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THE TRANSLATION NUMBER AND
QUASI-MORPHISMS ON GROUPS OF
SYMPLECTOMORPHISMS OF THE DISK

by Shuhei MARUYAMA

ABSTRACT. — On groups of symplectomorphisms of the disk, we construct two
homogeneous quasi-morphisms which relate to the Calabi invariant and the flux ho-
momorphism respectively. We also show the relation between the quasi-morphisms
and the translation number introduced by Poincaré.

RESUME. — Sur des groupes de symplectomorphismes du disque, nous construi-
sons deux quasi-morphismes homogenes reliés a 'invariant de Calabi et 'homo-
morphisme du flux respectivement. Nous montrons également la relation entre les
quasi-morphismes et le nombre de translation introduit par Poincaré.

1. Introduction

A quasi-morphism on a group I' is a function ¢ : I' — R such that the
value

sup [@(1172) — ¢(11) — ¢(12)l

Y1,72 €T
is bounded. A quasi-morphism ¢ is called homogeneous if the condition
d(7"™) = no(vy) holds for any v € T and n € Z. Let Q(T") denote the R-vector
space of homogeneous quasi-morphisms on the group I'. Given a quasi-
morphism ¢, we obtain the homogeneous quasi-morphism ¢ associated to
¢ by

3(g) = tim 2 ")

n — oo n
This map ¢ is called the homogenization of ¢.
Let D = {(z,y) € R? | 224+y? < 1} be the unit disk in R? and w = dxAdy
be the standard symplectic form on D. Let G = Symp(D) be the group of
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1820 Shuhei MARUYAMA

symplectomorphisms of D (which may not be the identity on the boundary
OD). In the present paper, we construct a homogeneous quasi-morphism
on G. Let  be a 1-form on D satisfying dn = w. The map 7, : G — R is
defined by

Ty(9) = /Dg*n A 1.

Let Gyel denote the kernel of the homomorphism G — Diff ; (S!), where
Diff | (S1) denotes the group of orientation preserving diffeomorphisms of
the circle. Then the map 7 coincides with the Calabi invariant on Ge.
Although the Calabi invariant Cal : Gyq; — R is a homomorphism, the map
Ty, + G — R is not a homomorphism. However, this map 7, gives rise to a
quasi-morphism. Thus, by the homogenization, we have the homogeneous
quasi-morphism 7,,. Since 7, is independent of the choice of 1, we simply
denote it by 7. This 7 is the main object of the present paper.

It is known that the Calabi invariant Cal : Gy — R cannot be extended
to a homomorphism G — R (see Tsuboi [9]). However, the Calabi invariant
can be extended to a homogeneous quasi-morphism on G. Indeed, we will
show in Proposition 2.1 that the homogeneous quasi-morphism 7 : G — R
gives rise to an extension of the Calabi invariant. There is another exten-
sion R of the Calabi invariant, which is introduced by Tsuboi [9] (see also
Banyaga [1]). This extension R is defined as a homomorphism to R from
the universal covering group Gof G by

Rilo) = [ 1 ([ s

Here g; is a path in G and fx, is the Hamiltonian function associated to
gt (see Section 4). Then, it is natural to ask what the relation between
two extensions 7 and R of the Calabi invariant is. The following theorem
answers this.

THEOREM 1.1 (Theorem 2.5). — Let p : G — G be the projection.
Then, we have
P*T+ 2R =n’rot: G — R.
Here the map rot : G — R is the pullback of Poincaré’s translation number
by the surjection G — Diff (S1).

Let G, = {g € G | g(0o) = o} be the subgroup of G consisting of sym-
plectomorphisms which preserve the origin o = (0,0) € D. On the group
G, we also construct a homogeneous quasi-morphism o =, , : G, — R,
where o0, : G, — R is defined by
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QUASI-MORPHISMS ON SYMPLECTOMORPHISMS GROUPS 1821

an,~(9) = /g*n —1.
Y

Here the symbol « is a path from the origin to a point on the boundary.
Let Cflvo be the universal covering group of G,. By using the homomorphism
S évo — R introduced in Section 3, we describe the relation between &
and the translation number, which is similar to Theorem 1.1.

THEOREM 1.2 (Theorem 3.4). — Let p : G, — G, be the projection.
Then, we have

p*E—SZW&Z@—)R.
Here the map rot : a; — R is the pullback of the translation number by
the surjection G, — Diff | (S1).

The coboundary of the translation number rot gives the canonical Euler
cocycle (Matsumoto [5]). Similarly, the coboundary of homogeneous quasi-
morphisms 7 and @ also give cocycles which represents the bounded Euler
class of Diff ; (S*) (Propositions 2.2, 3.1).

By comparing the two homogeneous quasi-morphisms 7 and &, we obtain
the following theorem.

THEOREM 1.3 (Theorem 4.1). — The difference 7 — 76 : G, - R is a
continuous surjective homomorphism.

Note that, in this paper, we assume the notation of group cohomology
and bounded cohomology in [2].
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2. The Calabi invariant case
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1822 Shuhei MARUYAMA
2.1. Calabi invariant and the quasi-morphism 7

Let D = {(z,y) € R? | 22 4+ y? < 1} be the unit disk with the standard
symplectic form w = dz A dy. Let G = Symp(D) denote the symplec-
tomorphism group of D and Diff, (S') the orientation preserving diffeo-
morphism group of the unit circle S' = OD. Then the homomorphism
p : G — Diff  (S!) is surjective(see Tsuboi [9]). Thus we have an exact
sequence

1 — G — G 2 Diff (') — 1,

where the group Gy is the kernel of the map p : G — Diff, (S1).
The Calabi invariant Cal : Gy¢) — R is defined by

(2.1) Cal(h):/Dh*n/\n

where 7 is a 1-form satisfying dn = w. The Calabi invariant Cal is a surjec-
tive homomorphism and is independent of the choice of 7 (see Banyaga [1]).
On the group G, the map 7,, : G — R is defined in the same way as in (2.1),
that is, we put

m(9) = /Dg*n A 1.

Note that the map 7, is not a homomorphism and does depend on the
choice of . In [6], for A = (zdy—ydz)/2, Moriyoshi proved the transgression
formula

Cal(h) = A(h) (h € Gyal)
—67a(g,h) = 7*x(p(9), p(h)) + 7%/2 (g9, € G).

Here § is the coboundary operator of group cohomology and the symbol  is
a bounded 2-cocycle defined in Moriyoshi [6], which represents the bounded
Euler class e, € HZ (Diff 1 (S'); R). Since the cocycle x is bounded, the map
7x : G — R is a quasi-morphism. Moreover, since the function 7, — 7 is

(2.2)

bounded for any 1-form 7 satisfying dn = w, the map 7, is a quasi-morphism
for any 1 and the homogenizations of 7, and 7 coincide. Thus we simply
denote by T the homogenization of 7,,.

PRrROPOSITION 2.1. — The homogenization T : G — R is an extension
of the Calabi invariant, that is, 7|q,,, = Cal. In particular, the map T is a
surjective homogeneous quasi-morphism.

Proof. — For h € G.e1, we have
) = tim 2D gy, G g nQal) ),

n— oo n n — 0o n n— oo n
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Since the Calabi invariant is surjective, the homogenization 7 is also sur-
jective. O

The homogeneous quasi-morphism 7 relates to the bounded Euler class
as follows.

PROPOSITION 2.2. — The bounded cohomology class [67] € HE(G;R)
is equal to —m? times the pullback p*e; of the bounded Euler class ey.

Proof. — Recall that the difference between a quasi-morphism and its
homogenization is a bounded function. Thus we have 7, — 67 = 6b where
b = 7, —7 is a bounded function. This implies that the bounded cohomology
class [07,] coincides with [07]. Moreover, the class [67)] is equal to the
pullback p*ep up to non-zero constant multiple because of the transgression
formula (2.2). O

2.2. Two extensions 7 and R of the Calabi invariant

By Proposition 2.1, the homogeneous quasi-morphism 7 : G — R is
considered as an extension of the Calabi invariant. There is another exten-
sion R of the Calabi invariant, which is introduced by Tsuboi [9] (see also
Banyaga [1]). This extension is defined as a homomorphism R : G — R,
where the group G is the universal covering group of G with respect to the
C>-topology. In this section, we investigate the relation between these two
extensions 7 and R.

We recall the definition of the homomorphism R. Let £, (D) be the set
of divergence free vector fields which are tangent to the boundary. For
any vector field X in £, (D), there is a unique function fx : D — R
such that ixw = dfx and fx|sp = 0. For any path ¢; in G, we define
the time-dependent vector field X; by X, = (dg,/0t) o g; *. Since g; is a
symplectomorphism for any ¢ € [0, 1], the vector field X} is in £, (D). Then
the map R : G — R is defined by

Rilo) = [ 1 ([ s

This map R is a well-defined homomorphism (see Banyaga [1]).
We reproduce the following lemma, which is essentially proved in Tsuboi
[9, Lemme 1.5].

LEMMA 2.3. — Let g; be a path in G such that gy = id and X; the
time-dependent vector field defined by X; = (8g;/0t) o g; ', then

(23) mion+2rlod = [ ([ o xenat) o
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1824 Shuhei MARUYAMA

In particular, for a path hy in Gye such that hg = id, we have Cal(hy) =
“2R([h)).

Let Diff ; (S1) denote the universal covering of Diff, (S*). Note that, in
this paper, we identify the circle S! with the quotient R/27Z. We consider

an element 5 € Diff 4 (S1) as an orientation preserving diffeomorphism of
R satisfying ¥(6 4+ 27) = () + 27 for any 6 € R. Let ¢; be the path in
Diff | (S1) defined by ¢; = g¢|op. Let & be the time-dependent vector field
defined by & = (0 /0t) o p; !, Let ¢; € Diml) be the lift of ¢, such
that ¢y = id. Note that A = (zdy — ydz)/2 = (r?df)/2 where (r,0) € D
is the polar coordinates. Then the right-hand side of the equality (2.3) can
be written as

/M </Olg;f‘(ixt)\)dt) A= i/s </01 @(i&de)dt) o
(2.4) = i/:r (/01 ‘ifdt) o
1

2w
-3 /O (71(6) — 6)do.

Let us define a map f : Diff (S1) = R by f(¢) = 1= fOQW(Q(G) — 0)d6.

Then we have

(2.5) ™a(g1) +2R([g:]) = 7 f (1) -

Note that, for any @, in Diff | (S1), the inequality |Zt(8) — 3(8) — 1(6) +
6| < 47 holds. This implies that the map f is a quasi-morphism. Let f be
the homogenization of f. By taking the homogenizations of the both sides
of the equality (2.5), we have

(2.6) (1) +2R(lg:]) = ° f (1)

To explain the map f : Diff , (S1) — R, we recall the translation number
introduced by Poincaré [7]. The translation number is a homogeneous quasi-

morphism rot: Diff; (§1) — R defined by

. (0
rot(p) = nlgmw 27r(n)

Note that, in this paper, we identify the circle S! with the quotient
R/27Z.

PROPOSITION 2.4. — The homogeneous quasi-morphism f : Diff ; (S)
— R coincides with the translation number.

ANNALES DE L’INSTITUT FOURIER
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Proof. — Since the sequence {W}n converges uniformly to the con-
stant function lim @"(0)/n on the interval [0, 27], we have
n—oo

27 ~n _ 2 ~n
7(@) = i lim Mdz 1 lim L(O)d

— - = rot(3).
472 n S o 0 n 472 0 n—oo M r=1o (<P)

O
By Proposition 2.4 and equality (2.6), we obtain the following theorem.
THEOREM 2.5. — Let p: G — G be the projection. Then we have
p*T + 2R = m’rot : G >R

Here the map rot : G — R is the pullback of the translation number by the
surjection G — Diff 4 (S1).

Poincaré’s translation number descends to the map rot : Diff ; (S*) —
R/Z and this is called Poincaré’s rotation number. The homomorphism
2R/72 : G — R also decends to the homomorphism R : G — R/Z (see
Tsuboi [9, Corollary 2.9]).

THEOREM 2.6. — Let 7 : G — R/Z be the composition of the homo-
geneous quasi-morphism 7/7% : G — R and the projection R — R/Z,
then

7+ R = rot.

Here the rot : G — R/Z is the pullback of the rotation number by the
projection G — Diff  (S1).

3. The flux homomorphism case
3.1. The flux homomorphism and the quasi-morphism &

Let us consider the subgroup
Go ={g € G|g(0) =0 € D}
of G. Put G, re1 = Grel NG, Then the following sequence of groups
1 — Go vt — G, —5 Diff . (S') — 1

is an exact sequence. On the group G, rc1, the Calabi invariant is defined

as the restriction Cal|g, .., : Go,rel = R. In [4] the author studied a version

, rel

TOME 72 (2022), FASCICULE 5



1826 Shuhei MARUYAMA

of flux homomorphism defined on G, 1 which is denoted by Fluxg. This
flux homomorphism Fluxy is defined by

Fluxg(h) = / h*n—n
8!

where ~ is a path from the origin o to a point on the boundary 0D. Note
that the flux homomorphism is a surjective homomorphism and is indepen-
dent of the choice of i and ~.

As in the case of Calabi invariant, the flux homomorphism can be ex-
tended to the group G,, that is, we define the map o, , : G, — R by

an,~(9) = /9*77 — 1.
Y

The following transgression formula
Fluxg(h) = 0y 4(h)  (h € Gy rel)
—004(g,h) = 7E(p(g), p(h))  (g.] € Go),

holds, where ¢ € C?(Diff; (S'); R) is an Euler cocycle (see [4], where, in [4],
the map o, , is denoted by 7 and the Euler cocycle ¢ is denoted by x).
Since ¢ is bounded, the map o, is a quasi-morphism. Let & denote the

(3.1)

homogenization of o, . By arguments similar to those in Section 2, we
obtain the following proposition.

ProOPOSITION 3.1.

(1) The homogenization @ : G, — R is independent of the choice of 1
and 7.

(2) The homogenization & : G, — R is an extension of the flux ho-
momorphism. In particular, ¢ is a surjective homogeneous quasi-
morphism.

(3) The bounded cohomology class [d7] is equal to —7 times the class
p*ey, where ey, is the bounded Euler class.

Remark 3.2. — For an inner point a € D, put G* = {g € G | g(a) = a}.
We can define the homogeneous quasi-morphism @, : G* — R in the same
way. We can also show that [07,] = —mp*ep. Thus, for inner points a,b € D,
we have a homomorphism

Go—0p:G*NG" 5> R

and this is equal to the action difference defined in Polterovich [8](see
also [3]).

ANNALES DE L’INSTITUT FOURIER
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3.2. Two extensions ¢ and S of the flux homomorphism

Let @; be the universal covering group of G, with respect to the C'°°-
topology. In this section, we introduce a homomorphism S : 6'; — R and
show that the difference of @ and S is equal to the translation number.

For a path g; in G, such that gy = id, the time-dependent vector field
X, is defined as in Section 2. Then we put

(32) sto0= [ [ vt

where v : [0,1] — D is a path from the origin o € D to a point on the
boundary 0D. Take the time-dependent C'*°-function f; : D — R satisfying
x,w = dfy and fi(0) = 0. Then we have

S(gt) / /ZXtht /0 Ldftdtz/olft(’Y(l))dt

Note that, for any ¢ € [0, 1], the restriction fi|sp : dD — R is a constant
function. This implies that the function S is independent of the choice of ~.

LeEMMA 3.3. — Let g; be a path in G, such that gy = id and X; the
time-dependent vector field defined by X; = (9g;/0t) o g; *, then

1
(3.3) 0 (1) — S(g) = / (67 (ixun) ) ((1) .

Proof. — Note that the identity

1 1
gi‘n—nzd</ giftdtJr/ gt (ixm)dt>
0 0

holds. Thus we have

(34) 0y (1) = / o1
vy

:Ld</019§ftdt+/olgf (ixtn)dt)

- ([ e [ o e awa)

_ (/01 (9¢ ) (7(0)) dt + /01 (g7 (ix,n)) (7(0)) dt) .

Since (g; f:)(7(0)) = 0 and X;(7(0)) = 0 for any ¢ € [0, 1], the second term
in (3.4) is eqaul to 0. Moreover, since the function f;|sp is constant for any
t € [0,1], the first term in (3.4) is equal to S(g:) + fol(gf(ixtn))('y(l))dt
and the lemma follows. O

TOME 72 (2022), FASCICULE 5



1828 Shuhei MARUYAMA

Put n = (r2df)/2 and ¢; = g;|op in Diff; (S1). Take a path v : [0,1] — D

defined by ~(¢t) = (¢,0). Let ¢; € Diff  (S1) be the lift of ¢, such that
©o = id. As in the equation (2.4), we have

| s e 0yt = 5 [ G onar = 35 00)

where we identify v(1) € 0D with 0 € R/27Z by the identification 0D =
St = R/2nZ. Thus we have

1

(3.5) on~(91) — S(g:) = 5871(0)-

Equality (3.5) implies that the value S(g;) depends only on the homotopy
class relatively to fixed ends of the path ¢, in G,. Henceforth, the map
S: Gy — R : [ge] — S(g;) is well-defined. Moreover, the map S gives rise
to a homomorphism. In fact, let g;, hy be paths in G,, then

S (gehe) = S(ge) — S(ha)
1, —~ - —
= Oy (91h) = 05,4 (91) = o 5 (h1) = 5 (901%/11(0) —1(0) - 1/11(0)>
and this is equal to 0 (see Maruyama [4]). Thus we have

(3.6) @(g1) — S([g:])
— lim On,~ (97) — S ([g:]") — 1 lim

n — 0o n n—oo 27N

2O i ).

By the above equality (3.6), we obtain the following theorem.
THEOREM 3.4. — Let p: a:, — G, be the projection. Then, we have
p*E—S:ﬂ'rFG:CA?;—HR.

Here the map rot : Ct’; — R is the pullback of the translation number by
the surjection G, — Diff (S1).

Remark 3.5. — By considering the map to R/Z, we obtain a theorem
similar to Theorem 2.6 for @, S, and the rotation number.

Remark 3.6. — By (3.5), we obtain the formula similar to [9, Corol-
lary (2.9)] and thus the formula similar to [9, Proposition (3.1)]. This im-
plies that the homomorphism Fluxr cannot be extended to a homomor-
phism on G,.

ANNALES DE L’INSTITUT FOURIER
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4. Relation between 7 and &

The restriction Cal‘Go,rel : Go,rel = R of the Calabi invariant remains
surjective. So the restriction 7 : G, — R is also surjective homogeneous
quasi-morphism. Therefore we have two non-trivial homogeneous quasi-
morphisms 7,7 € Q(G,). By Proposition 2.2 and Proposition 3.1, the class
[67] coincides with 7[67] in HZ(G,;R). Thus the difference 7 — 77 is a
homomorphism on G,. This implies that, in contrast with Cal and Fluxg,
the difference Cal — 7Fluxg can be extended to a homomorphism 7 — 75 :
G, — R

THEOREM 4.1. — The difference T — 7o : G, — R is a continuous
surjective homomorphism.

Proof. — On the group G, re1, the homomorphism 7 — 77 is equal to
Cal — wFluxg. Put the non-increasing C*°-function f : [0,1] — R which
is equal to 1 near » = 0 and f(1) = 0. Then, for s € R, we define a
diffeomorphism g5 in G,, ve1 by

gs(r,0) = (7“, 0+ sf(r))

where (r,0) € D is the polar coordinates. For

n= (r2d9) /2, ~(r)=(r0) €D,

we have
1 1
Cal(gs) = %r/o 7’43—{611", mFluxg(gs) = Sg/o 7’2%(11".
This implies that the difference 7 — 7o is surjective on G, re1, and so is
on G,. O
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