Homotopy transfer and formality
Annales de l'Institut Fourier, Volume 71 (2021) no. 5, pp. 2079-2116.

In this paper, we prove that, given appropriate hypotheses, n-formality of a differential graded algebraic structure is equivalent to the existence of a chain-level automorphism lifting a degree twisting isomorphism relative to a unit of order greater than n. A similar result with slightly different hypothesis was proved by Joana Cirici and the second author. We use the homotopy transfer theorem and an explicit inductive procedure in order to kill the higher operations. As an application of our result, we prove formality with coefficients in the p-adic integers of certain dg-algebras coming from hyperplane and toric arrangements and configuration spaces.

Dans cet article nous montrons que, sous certaines hypothèses, la n-formalité d’une structure algébrique différentielle graduée est équivalente à l’existence d’un automorphisme au niveau des chaînes relevant un isomorphisme gradué tordant relatif à une unité d’ordre plus grand que n. Un résultat similaire sous des hypothèse légèrement différentes avait été prouvé par Joana Cirici et le second auteur. Nous utilisons le théorème de transfert homotopique et une procédure récursive explicite pour tuer les opérations supérieures. Comme application de ce résultat, nous prouvons la formalité à coefficients dans les entiers p-adiques de certaines dg-algèbres venant d’arrangements d’hyperplans ou d’arrangements toriques ainsi que des espaces de configurations.

Received:
Revised:
Accepted:
Online First:
Published online:
DOI: 10.5802/aif.3444
Classification: 55U99, 18D50, 52C35
Keywords: formality, homotopy transfer theorem, algebraic operads, configuration spaces. hyperplane arrangements, toric arrangements
Mot clés : formalité, théorème de transfert homotopique, opérades algébriques, espaces de configurations, arrangements d’hyperplans, arrangements toriques

Drummond-Cole, Gabriel C. 1; Horel, Geoffroy 2

1 Center for Geometry and Physics Institute for Basic Science (IBS) 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673 (Republic of Korea)
2 Université Sorbonne Paris Nord Institut Galilée 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse (France)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2021__71_5_2079_0,
     author = {Drummond-Cole, Gabriel C. and Horel, Geoffroy},
     title = {Homotopy transfer and formality},
     journal = {Annales de l'Institut Fourier},
     pages = {2079--2116},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {71},
     number = {5},
     year = {2021},
     doi = {10.5802/aif.3444},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3444/}
}
TY  - JOUR
AU  - Drummond-Cole, Gabriel C.
AU  - Horel, Geoffroy
TI  - Homotopy transfer and formality
JO  - Annales de l'Institut Fourier
PY  - 2021
SP  - 2079
EP  - 2116
VL  - 71
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3444/
DO  - 10.5802/aif.3444
LA  - en
ID  - AIF_2021__71_5_2079_0
ER  - 
%0 Journal Article
%A Drummond-Cole, Gabriel C.
%A Horel, Geoffroy
%T Homotopy transfer and formality
%J Annales de l'Institut Fourier
%D 2021
%P 2079-2116
%V 71
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3444/
%R 10.5802/aif.3444
%G en
%F AIF_2021__71_5_2079_0
Drummond-Cole, Gabriel C.; Horel, Geoffroy. Homotopy transfer and formality. Annales de l'Institut Fourier, Volume 71 (2021) no. 5, pp. 2079-2116. doi : 10.5802/aif.3444. https://aif.centre-mersenne.org/articles/10.5802/aif.3444/

[1] Berglund, Alexander Homological perturbation theory for algebras over operads, Algebr. Geom. Topol., Volume 14 (2014) no. 5, pp. 2511-2548 | DOI | MR | Zbl

[2] Berglund, Alexander; Börjeson, Kaj Koszul A-infinity algebras and free loop space homology, Proc. Edinb. Math. Soc., Volume 63 (2020) no. 1, pp. 37-65 | DOI | Zbl

[3] Brieskorn, Egbert Sur les groupes de tresses [d’après V. I. Arnold], Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401 (Lecture Notes in Mathematics), Volume 317, Springer, 1973, pp. 21-44 | DOI | MR | Zbl

[4] Boavida de Brito, Pedro; Horel, Geoffroy On the formality of the little disks operad in positive characteristic, J. Lond. Math. Soc., Volume 104 (2021) no. 2, pp. 634-667 | DOI | MR | Zbl

[5] Callegaro, Filippo; D’Adderio, Michele; Delucchi, Emanuele; Migliorini, Luca; Pagaria, Roberto Orlik–Solomon type presentations for the cohomology algebra of toric arrangements, Trans. Am. Math. Soc., Volume 373 (2019) no. 3, pp. 1909-1940 | DOI | MR | Zbl

[6] Cirici, Joana; Horel, Geoffroy Étale cohomology, purity and formality with torsion coefficients (2018) (https://arxiv.org/abs/1806.03006)

[7] Cirici, Joana; Horel, Geoffroy Mixed Hodge structures and formality of symmetric monoidal functors, Ann. Sci. Éc. Norm. Supér., Volume 53 (2020) no. 4, pp. 1071-1104 | DOI | MR | Zbl

[8] Cohen, Frederick R.; Gitler, Samuel On loop spaces of configuration spaces, Trans. Am. Math. Soc., Volume 354 (2002) no. 5, pp. 1705-1748 | DOI | MR | Zbl

[9] d’Antonio, Giacomo; Delucchi, Emanuele Minimality of toric arrangements, J. Eur. Math. Soc., Volume 017 (2015) no. 3, pp. 483-521 | DOI | MR | Zbl

[10] Deligne, Pierre Théorie de Hodge: II, Publ. Math., Inst. Hautes Étud. Sci., Volume 40 (1971), pp. 5-57 | DOI | Numdam | Zbl

[11] Deligne, Pierre Théorie de Hodge: III, Publ. Math., Inst. Hautes Étud. Sci., Volume 44 (1974), pp. 5-77 | DOI | Numdam | Zbl

[12] Deligne, Pierre; Griffiths, Phillip; Morgan, John; Sullivan, Dennis Real homotopy theory of Kähler manifolds, Invent. Math., Volume 29 (1975) no. 3, pp. 245-274 | DOI | Zbl

[13] Dotsenko, Vladimir; Shadrin, Sergey; Vallette, Bruno Pre-Lie Deformation Theory, Mosc. Math. J., Volume 16 (2016) no. 3, pp. 505-543 | DOI | MR | Zbl

[14] Dupont, Clément Purity, formality, and arrangement complements, Int. Math. Res. Not., Volume 2016 (2015) no. 13, pp. 4132-4144 | DOI | MR | Zbl

[15] Félix, Yves; Halperin, Steve; Thomas, Jean-Claude Rational Homotopy Theory, Graduate Texts in Mathematics, 205, Springer, 2001 | DOI

[16] Fernández, Marisa; Muñoz, Vicente Formality of Donaldson submanifolds, Math. Z., Volume 250 (2005) no. 1, pp. 149-175 | DOI | MR | Zbl

[17] Ginzburg, Victor; Kapranov, Mikhail M. Koszul duality for operads, Duke Math. J., Volume 76 (1994), pp. 203-272 | MR | Zbl

[18] Goncharov, Alexander B. Hidden Hodge symmetries and Hodge correlators (2011) (https://arxiv.org/abs/1107.5710)

[19] Guillén Santos, F.; Navarro, Vicente; Pascual, Pere; Roig, Agustí Moduli spaces and formal operads, Duke Math. J., Volume 129 (2005) no. 2, pp. 291-335 | DOI | MR | Zbl

[20] Hinich, Vladimir Rectification of algebras and modules, Doc. Math., Volume 20 (2015), pp. 879-926 | MR | Zbl

[21] Kadeishvili, Tornike V. On the homology theory of fibre spaces, Russ. Math. Surv., Volume 35 (1980) no. 3, pp. 231-238 | DOI | Zbl

[22] Kim, Minhyong Weights in cohomology groups arising from hyperplane arrangements, Proc. Am. Math. Soc., Volume 120 (1994) no. 3, pp. 697-703 | MR | Zbl

[23] Kontsevich, Maxim Deformation Quantization of Poisson Manifolds, Lett. Math. Phys., Volume 66 (2003) no. 3, pp. 157-216 | DOI | MR | Zbl

[24] van der Laan, Pepijn Coloured Koszul duality and strongly homotopy operads (2003) (https://arxiv.org/abs/math/031247v2)

[25] Le Grignou, Brice; Lejay, Damien Homotopy Theory of linear cogebras (2018) (https://arxiv.org/abs/1803.01376)

[26] Loday, Jean-Louis; Vallette, Bruno Algebraic Operads, Grundlehren der Mathematischen Wissenschaften, 346, Springer, 2012 | DOI

[27] Looijenga, Eduard Cohomology of 3 1 and 1 , Mapping class groups and moduli spaces of Riemann surfaces (Contemporary Mathematics), Volume 150, American Mathematical Society, 1993, pp. 205-228 | DOI | MR | Zbl

[28] Măcinic, Anca Daniela Cohomology rings and formality properties of nilpotent groups, J. Pure Appl. Algebra, Volume 214 (2010) no. 10, pp. 1818-1826 | DOI | MR | Zbl

[29] Mandell, Michael A. Cochains and homotopy type, Publ. Math., Inst. Hautes Étud. Sci., Volume 103 (2006) no. 1, pp. 213-246 | DOI | MR | Zbl

[30] Markl, Martin Homotopy algebras are homotopy algebras, Forum Math., Volume 16 (2004), pp. 129-160 | MR | Zbl

[31] Matei, Daniel Massey products of complex hypersurface complements, Singularity theory and its applications (Advanced Studies in Pure Mathematics), Volume 43, Mathematical Society of Japan, 2006, pp. 205-219 | DOI | MR | Zbl

[32] Petersen, Dan Minimal models, GT-action and formality of the little disk operad, Sel. Math., New Ser., Volume 20 (2014) no. 3, pp. 817-822 | DOI | MR | Zbl

[33] Saleh, Bashar Noncommutative formality implies commutative and Lie formality, Algebr. Geom. Topol., Volume 17 (2017) no. 4, pp. 2523-2542 | DOI | MR | Zbl

[34] Sullivan, Dennis Infinitesimal computations in topology, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 269-331 | DOI | Numdam | Zbl

[35] Tamarkin, Dmitry E. Formality of chain operad of little discs, Lett. Math. Phys., Volume 66 (2003), pp. 65-72 | DOI | MR | Zbl

Cited by Sources: