In this paper, we prove that, given appropriate hypotheses, -formality of a differential graded algebraic structure is equivalent to the existence of a chain-level automorphism lifting a degree twisting isomorphism relative to a unit of order greater than . A similar result with slightly different hypothesis was proved by Joana Cirici and the second author. We use the homotopy transfer theorem and an explicit inductive procedure in order to kill the higher operations. As an application of our result, we prove formality with coefficients in the -adic integers of certain dg-algebras coming from hyperplane and toric arrangements and configuration spaces.
Dans cet article nous montrons que, sous certaines hypothèses, la -formalité d’une structure algébrique différentielle graduée est équivalente à l’existence d’un automorphisme au niveau des chaînes relevant un isomorphisme gradué tordant relatif à une unité d’ordre plus grand que . Un résultat similaire sous des hypothèse légèrement différentes avait été prouvé par Joana Cirici et le second auteur. Nous utilisons le théorème de transfert homotopique et une procédure récursive explicite pour tuer les opérations supérieures. Comme application de ce résultat, nous prouvons la formalité à coefficients dans les entiers -adiques de certaines dg-algèbres venant d’arrangements d’hyperplans ou d’arrangements toriques ainsi que des espaces de configurations.
Revised:
Accepted:
Online First:
Published online:
Keywords: formality, homotopy transfer theorem, algebraic operads, configuration spaces. hyperplane arrangements, toric arrangements
Mot clés : formalité, théorème de transfert homotopique, opérades algébriques, espaces de configurations, arrangements d’hyperplans, arrangements toriques
Drummond-Cole, Gabriel C. 1; Horel, Geoffroy 2
@article{AIF_2021__71_5_2079_0, author = {Drummond-Cole, Gabriel C. and Horel, Geoffroy}, title = {Homotopy transfer and formality}, journal = {Annales de l'Institut Fourier}, pages = {2079--2116}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {5}, year = {2021}, doi = {10.5802/aif.3444}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3444/} }
TY - JOUR AU - Drummond-Cole, Gabriel C. AU - Horel, Geoffroy TI - Homotopy transfer and formality JO - Annales de l'Institut Fourier PY - 2021 SP - 2079 EP - 2116 VL - 71 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3444/ DO - 10.5802/aif.3444 LA - en ID - AIF_2021__71_5_2079_0 ER -
%0 Journal Article %A Drummond-Cole, Gabriel C. %A Horel, Geoffroy %T Homotopy transfer and formality %J Annales de l'Institut Fourier %D 2021 %P 2079-2116 %V 71 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3444/ %R 10.5802/aif.3444 %G en %F AIF_2021__71_5_2079_0
Drummond-Cole, Gabriel C.; Horel, Geoffroy. Homotopy transfer and formality. Annales de l'Institut Fourier, Volume 71 (2021) no. 5, pp. 2079-2116. doi : 10.5802/aif.3444. https://aif.centre-mersenne.org/articles/10.5802/aif.3444/
[1] Homological perturbation theory for algebras over operads, Algebr. Geom. Topol., Volume 14 (2014) no. 5, pp. 2511-2548 | DOI | MR | Zbl
[2] Koszul A-infinity algebras and free loop space homology, Proc. Edinb. Math. Soc., Volume 63 (2020) no. 1, pp. 37-65 | DOI | Zbl
[3] Sur les groupes de tresses [d’après V. I. Arnold], Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401 (Lecture Notes in Mathematics), Volume 317, Springer, 1973, pp. 21-44 | DOI | MR | Zbl
[4] On the formality of the little disks operad in positive characteristic, J. Lond. Math. Soc., Volume 104 (2021) no. 2, pp. 634-667 | DOI | MR | Zbl
[5] Orlik–Solomon type presentations for the cohomology algebra of toric arrangements, Trans. Am. Math. Soc., Volume 373 (2019) no. 3, pp. 1909-1940 | DOI | MR | Zbl
[6] Étale cohomology, purity and formality with torsion coefficients (2018) (https://arxiv.org/abs/1806.03006)
[7] Mixed Hodge structures and formality of symmetric monoidal functors, Ann. Sci. Éc. Norm. Supér., Volume 53 (2020) no. 4, pp. 1071-1104 | DOI | MR | Zbl
[8] On loop spaces of configuration spaces, Trans. Am. Math. Soc., Volume 354 (2002) no. 5, pp. 1705-1748 | DOI | MR | Zbl
[9] Minimality of toric arrangements, J. Eur. Math. Soc., Volume 017 (2015) no. 3, pp. 483-521 | DOI | MR | Zbl
[10] Théorie de Hodge: II, Publ. Math., Inst. Hautes Étud. Sci., Volume 40 (1971), pp. 5-57 | DOI | Numdam | Zbl
[11] Théorie de Hodge: III, Publ. Math., Inst. Hautes Étud. Sci., Volume 44 (1974), pp. 5-77 | DOI | Numdam | Zbl
[12] Real homotopy theory of Kähler manifolds, Invent. Math., Volume 29 (1975) no. 3, pp. 245-274 | DOI | Zbl
[13] Pre-Lie Deformation Theory, Mosc. Math. J., Volume 16 (2016) no. 3, pp. 505-543 | DOI | MR | Zbl
[14] Purity, formality, and arrangement complements, Int. Math. Res. Not., Volume 2016 (2015) no. 13, pp. 4132-4144 | DOI | MR | Zbl
[15] Rational Homotopy Theory, Graduate Texts in Mathematics, 205, Springer, 2001 | DOI
[16] Formality of Donaldson submanifolds, Math. Z., Volume 250 (2005) no. 1, pp. 149-175 | DOI | MR | Zbl
[17] Koszul duality for operads, Duke Math. J., Volume 76 (1994), pp. 203-272 | MR | Zbl
[18] Hidden Hodge symmetries and Hodge correlators (2011) (https://arxiv.org/abs/1107.5710)
[20] Rectification of algebras and modules, Doc. Math., Volume 20 (2015), pp. 879-926 | MR | Zbl
[21] On the homology theory of fibre spaces, Russ. Math. Surv., Volume 35 (1980) no. 3, pp. 231-238 | DOI | Zbl
[22] Weights in cohomology groups arising from hyperplane arrangements, Proc. Am. Math. Soc., Volume 120 (1994) no. 3, pp. 697-703 | MR | Zbl
[23] Deformation Quantization of Poisson Manifolds, Lett. Math. Phys., Volume 66 (2003) no. 3, pp. 157-216 | DOI | MR | Zbl
[24] Coloured Koszul duality and strongly homotopy operads (2003) (https://arxiv.org/abs/math/031247v2)
[25] Homotopy Theory of linear cogebras (2018) (https://arxiv.org/abs/1803.01376)
[26] Algebraic Operads, Grundlehren der Mathematischen Wissenschaften, 346, Springer, 2012 | DOI
[27] Cohomology of and , Mapping class groups and moduli spaces of Riemann surfaces (Contemporary Mathematics), Volume 150, American Mathematical Society, 1993, pp. 205-228 | DOI | MR | Zbl
[28] Cohomology rings and formality properties of nilpotent groups, J. Pure Appl. Algebra, Volume 214 (2010) no. 10, pp. 1818-1826 | DOI | MR | Zbl
[29] Cochains and homotopy type, Publ. Math., Inst. Hautes Étud. Sci., Volume 103 (2006) no. 1, pp. 213-246 | DOI | MR | Zbl
[30] Homotopy algebras are homotopy algebras, Forum Math., Volume 16 (2004), pp. 129-160 | MR | Zbl
[31] Massey products of complex hypersurface complements, Singularity theory and its applications (Advanced Studies in Pure Mathematics), Volume 43, Mathematical Society of Japan, 2006, pp. 205-219 | DOI | MR | Zbl
[32] Minimal models, GT-action and formality of the little disk operad, Sel. Math., New Ser., Volume 20 (2014) no. 3, pp. 817-822 | DOI | MR | Zbl
[33] Noncommutative formality implies commutative and Lie formality, Algebr. Geom. Topol., Volume 17 (2017) no. 4, pp. 2523-2542 | DOI | MR | Zbl
[34] Infinitesimal computations in topology, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 269-331 | DOI | Numdam | Zbl
[35] Formality of chain operad of little discs, Lett. Math. Phys., Volume 66 (2003), pp. 65-72 | DOI | MR | Zbl
Cited by Sources: