Sur des groupes de symplectomorphismes du disque, nous construisons deux quasi-morphismes homogènes reliés à l’invariant de Calabi et l’homomorphisme du flux respectivement. Nous montrons également la relation entre les quasi-morphismes et le nombre de translation introduit par Poincaré.
On groups of symplectomorphisms of the disk, we construct two homogeneous quasi-morphisms which relate to the Calabi invariant and the flux homomorphism respectively. We also show the relation between the quasi-morphisms and the translation number introduced by Poincaré.
Révisé le :
Accepté le :
Publié le :
Keywords: quasi-morphism, bounded cohomology, symplectomorphism group
Mot clés : quasi-morphisme, cohomologie bornée, groupe des difféomorphismes symplectiques
Maruyama, Shuhei 1
@article{AIF_2022__72_5_1819_0, author = {Maruyama, Shuhei}, title = {The translation number and quasi-morphisms on groups of symplectomorphisms of the disk}, journal = {Annales de l'Institut Fourier}, pages = {1819--1830}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {5}, year = {2022}, doi = {10.5802/aif.3487}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3487/} }
TY - JOUR AU - Maruyama, Shuhei TI - The translation number and quasi-morphisms on groups of symplectomorphisms of the disk JO - Annales de l'Institut Fourier PY - 2022 SP - 1819 EP - 1830 VL - 72 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3487/ DO - 10.5802/aif.3487 LA - en ID - AIF_2022__72_5_1819_0 ER -
%0 Journal Article %A Maruyama, Shuhei %T The translation number and quasi-morphisms on groups of symplectomorphisms of the disk %J Annales de l'Institut Fourier %D 2022 %P 1819-1830 %V 72 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3487/ %R 10.5802/aif.3487 %G en %F AIF_2022__72_5_1819_0
Maruyama, Shuhei. The translation number and quasi-morphisms on groups of symplectomorphisms of the disk. Annales de l'Institut Fourier, Tome 72 (2022) no. 5, pp. 1819-1830. doi : 10.5802/aif.3487. https://aif.centre-mersenne.org/articles/10.5802/aif.3487/
[1] Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv., Volume 53 (1978) no. 2, pp. 174-227 | DOI | MR | Zbl
[2] scl, MSJ Memoirs, 20, Mathematical Society of Japan, 2009 | DOI | MR | Zbl
[3] A cocycle on the group of symplectic diffeomorphisms, Adv. Geom., Volume 11 (2011) no. 1, pp. 73-88 | DOI | MR | Zbl
[4] The flux homomorphism and central extensions of diffeomorphism groups, Osaka J. Math., Volume 58 (2021) no. 2, pp. 319-329 | MR | Zbl
[5] Numerical invariants for semiconjugacy of homeomorphisms of the circle, Proc. Am. Math. Soc., Volume 98 (1986) no. 1, pp. 163-168 | DOI | MR | Zbl
[6] The Calabi invariant and central extensions of diffeomorphism groups, Geometry and topology of manifolds (Springer Proceedings in Mathematics & Statistics), Volume 154, Springer, 2016, pp. 283-297 | DOI | MR | Zbl
[7] Sur les courbes définies par une équation differentielle, Journal de Mathématiques, Volume 1 (1885) no. 2, pp. 167-244
[8] Growth of maps, distortion in groups and symplectic geometry, Invent. Math., Volume 150 (2002) no. 3, pp. 655-686 | DOI | MR | Zbl
[9] The Calabi invariant and the Euler class, Trans. Am. Math. Soc., Volume 352 (2000) no. 2, pp. 515-524 | DOI | MR | Zbl
Cité par Sources :