We examine the extremal rays of the cone of dominant weights for groups for which there exists such that
We exhibit formulas for a class of rays (“type I”) on any regular face. These rays are identified thanks to a generalization of Fulton’s conjecture, which we prove. We verify that the remaining rays (“type II”) on the face come from a smaller cone under a map whose formula is given. A procedure is given for finding the rays not on any regular face. This generalizes work of Belkale and Kiers on extremal rays for the saturated tensor cone; the specialization is given by with the diagonal embedding of . We include several examples to illustrate the formulas.
Nous examinons les rayons extrémaux dans le cône des poids dominants des groupes pour lesquels il existe tels que
Nous donnons des formules pour une classe de rayons (« type I ») sur une face régulière arbitraire. Ces rayons sont identifiés grace à une généralisation d’une conjecture de Fulton que nous démontrons. Nous vérifions que tous les autres rayons (« type 2 ») sur la face viennent d’un cône plus petit grâce à une application dont la formule est donnée. On décrit un processus pour trouver les rayons qui ne sont pas sur une face régulière. Ceci generalize les résultats de Belkale et Kiers sur les rayons extrémaux du cône tensoriel saturé ; les résultats de ce papier sont démontrés ici quand on prend l’application diagonale de dans . Plusieurs exemples sont fournis.
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3468
Keywords: Representation theory, algebraic geometry, branching, invariant theory.
Mot clés : Théorie des représentations, géométrie algébrique, branchement, théorie des invariants.
Kiers, Joshua 1
@article{AIF_2022__72_2_511_0, author = {Kiers, Joshua}, title = {Extremal rays of the embedded subgroup saturation cone}, journal = {Annales de l'Institut Fourier}, pages = {511--585}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {2}, year = {2022}, doi = {10.5802/aif.3468}, zbl = {07554663}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3468/} }
TY - JOUR AU - Kiers, Joshua TI - Extremal rays of the embedded subgroup saturation cone JO - Annales de l'Institut Fourier PY - 2022 SP - 511 EP - 585 VL - 72 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3468/ DO - 10.5802/aif.3468 LA - en ID - AIF_2022__72_2_511_0 ER -
%0 Journal Article %A Kiers, Joshua %T Extremal rays of the embedded subgroup saturation cone %J Annales de l'Institut Fourier %D 2022 %P 511-585 %V 72 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3468/ %R 10.5802/aif.3468 %G en %F AIF_2022__72_2_511_0
Kiers, Joshua. Extremal rays of the embedded subgroup saturation cone. Annales de l'Institut Fourier, Volume 72 (2022) no. 2, pp. 511-585. doi : 10.5802/aif.3468. https://aif.centre-mersenne.org/articles/10.5802/aif.3468/
[1] Double Schubert polynomials and double Schubert varieties (2007) (available at https://people.math.osu.edu/anderson.2804/papers/geomschpolyn.pdf)
[2] Local systems on for a finite set, Compositio Math., Volume 129 (2001) no. 1, pp. 67-86 | DOI | MR | Zbl
[3] Extremal rays in the Hermitian eigenvalue problem, Math. Ann., Volume 373 (2019) no. 3-4, pp. 1103-1133 | DOI | MR | Zbl
[4] Extremal rays in the Hermitian eigenvalue problem for arbitrary types, Transform. Groups, Volume 25 (2020) no. 3, pp. 667-706 | DOI | MR | Zbl
[5] Eigenvalue problem and a new product in cohomology of flag varieties, Invent. Math., Volume 166 (2006) no. 1, pp. 185-228 | DOI | MR | Zbl
[6] A generalization of Fulton’s conjecture for arbitrary groups, Math. Ann., Volume 354 (2012) no. 2, pp. 401-425 | DOI | MR | Zbl
[7] Coadjoint orbits, moment polytopes, and the Hilbert–Mumford criterion, J. Amer. Math. Soc., Volume 13 (2000) no. 2, pp. 433-466 | DOI | MR | Zbl
[8] Schubert cells, and the cohomology of the spaces , Uspehi Mat. Nauk, Volume 28 (1973) no. 3(171), pp. 3-26 | MR
[9] Singular loci of Schubert varieties, Progress in Mathematics, 182, Birkhäuser Boston, Inc., Boston, MA, 2000, xii+251 pages | DOI | MR | Zbl
[10] Lie groups and Lie algebras, Chapters 4–6, Elements of Mathematics, Springer-Verlag, Berlin, 2002 (Translated from the 1968 French original by Andrew Pressley) | Zbl
[11] Equivariant Chow groups for torus actions, Transform. Groups, Volume 2 (1997) no. 3, pp. 225-267 | DOI | MR | Zbl
[12] Symplectic restriction varieties and geometric branching rules, A celebration of algebraic geometry (Clay Math. Proc.), Volume 18, Amer. Math. Soc., Providence, RI, 2013, pp. 205-239 | MR | Zbl
[13] Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S., Volume 30(72) (1952), p. 349-462 (3 plates) | MR | Zbl
[14] Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2, Springer-Verlag, Berlin, 1998, xiv+470 pages | DOI | MR
[15] The class of the diagonal in flag bundles, J. Differential Geom., Volume 45 (1997) no. 3, pp. 471-487 | DOI | MR | Zbl
[16] Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York-Berlin, 1972, xii+169 pages | DOI | MR | Zbl
[17] Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity, J. Differential Geom., Volume 81 (2009) no. 2, pp. 297-354 | DOI | MR | Zbl
[18] Instability in invariant theory, Ann. of Math. (2), Volume 108 (1978) no. 2, pp. 299-316 | DOI | MR | Zbl
[19] On the saturation conjecture for , Exp. Math., Volume 30 (2021) no. 2, pp. 258-267 | DOI | MR | Zbl
[20] Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.), Volume 4 (1998) no. 3, pp. 419-445 | DOI | MR | Zbl
[21] The honeycomb model of tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc., Volume 17 (2004) no. 1, pp. 19-48 | DOI | MR | Zbl
[22] A survey of the additive eigenvalue problem, Transform. Groups, Volume 19 (2014) no. 4, pp. 1051-1148 (With an appendix by M. Kapovich) | DOI | MR | Zbl
[23] The saturation property for branching rules—examples, Exp. Math., Volume 22 (2013) no. 3, pp. 299-312 | DOI | MR | Zbl
[24] Some remarks on the instability flag, Tohoku Math. J. (2), Volume 36 (1984) no. 2, pp. 269-291 | DOI | MR | Zbl
[25] Geometric invariant theory and the generalized eigenvalue problem, Invent. Math., Volume 180 (2010) no. 2, pp. 389-441 | DOI | MR | Zbl
[26] Geometric invariant theory and generalized eigenvalue problem II, Ann. Inst. Fourier (Grenoble), Volume 61 (2011) no. 4, p. 1467-1491 (2012) | DOI | Numdam | MR | Zbl
[27] Distributions on homogeneous spaces and applications, Lie groups, geometry, and representation theory (Progr. Math.), Volume 326, Birkhäuser/Springer, Cham, 2018, pp. 481-526 | DOI | MR | Zbl
[28] Branching Schubert calculus and the Belkale-Kumar product on cohomology, Proc. Amer. Math. Soc., Volume 139 (2011) no. 3, pp. 835-848 | DOI | MR | Zbl
[29] SageMath, the Sage Mathematics Software System (Version 8.0) (2017) (https://www.sagemath.org)
Cited by Sources: