Shuhei Maruyama

The translation number and quasi-morphisms on groups of symplectomorphisms of the disk

Article à paraître, mis en ligne le 29 juillet 2022, 12 p.
THE TRANSLATION NUMBER AND QUASI-MORPHISMS ON GROUPS OF SYMPLECTOMORPHISMS OF THE DISK

by Shuhei MARUYAMA

Abstract. — On groups of symplectomorphisms of the disk, we construct two homogeneous quasi-morphisms which relate to the Calabi invariant and the flux homomorphism respectively. We also show the relation between the quasi-morphisms and the translation number introduced by Poincaré.

1. Introduction

A quasi-morphism on a group Γ is a function $\phi : \Gamma \to \mathbb{R}$ such that the value
\[
\sup_{\gamma_1, \gamma_2 \in \Gamma} |\phi(\gamma_1 \gamma_2) - \phi(\gamma_1) - \phi(\gamma_2)|
\]
is bounded. A quasi-morphism ϕ is called homogeneous if the condition $\phi(\gamma^n) = n\phi(\gamma)$ holds for any $\gamma \in \Gamma$ and $n \in \mathbb{Z}$. Let $Q(\Gamma)$ denote the \mathbb{R}-vector space of homogeneous quasi-morphisms on the group Γ. Given a quasi-morphism ϕ, we obtain the homogeneous quasi-morphism $\overline{\phi}$ associated to ϕ by
\[
\overline{\phi}(g) = \lim_{n \to \infty} \frac{\phi(g^n)}{n}.
\]
This map $\overline{\phi}$ is called the homogenization of ϕ.

Let $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ be the unit disk in \mathbb{R}^2 and $\omega = dx \wedge dy$ be the standard symplectic form on D. Let $G = \text{Symp}(D)$ be the group of...
symplectomorphisms of D (which may not be the identity on the boundary ∂D). In the present paper, we construct a homogeneous quasi-morphism on G. Let η be a 1-form on D satisfying $d\eta = \omega$. The map $\tau_\eta : G \to \mathbb{R}$ is defined by

$$
\tau_\eta(g) = \int_D g^* \eta \wedge \eta.
$$

Let G_{rel} denote the kernel of the homomorphism $G \to \text{Diff}_+ (S^1)$, where $\text{Diff}_+ (S^1)$ denotes the group of orientation preserving diffeomorphisms of the circle. Then the map τ coincides with the Calabi invariant on G_{rel}. Although the Calabi invariant $\text{Cal} : G_{\text{rel}} \to \mathbb{R}$ is a homomorphism, the map $\tau_\eta : G \to \mathbb{R}$ is not a homomorphism. However, this map τ_η gives rise to a quasi-morphism. Thus, by the homogenization, we have the homogeneous quasi-morphism $\overline{\tau_\eta}$. Since $\overline{\tau_\eta}$ is independent of the choice of η, we simply denote it by $\overline{\tau}$. This $\overline{\tau}$ is the main object of the present paper.

It is known that the Calabi invariant $\text{Cal} : G_{\text{rel}} \to \mathbb{R}$ cannot be extended to a homomorphism $G \to \mathbb{R}$ (see Tsuboi [9]). However, the Calabi invariant can be extended to a homogeneous quasi-morphism on G. Indeed, we will show in Proposition 2.1 that the homogeneous quasi-morphism $\tau : G \to \mathbb{R}$ gives rise to an extension of the Calabi invariant. There is another extension R of the Calabi invariant, which is introduced by Tsuboi [9] (see also Banyaga [1]). This extension R is defined as a homomorphism to \mathbb{R} from the universal covering group \widetilde{G} of G by

$$
R([g_t]) = \int_0^1 \left(\int_D f_{X_t} \omega \right) dt.
$$

Here g_t is a path in G and f_{X_t} is the Hamiltonian function associated to g_t (see Section 4). Then, it is natural to ask what the relation between two extensions τ and R of the Calabi invariant is. The following theorem answers this.

THEOREM 1.1 (Theorem 2.5). — Let $p : \widetilde{G} \to G$ be the projection. Then, we have

$$
p^* \tau + 2R = \pi^2 \text{rot} : \widetilde{G} \to \mathbb{R}.
$$

Here the map $\text{rot} : \widetilde{G} \to \mathbb{R}$ is the pullback of Poincaré’s translation number by the surjection $\widetilde{G} \to \text{Diff}_+ (S^1)$.

Let $G_o = \{ g \in G \mid g(o) = o \}$ be the subgroup of G consisting of symplectomorphisms which preserve the origin $o = (0,0) \in D$. On the group G_o, we also construct a homogeneous quasi-morphism $\sigma = \sigma_{\eta,\gamma} : G_o \to \mathbb{R}$, where $\sigma_{\eta,\gamma} : G_o \to \mathbb{R}$ is defined by
\[\sigma_{\eta, \gamma}(g) = \int_{\gamma} g^* \eta - \eta. \]

Here the symbol \(\gamma \) is a path from the origin to a point on the boundary.

Let \(\tilde{G}_o \) be the universal covering group of \(G_o \). By using the homomorphism \(S : \tilde{G}_o \to \mathbb{R} \) introduced in Section 3, we describe the relation between \(\sigma \) and the translation number, which is similar to Theorem 1.1.

Theorem 1.2 (Theorem 3.4). — Let \(p : \tilde{G}_o \to G_o \) be the projection. Then, we have
\[p^* \sigma - S = \pi \tilde{\text{rot}} : \tilde{G}_o \to \mathbb{R}. \]

Here the map \(\tilde{\text{rot}} : \tilde{G}_o \to \mathbb{R} \) is the pullback of the translation number by the surjection \(\tilde{G}_o \to \text{Diff}_+^+(S^1) \).

The coboundary of the translation number \(\tilde{\text{rot}} \) gives the canonical Euler cocycle (Matsumoto [5]). Similarly, the coboundary of homogeneous quasi-morphisms \(\tau \) and \(\sigma \) also give cocycles which represents the bounded Euler class of \(\text{Diff}_+^+(S^1) \) (Propositions 2.2, 3.1).

By comparing the two homogeneous quasi-morphisms \(\tau \) and \(\sigma \), we obtain the following theorem.

Theorem 1.3 (Theorem 4.1). — The difference \(\tau - \pi \sigma : G_o \to \mathbb{R} \) is a continuous surjective homomorphism.

Note that, in this paper, we assume the notation of group cohomology and bounded cohomology in [2].

Acknowledgements

The author would like to thank Professor Hitoshi Moriyoshi for his helpful advice. He also thanks Morimichi Kawasaki, who told him that there is another extension \(R \) of the Calabi invariant and suggested to investigate a connection between \(R \) and the quasi-morphism \(\tau \) constructed in this paper. He also thanks Professor Masayuki Asaoka for his comments.

2. The Calabi invariant case
2.1. Calabi invariant and the quasi-morphism τ

Let $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ be the unit disk with the standard symplectic form $\omega = dx \wedge dy$. Let $G = \text{Symp}(D)$ denote the symplectomorphism group of D and $\text{Diff}^+(S^1)$ the orientation preserving diffeomorphism group of the unit circle $S^1 = \partial D$. Then the homomorphism $\rho : G \to \text{Diff}^+(S^1)$ is surjective (see Tsuboi [9]). Thus we have an exact sequence

$$1 \longrightarrow G_{\text{rel}} \longrightarrow G \overset{\rho}{\longrightarrow} \text{Diff}^+(S^1) \longrightarrow 1,$$

where the group G_{rel} is the kernel of the map $\rho : G \to \text{Diff}^+(S^1)$.

The Calabi invariant $\text{Cal} : G_{\text{rel}} \to \mathbb{R}$ is defined by

$$\text{Cal}(h) = \int_D h^*\eta \wedge \eta$$

where η is a 1-form satisfying $d\eta = \omega$. The Calabi invariant Cal is a surjective homomorphism and is independent of the choice of η (see Banyaga [1]). On the group G, the map $\tau_\eta : G \to \mathbb{R}$ is defined in the same way as in (2.1), that is, we put

$$\tau_\eta(g) = \int_D g^*\eta \wedge \eta.$$

Note that the map τ_η is not a homomorphism and does depend on the choice of η. In [6], for $\lambda = (x dy - y dx)/2$, Moriyoshi proved the transgression formula

$$\text{Cal}(h) = \tau_\lambda(h) \quad (h \in G_{\text{rel}})$$

$$-\delta \tau_\lambda(g, h) = \pi^2 \chi(\rho(g), \rho(h)) + \pi^2/2 \quad (g, h \in G).$$

Here δ is the coboundary operator of group cohomology and the symbol χ is a bounded 2-cocycle defined in Moriyoshi [6], which represents the bounded Euler class $e_b \in H^2_b(\text{Diff}^+(S^1); \mathbb{R})$. Since the cocycle χ is bounded, the map $\tau_\lambda : G \to \mathbb{R}$ is a quasi-morphism. Moreover, since the function $\tau_\eta - \tau_\lambda$ is bounded for any 1-form η satisfying $d\eta = \omega$, the map τ_η is a quasi-morphism for any η and the homogenizations of τ_η and τ_λ coincide. Thus we simply denote by τ the homogenization of τ_η.

Proposition 2.1. — The homogenization $\tau : G \to \mathbb{R}$ is an extension of the Calabi invariant, that is, $\tau|_{G_{\text{rel}}} = \text{Cal}$. In particular, the map τ is a surjective homogeneous quasi-morphism.

Proof. — For $h \in G_{\text{rel}}$, we have

$$\tau(h) = \lim_{n \to \infty} \frac{\tau_\eta(h^n)}{n} = \lim_{n \to \infty} \frac{\text{Cal}(h^n)}{n} = \lim_{n \to \infty} \frac{n\text{Cal}(h)}{n} = \text{Cal}(h).$$
Since the Calabi invariant is surjective, the homogenization τ is also surjective. \qed

The homogeneous quasi-morphism τ relates to the bounded Euler class as follows.

Proposition 2.2. — The bounded cohomology class $[\delta \tau] \in H^2_b(G; \mathbb{R})$ is equal to $-\pi^2$ times the pullback $\rho^* e_b$ of the bounded Euler class e_b.

Proof. — Recall that the difference between a quasi-morphism and its homogenization is a bounded function. Thus we have $\delta \tau - \delta \bar{\tau} = \delta b$ where $b = \tau - \tau$ is a bounded function. This implies that the bounded cohomology class $[\delta \tau]$ coincides with $[\delta \bar{\tau}]$. Moreover, the class $[\delta \tau]$ is equal to the pullback $\rho^* e_b$ up to non-zero constant multiple because of the transgression formula (2.2). \qed

2.2. Two extensions τ and R of the Calabi invariant

By Proposition 2.1, the homogeneous quasi-morphism $\tau : G \to \mathbb{R}$ is considered as an extension of the Calabi invariant. There is another extension R of the Calabi invariant, which is introduced by Tsuboi [9] (see also Banyaga [1]). This extension is defined as a homomorphism $R : \tilde{G} \to \mathbb{R}$, where the group \tilde{G} is the universal covering group of G with respect to the C^∞-topology. In this section, we investigate the relation between these two extensions τ and R.

We recall the definition of the homomorphism R. Let $\mathcal{L}_\omega(D)$ be the set of divergence free vector fields which are tangent to the boundary. For any vector field X in $\mathcal{L}_\omega(D)$, there is a unique function $f_X : D \to \mathbb{R}$ such that $i_X \omega = df_X$ and $f_X|_{\partial D} = 0$. For any path g_t in G, we define the time-dependent vector field X_t by $X_t = (\partial g_t / \partial t) \circ g_t^{-1}$. Since g_t is a symplectomorphism for any $t \in [0, 1]$, the vector field X_t is in $\mathcal{L}_\omega(D)$. Then the map $R : \tilde{G} \to \mathbb{R}$ is defined by

$$R([g_t]) = \int_0^1 \left(\int_D f_{X_t} \omega \right) dt.$$

This map R is a well-defined homomorphism (see Banyaga [1]).

We reproduce the following lemma, which is essentially proved in Tsuboi [9, Lemme 1.5].

Lemma 2.3. — Let g_t be a path in G such that $g_0 = \text{id}$ and X_t the time-dependent vector field defined by $X_t = (\partial g_t / \partial t) \circ g_t^{-1}$, then

$$\tau_\eta(g_1) + 2R([g_t]) = \int_{\partial D} \left(\int_0^1 g_t^* (i_{X_t}\eta) dt \right) \eta.$$

2.2. Two extensions τ and R of the Calabi invariant

By Proposition 2.1, the homogeneous quasi-morphism $\tau : G \to \mathbb{R}$ is considered as an extension of the Calabi invariant. There is another extension R of the Calabi invariant, which is introduced by Tsuboi [9] (see also Banyaga [1]). This extension is defined as a homomorphism $R : \tilde{G} \to \mathbb{R}$, where the group \tilde{G} is the universal covering group of G with respect to the C^∞-topology. In this section, we investigate the relation between these two extensions τ and R.

We recall the definition of the homomorphism R. Let $\mathcal{L}_\omega(D)$ be the set of divergence free vector fields which are tangent to the boundary. For any vector field X in $\mathcal{L}_\omega(D)$, there is a unique function $f_X : D \to \mathbb{R}$ such that $i_X \omega = df_X$ and $f_X|_{\partial D} = 0$. For any path g_t in G, we define the time-dependent vector field X_t by $X_t = (\partial g_t / \partial t) \circ g_t^{-1}$. Since g_t is a symplectomorphism for any $t \in [0, 1]$, the vector field X_t is in $\mathcal{L}_\omega(D)$. Then the map $R : \tilde{G} \to \mathbb{R}$ is defined by

$$R([g_t]) = \int_0^1 \left(\int_D f_{X_t} \omega \right) dt.$$

This map R is a well-defined homomorphism (see Banyaga [1]).

We reproduce the following lemma, which is essentially proved in Tsuboi [9, Lemme 1.5].

Lemma 2.3. — Let g_t be a path in G such that $g_0 = \text{id}$ and X_t the time-dependent vector field defined by $X_t = (\partial g_t / \partial t) \circ g_t^{-1}$, then

$$\tau_\eta(g_1) + 2R([g_t]) = \int_{\partial D} \left(\int_0^1 g_t^* (i_{X_t}\eta) dt \right) \eta.$$

2.2. Two extensions τ and R of the Calabi invariant

By Proposition 2.1, the homogeneous quasi-morphism $\tau : G \to \mathbb{R}$ is considered as an extension of the Calabi invariant. There is another extension R of the Calabi invariant, which is introduced by Tsuboi [9] (see also Banyaga [1]). This extension is defined as a homomorphism $R : \tilde{G} \to \mathbb{R}$, where the group \tilde{G} is the universal covering group of G with respect to the C^∞-topology. In this section, we investigate the relation between these two extensions τ and R.

We recall the definition of the homomorphism R. Let $\mathcal{L}_\omega(D)$ be the set of divergence free vector fields which are tangent to the boundary. For any vector field X in $\mathcal{L}_\omega(D)$, there is a unique function $f_X : D \to \mathbb{R}$ such that $i_X \omega = df_X$ and $f_X|_{\partial D} = 0$. For any path g_t in G, we define the time-dependent vector field X_t by $X_t = (\partial g_t / \partial t) \circ g_t^{-1}$. Since g_t is a symplectomorphism for any $t \in [0, 1]$, the vector field X_t is in $\mathcal{L}_\omega(D)$. Then the map $R : \tilde{G} \to \mathbb{R}$ is defined by

$$R([g_t]) = \int_0^1 \left(\int_D f_{X_t} \omega \right) dt.$$

This map R is a well-defined homomorphism (see Banyaga [1]).

We reproduce the following lemma, which is essentially proved in Tsuboi [9, Lemme 1.5].

Lemma 2.3. — Let g_t be a path in G such that $g_0 = \text{id}$ and X_t the time-dependent vector field defined by $X_t = (\partial g_t / \partial t) \circ g_t^{-1}$, then

$$\tau_\eta(g_1) + 2R([g_t]) = \int_{\partial D} \left(\int_0^1 g_t^* (i_{X_t}\eta) dt \right) \eta.$$

2.2. Two extensions τ and R of the Calabi invariant

By Proposition 2.1, the homogeneous quasi-morphism $\tau : G \to \mathbb{R}$ is considered as an extension of the Calabi invariant. There is another extension R of the Calabi invariant, which is introduced by Tsuboi [9] (see also Banyaga [1]). This extension is defined as a homomorphism $R : \tilde{G} \to \mathbb{R}$, where the group \tilde{G} is the universal covering group of G with respect to the C^∞-topology. In this section, we investigate the relation between these two extensions τ and R.

We recall the definition of the homomorphism R. Let $\mathcal{L}_\omega(D)$ be the set of divergence free vector fields which are tangent to the boundary. For any vector field X in $\mathcal{L}_\omega(D)$, there is a unique function $f_X : D \to \mathbb{R}$ such that $i_X \omega = df_X$ and $f_X|_{\partial D} = 0$. For any path g_t in G, we define the time-dependent vector field X_t by $X_t = (\partial g_t / \partial t) \circ g_t^{-1}$. Since g_t is a symplectomorphism for any $t \in [0, 1]$, the vector field X_t is in $\mathcal{L}_\omega(D)$. Then the map $R : \tilde{G} \to \mathbb{R}$ is defined by

$$R([g_t]) = \int_0^1 \left(\int_D f_{X_t} \omega \right) dt.$$

This map R is a well-defined homomorphism (see Banyaga [1]).

We reproduce the following lemma, which is essentially proved in Tsuboi [9, Lemme 1.5].

Lemma 2.3. — Let g_t be a path in G such that $g_0 = \text{id}$ and X_t the time-dependent vector field defined by $X_t = (\partial g_t / \partial t) \circ g_t^{-1}$, then

$$\tau_\eta(g_1) + 2R([g_t]) = \int_{\partial D} \left(\int_0^1 g_t^* (i_{X_t}\eta) dt \right) \eta.$$
In particular, for a path h_t in G_{rel} such that $h_0 = \text{id}$, we have $\text{Cal}(h_1) = -2R([h_t])$.

Let $\widetilde{\text{Diff}}_+(S^1)$ denote the universal covering of $\text{Diff}_+(S^1)$. Note that, in this paper, we identify the circle S^1 with the quotient $\mathbb{R}/2\pi\mathbb{Z}$. We consider an element $\tilde{\gamma} \in \widetilde{\text{Diff}}_+(S^1)$ as an orientation preserving diffeomorphism of \mathbb{R} satisfying $\tilde{\gamma}(\theta + 2\pi) = \tilde{\gamma}(\theta) + 2\pi$ for any $\theta \in \mathbb{R}$. Let φ_t be the path in $\text{Diff}_+(S^1)$ defined by $\varphi_t = g_t|_{\partial D}$. Let ξ_t be the time-dependent vector field defined by $\xi_t = \left(\partial \varphi_t / \partial t\right) \circ \varphi_t^{-1}$. Let $\tilde{\varphi}_t \in \widetilde{\text{Diff}}_+(S^1)$ be the lift of φ_t such that $\tilde{\varphi}_0 = \text{id}$. Note that $\lambda = \left(x dy - y dx\right) / 2 = (r^2 d\theta) / 2$ where $(r, \theta) \in D$ is the polar coordinates. Then the right-hand side of the equality (2.3) can be written as

$$\int_{\partial D} \left(\int_0^1 g_t^1 (i_X, \lambda) dt\right) = \frac{1}{4} \int_{S^1} \left(\int_0^1 \varphi_t^1 (i_{\xi_t} \lambda) dt\right) d\theta$$

$$= \frac{1}{4} \int_0^{2\pi} \left(\int_0^1 \partial \tilde{\varphi}_t / \partial t dt\right) d\theta$$

$$= \frac{1}{4} \int_0^{2\pi} (\tilde{\varphi}_1(\theta) - \theta) d\theta. \quad (2.4)$$

Let us define a map $f : \widetilde{\text{Diff}}_+(S^1) \to \mathbb{R}$ by $f(\tilde{\varphi}) = \frac{1}{4\pi^2} \int_0^{2\pi} (\tilde{\varphi}(\theta) - \theta) d\theta$. Then we have

$$\tau_\lambda(g_1) + 2R([g_t]) = \frac{\pi^2}{2} f(\tilde{\varphi}_1). \quad (2.5)$$

Note that, for any $\tilde{\varphi}, \tilde{\psi}$ in $\widetilde{\text{Diff}}_+(S^1)$, the inequality $|\tilde{\varphi} \tilde{\psi}(\theta) - \tilde{\varphi}(\theta) + \tilde{\psi}(\theta) + \theta| < 4\pi$ holds. This implies that the map f is a quasi-morphism. Let \overline{f} be the homogenization of f. By taking the homogenizations of the both sides of the equality (2.5), we have

$$\tau(g_1) + 2R([g_t]) = \pi^2 \overline{f}(\tilde{\varphi}_1). \quad (2.6)$$

To explain the map $\overline{f} : \widetilde{\text{Diff}}_+(S^1) \to \mathbb{R}$, we recall the translation number introduced by Poincaré [7]. The translation number is a homogeneous quasi-morphism $\text{rot} : \widetilde{\text{Diff}}_+(S^1) \to \mathbb{R}$ defined by

$$\text{rot}(\tilde{\varphi}) = \lim_{n \to \infty} \frac{\tilde{\varphi}^n(0)}{2\pi n}. \quad (2.7)$$

Note that, in this paper, we identify the circle S^1 with the quotient $\mathbb{R}/2\pi\mathbb{Z}$.

Proposition 2.4. — The homogeneous quasi-morphism $\overline{f} : \widetilde{\text{Diff}}_+(S^1) \to \mathbb{R}$ coincides with the translation number.
Proof. — Since the sequence $\{ \frac{\tilde{\varphi}^n(x) - x}{n} \}$ converges uniformly to the constant function $\lim_{n \to \infty} \frac{\tilde{\varphi}^n(0)}{n}$ on the interval $[0, 2\pi]$, we have

$$J(\tilde{\varphi}) = \frac{1}{4\pi^2} \lim_{n \to \infty} \int_0^{2\pi} \frac{\tilde{\varphi}^n(x) - x}{n} dx = \frac{1}{4\pi^2} \int_0^{2\pi} \lim_{n \to \infty} \frac{\tilde{\varphi}^n(0)}{n} dx = \tilde{\text{rot}}(\tilde{\varphi}).$$

By Proposition 2.4 and equality (2.6), we obtain the following theorem.

Theorem 2.5. — Let $p : \tilde{G} \to G$ be the projection. Then we have

$$p^* \tau + 2R = \pi^2 \tilde{\text{rot}} : \tilde{G} \to \mathbb{R}.$$

Here the map $\tilde{\text{rot}} : \tilde{G} \to \mathbb{R}$ is the pullback of the translation number by the surjection $\tilde{G} \to \text{Diff}_+(S^1)$.

Poincaré’s translation number descends to the map $\text{rot} : \text{Diff}_+(S^1) \to \mathbb{R}/\mathbb{Z}$ and this is called Poincaré’s rotation number. The homomorphism $2R/\pi^2 : \tilde{G} \to \mathbb{R}$ also descends to the homomorphism $\tilde{R} : G \to \mathbb{R}/\mathbb{Z}$ (see Tsuboi [9, Corollary 2.9]).

Theorem 2.6. — Let $\tau : G \to \mathbb{R}/\mathbb{Z}$ be the composition of the homogeneous quasi-morphism $\tau/\pi^2 : G \to \mathbb{R}$ and the projection $\mathbb{R} \to \mathbb{R}/\mathbb{Z}$, then

$$\tau + \tilde{R} = \text{rot}.$$

Here the $\text{rot} : G \to \mathbb{R}/\mathbb{Z}$ is the pullback of the rotation number by the projection $G \to \text{Diff}_+(S^1)$.

3. The flux homomorphism case

3.1. The flux homomorphism and the quasi-morphism σ

Let us consider the subgroup

$$G_o = \{ g \in G | g(o) = o \in D \}$$

of G. Put $G_{o, \text{rel}} = G_{\text{rel}} \cap G_o$. Then the following sequence of groups

$$1 \longrightarrow G_{o, \text{rel}} \longrightarrow G_o \longrightarrow \mathbb{R}/\mathbb{Z} \longrightarrow 1$$

is an exact sequence. On the group $G_{o, \text{rel}}$, the Calabi invariant is defined as the restriction $\text{Cal}|_{G_{o, \text{rel}}} : G_{o, \text{rel}} \to \mathbb{R}$. In [4] the author studied a version
of flux homomorphism defined on $G_{o,\text{rel}}$ which is denoted by $\text{Flux}_{\mathbb{R}}$. This flux homomorphism $\text{Flux}_{\mathbb{R}}$ is defined by

$$\text{Flux}_{\mathbb{R}}(h) = \int_\gamma h^*\eta - \eta$$

where γ is a path from the origin o to a point on the boundary ∂D. Note that the flux homomorphism is a surjective homomorphism and is independent of the choice of η and γ.

As in the case of Calabi invariant, the flux homomorphism can be extended to the group G_{o}, that is, we define the map $\sigma_{\eta,\gamma} : G_{o} \to \mathbb{R}$ by

$$\sigma_{\eta,\gamma}(g) = \int_\gamma g^*\eta - \eta.$$

The following transgression formula

$$\text{Flux}_{\mathbb{R}}(h) = \sigma_{\eta,\gamma}(h) \quad (h \in G_{o,\text{rel}})$$

$$-\delta\sigma_{\eta,\gamma}(g, h) = \pi\xi(\rho(g), \rho(h)) \quad (g, h \in G_{o}),$$

holds, where $\xi \in C^2(\text{Diff}_+(S^1); \mathbb{R})$ is an Euler cocycle (see [4], where, in [4], the map $\sigma_{\eta,\gamma}$ is denoted by τ and the Euler cocycle ξ is denoted by χ). Since ξ is bounded, the map $\sigma_{\eta,\gamma}$ is a quasi-morphism. Let $\bar{\sigma}$ denote the homogenization of $\sigma_{\eta,\gamma}$. By arguments similar to those in Section 2, we obtain the following proposition.

Proposition 3.1.

(1) The homogenization $\bar{\sigma} : G_{o} \to \mathbb{R}$ is independent of the choice of η and γ.

(2) The homogenization $\bar{\sigma} : G_{o} \to \mathbb{R}$ is an extension of the flux homomorphism. In particular, $\bar{\sigma}$ is a surjective homogeneous quasi-morphism.

(3) The bounded cohomology class $[\delta\bar{\sigma}]$ is equal to $-\pi$ times the class ρ^*e_b, where e_b is the bounded Euler class.

Remark 3.2. — For an inner point $a \in D$, put $G^a = \{g \in G \mid g(a) = a\}$. We can define the homogeneous quasi-morphism $\bar{\sigma}_a : G^a \to \mathbb{R}$ in the same way. We can also show that $[\delta\bar{\sigma}_a] = -\pi\rho^*e_b$. Thus, for inner points $a, b \in D$, we have a homomorphism

$$\bar{\sigma}_a - \bar{\sigma}_b : G^a \cap G^b \to \mathbb{R}$$

and this is equal to the action difference defined in Polterovich [8](see also [3]).
3.2. Two extensions $\bar{\sigma}$ and S of the flux homomorphism

Let \widetilde{G}_o be the universal covering group of G_o with respect to the C^∞-topology. In this section, we introduce a homomorphism $S: \widetilde{G}_o \to \mathbb{R}$ and show that the difference of $\bar{\sigma}$ and S is equal to the translation number.

For a path g_t in G_o such that $g_0 = \text{id}$, the time-dependent vector field X_t is defined as in Section 2. Then we put

$$S(g_t) = \int_0^1 \int_\gamma i_{X_t} \omega \ dt,$$

where $\gamma : [0, 1] \to D$ is a path from the origin $o \in D$ to a point on the boundary ∂D. Take the time-dependent C^∞-function $f_t : D \to \mathbb{R}$ satisfying $i_{X_t} \omega = df_t$ and $f_t(o) = 0$. Then we have

$$S(g_t) = \int_0^1 \int_\gamma i_{X_t} \omega \ dt = \int_0^1 \int f_t \ dt = \int_0^1 f_t(\gamma(1)) \ dt.$$

Note that, for any $t \in [0, 1]$, the restriction $f_t|_{\partial D} : \partial D \to \mathbb{R}$ is a constant function. This implies that the function S is independent of the choice of γ.

Lemma 3.3. — Let g_t be a path in G_o such that $g_0 = \text{id}$ and X_t the time-dependent vector field defined by $X_t = (\partial g_t/\partial t) \circ g_t^{-1}$, then

$$\sigma_{\eta, \gamma}(g_1) - S(g_t) = \int_0^1 g_t^*(i_{X_t} \eta)(\gamma(1)) \ dt.$$

Proof. — Note that the identity

$$g_1^* \eta - \eta = d \left(\int_0^1 g_t^* f_t \ dt + \int_0^1 g_t^* (i_{X_t} \eta) \ dt \right)$$

holds. Thus we have

$$\sigma_{\eta, \gamma}(g_1) = \int_\gamma g_1^* \eta - \eta$$

$$= \int_\gamma d \left(\int_0^1 g_t^* f_t \ dt + \int_0^1 g_t^* (i_{X_t} \eta) \ dt \right)$$

$$= \left(\int_0^1 (g_t^* f_t)(\gamma(1)) \ dt + \int_0^1 (g_t^* (i_{X_t} \eta))(\gamma(1)) \ dt \right)$$

$$- \left(\int_0^1 (g_t^* f_t)(\gamma(0)) \ dt + \int_0^1 (g_t^* (i_{X_t} \eta))(\gamma(0)) \ dt \right).$$

Since $(g_t^* f_t)(\gamma(0)) = 0$ and $X_t(\gamma(0)) = 0$ for any $t \in [0, 1]$, the second term in (3.4) is equal to 0. Moreover, since the function $f_t|_{\partial D}$ is constant for any $t \in [0, 1]$, the first term in (3.4) is equal to $S(g_t) + \int_0^1 (g_t^* (i_{X_t} \eta))(\gamma(1)) dt$ and the lemma follows. □
Put \(\eta = (r^2 d\theta)/2 \) and \(\varphi_t = g_t \mid_{\partial D} \) in \(\text{Diff}_+(S^1) \). Take a path \(\gamma : [0, 1] \to D \) defined by \(\gamma(t) = (t, 0) \). Let \(\tilde{\varphi}_t \in \text{Diff}_+(S^1) \) be the lift of \(\varphi_t \) such that \(\tilde{\varphi}_0 = \text{id} \). As in the equation (2.4), we have

\[
\int_0^1 g_t^* (i_X \eta) (\gamma(1)) dt = \frac{1}{2} \int_0^1 \frac{\partial \tilde{\varphi}_t}{\partial t}(0) dt = \frac{1}{2} \tilde{\varphi}_1(0),
\]

where we identify \(\gamma(1) \in \partial D \) with \(0 \in \mathbb{R}/2\pi \mathbb{Z} \) by the identification \(\partial D = \mathbb{S}^1 = \mathbb{R}/2\pi \mathbb{Z} \). Thus we have

(3.5) \[
\sigma_{\eta, \gamma}(g_1) - S(g_t) = \frac{1}{2} \tilde{\varphi}_1(0).
\]

Equality (3.5) implies that the value \(S(g_t) \) depends only on the homotopy class relatively to fixed ends of the path \(g_t \) in \(G_o \). Henceforth, the map \(S : \widetilde{G}_o \to \mathbb{R} : [g_t] \mapsto S(g_t) \) is well-defined. Moreover, the map \(S \) gives rise to a homomorphism. In fact, let \(g_t, h_t \) be paths in \(G_o \), then

\[
S(g_t h_t) - S(g_t) - S(h_t) = \sigma_{\eta, \gamma}(g_1 h_1) - \sigma_{\eta, \gamma}(g_1) - \sigma_{\eta, \gamma}(h_1) - \frac{1}{2} \left(\tilde{\varphi}_1 \psi_1(0) - \tilde{\varphi}_1(0) - \psi_1(0) \right)
\]

and this is equal to 0 (see Maruyama [4]). Thus we have

(3.6) \[
\varpi(g_1) - S([g_t]) = \lim_{n \to \infty} \frac{\sigma_{\eta, \gamma}(g_1^n) - S([g_t]^n)}{n} = \pi \lim_{n \to \infty} \frac{\tilde{\varphi}_1^n(0)}{2\pi n} = \pi \text{rot} (\tilde{\varphi}_1).
\]

By the above equality (3.6), we obtain the following theorem.

Theorem 3.4. — Let \(p : \widetilde{G}_o \to G_o \) be the projection. Then, we have

\[
p^* \varpi - S = \pi \text{rot} : \widetilde{G}_o \to \mathbb{R}.
\]

Here the map \(\pi \text{rot} : \widetilde{G}_o \to \mathbb{R} \) is the pullback of the translation number by the surjection \(\widetilde{G}_o \to \text{Diff}_+(S^1) \).

Remark 3.5. — By considering the map to \(\mathbb{R}/\mathbb{Z} \), we obtain a theorem similar to Theorem 2.6 for \(\varpi, S \), and the rotation number.

Remark 3.6. — By (3.5), we obtain the formula similar to [9, Corollary (2.9)] and thus the formula similar to [9, Proposition (3.1)]. This implies that the homomorphism \(\text{Flux}_{\mathbb{R}} \) cannot be extended to a homomorphism on \(G_o \).
4. Relation between τ and σ

The restriction $\text{Cal}|_{G_{o,\text{rel}}} : G_{o,\text{rel}} \to \mathbb{R}$ of the Calabi invariant remains surjective. So the restriction $\tau : G_{o} \to \mathbb{R}$ is also surjective homogeneous quasi-morphism. Therefore we have two non-trivial homogeneous quasi-morphisms $\tau, \sigma \in Q(G_{o})$. By Proposition 2.2 and Proposition 3.1, the class $[\delta \tau]$ coincides with $\pi[\delta \sigma]$ in $H_{b}^{2}(G_{o};\mathbb{R})$. Thus the difference $\tau - \pi \sigma$ is a homomorphism on G_{o}. This implies that, in contrast with Cal and Flux$_{\mathbb{R}}$, the difference $\text{Cal} - \pi \text{Flux}_{\mathbb{R}}$ can be extended to a homomorphism $\tau - \pi \sigma : G_{o} \to \mathbb{R}$.

Theorem 4.1. — The difference $\tau - \pi \sigma : G_{o} \to \mathbb{R}$ is a continuous surjective homomorphism.

Proof. — On the group $G_{o,\text{rel}}$, the homomorphism $\tau - \pi \sigma$ is equal to $\text{Cal} - \pi \text{Flux}_{\mathbb{R}}$. Put the non-increasing C^{∞}-function $f : [0,1] \to \mathbb{R}$ which is equal to 1 near $r = 0$ and $f(1) = 0$. Then, for $s \in \mathbb{R}$, we define a diffeomorphism g_{s} in $G_{o,\text{rel}}$ by

$$g_{s}(r, \theta) = (r, \theta + sf(r))$$

where $(r, \theta) \in D$ is the polar coordinates. For

$$\eta = (r^{2}d\theta)/2, \quad \gamma(r) = (r,0) \in D,$$

we have

$$\text{Cal}(g_{s}) = \frac{s\pi}{2} \int_{0}^{1} r^{4} \frac{\partial f}{\partial r} dr, \quad \pi \text{Flux}_{\mathbb{R}}(g_{s}) = \frac{s\pi}{2} \int_{0}^{1} r^{2} \frac{\partial f}{\partial r} dr.$$

This implies that the difference $\tau - \pi \sigma$ is surjective on $G_{o,\text{rel}}$, and so is on G_{o}.

BIBLIOGRAPHY

Manuscrit reçu le 20 février 2020,
révisé le 6 octobre 2020,
accepté le 8 avril 2021.

Shuhei MARUYAMA
Nagoya University,
Graduate School of Mathematics,
Furocho, Chikusaku,
Nagoya (Japan)
m17037h@math.nagoya-u.ac.jp