0
ER  - 
%0 Unpublished Work
%T Singular subalgebroids
%J Annales de l'Institut Fourier
%D 2022
%I Association des Annales de l’institut Fourier
%Z Online first
%U https://doi.org/10.5802/aif.3493
%R 10.5802/aif.3493
%G en
%F AIF_0__0_0_A84_0
Zambon, Marco. Singular subalgebroids. Annales de l'Institut Fourier, Online first, 82 p.

[1] Androulidakis, Iakovos; Skandalis, Georges The holonomy groupoid of a singular foliation, J. Reine Angew. Math., Volume 626 (2009), pp. 1-37 | DOI | MR | Zbl

[2] Androulidakis, Iakovos; Skandalis, Georges The analytic index of elliptic pseudodifferential operators on a singular foliation, J. K-Theory, Volume 8 (2011) no. 3, pp. 363-385 | DOI | MR | Zbl

[3] Androulidakis, Iakovos; Skandalis, Georges Pseudodifferential calculus on a singular foliation, J. Noncommut. Geom., Volume 5 (2011) no. 1, pp. 125-152 | DOI | MR | Zbl

[4] Androulidakis, Iakovos; Zambon, Marco Smoothness of holonomy covers for singular foliations and essential isotropy, Math. Z., Volume 275 (2013) no. 3-4, pp. 921-951 | DOI | MR | Zbl

[5] Androulidakis, Iakovos; Zambon, Marco Holonomy transformations for singular foliations, Adv. Math., Volume 256 (2014), pp. 348-397 | DOI | MR | Zbl

[6] Androulidakis, Iakovos; Zambon, Marco Almost regular Poisson manifolds and their holonomy groupoids, Selecta Math. (N.S.), Volume 23 (2017) no. 3, pp. 2291-2330 | DOI | MR | Zbl

[7] Androulidakis, Iakovos; Zambon, Marco Integration of Singular Subalgebroids (2020) (https://arxiv.org/abs/2008.07976)

[8] Cannas da Silva, Ana; Weinstein, Alan Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, 10, American Mathematical Society, Providence, RI, 1999, xiv+184 pages | MR | Zbl

[9] Crainic, Marius; Fernandes, Rui Loja Lectures on integrability of Lie brackets, Lectures on Poisson geometry (Geom. Topol. Monogr.), Volume 17, Geom. Topol. Publ., Coventry, 2011, pp. 1-107 | DOI | MR

[10] Garmendia, Alfonso; Zambon, Marco Hausdorff Morita equivalence of singular foliations, Ann. Global Anal. Geom., Volume 55 (2019) no. 1, pp. 99-132 | DOI | MR | Zbl

[11] Garmendia, Alfonso; Zambon, Marco Quotients of singular foliations and Lie 2-group actions, J. Noncommut. Geom., Volume 15 (2021) no. 4, pp. 1251-1283 | DOI | MR | Zbl

[12] Gualtieri, Marco; Li, Songhao Symplectic groupoids of log symplectic manifolds, Int. Math. Res. Not. IMRN (2014) no. 11, pp. 3022-3074 | DOI | MR | Zbl

[13] del Hoyo, Matias L. Lie groupoids and their orbispaces, Port. Math., Volume 70 (2013) no. 2, pp. 161-209 | DOI | MR | Zbl

[14] Kosmann-Schwarzbach, Yvette; Magri, Franco Poisson–Nijenhuis structures, Ann. Inst. H. Poincaré Phys. Théor., Volume 53 (1990) no. 1, pp. 35-81 | MR | Zbl

[15] Laurent-Gengoux, Camille; Lavau, Sylvain; Strobl, Thomas The universal Lie -algebroid of a singular foliation, Doc. Math., Volume 25 (2020), pp. 1571-1652 | DOI | MR | Zbl

[16] Lavau, Sylvain Lie -algebroids and singular foliations, Ph. D. Thesis, Université de Lyon (2017) (https://arxiv.org/abs/1703.07404)

[17] Mackenzie, Kirill C. H. General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005, xxxviii+501 pages | DOI | MR | Zbl

[18] Moerdijk, I.; Mrčun, J. On the integrability of Lie subalgebroids, Adv. Math., Volume 204 (2006) no. 1, pp. 101-115 | DOI | MR | Zbl

[19] Phillips, John The holonomic imperative and the homotopy groupoid of a foliated manifold, Rocky Mountain J. Math., Volume 17 (1987) no. 1, pp. 151-165 | DOI | MR | Zbl

[20] Rinehart, George S. Differential forms on general commutative algebras, Trans. Amer. Math. Soc., Volume 108 (1963), pp. 195-222 | DOI | MR | Zbl

Cited by Sources: