Homotopy transfer and formality
[Transfert homotopique et formalité]
Annales de l'Institut Fourier, Online first, 38 p.

Dans cet article nous montrons que, sous certaines hypothèses, la n-formalité d’une structure algébrique différentielle graduée est équivalente à l’existence d’un automorphisme au niveau des chaînes relevant un isomorphisme gradué tordant relatif à une unité d’ordre plus grand que n. Un résultat similaire sous des hypothèse légèrement différentes avait été prouvé par Joana Cirici et le second auteur. Nous utilisons le théorème de transfert homotopique et une procédure récursive explicite pour tuer les opérations supérieures. Comme application de ce résultat, nous prouvons la formalité à coefficients dans les entiers p-adiques de certaines dg-algèbres venant d’arrangements d’hyperplans ou d’arrangements toriques ainsi que des espaces de configurations.

In this paper, we prove that, given appropriate hypotheses, n-formality of a differential graded algebraic structure is equivalent to the existence of a chain-level automorphism lifting a degree twisting isomorphism relative to a unit of order greater than n. A similar result with slightly different hypothesis was proved by Joana Cirici and the second author. We use the homotopy transfer theorem and an explicit inductive procedure in order to kill the higher operations. As an application of our result, we prove formality with coefficients in the p-adic integers of certain dg-algebras coming from hyperplane and toric arrangements and configuration spaces.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : https://doi.org/10.5802/aif.3444
Classification : 55U99,  18D50,  52C35
Mots clés : formalité, théorème de transfert homotopique, opérades algébriques, espaces de configurations, arrangements d’hyperplans, arrangements toriques
@unpublished{AIF_0__0_0_A42_0,
     author = {Drummond-Cole, Gabriel C. and Horel, Geoffroy},
     title = {Homotopy transfer and formality},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2021},
     doi = {10.5802/aif.3444},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Drummond-Cole, Gabriel C.
AU  - Horel, Geoffroy
TI  - Homotopy transfer and formality
JO  - Annales de l'Institut Fourier
PY  - 2021
DA  - 2021///
PB  - Association des Annales de l’institut Fourier
N1  - Online first
UR  - https://doi.org/10.5802/aif.3444
DO  - 10.5802/aif.3444
LA  - en
ID  - AIF_0__0_0_A42_0
ER  - 
%0 Unpublished Work
%A Drummond-Cole, Gabriel C.
%A Horel, Geoffroy
%T Homotopy transfer and formality
%J Annales de l'Institut Fourier
%D 2021
%I Association des Annales de l’institut Fourier
%Z Online first
%U https://doi.org/10.5802/aif.3444
%R 10.5802/aif.3444
%G en
%F AIF_0__0_0_A42_0
Drummond-Cole, Gabriel C.; Horel, Geoffroy. Homotopy transfer and formality. Annales de l'Institut Fourier, Online first, 38 p.

[1] Berglund, Alexander Homological perturbation theory for algebras over operads, Algebr. Geom. Topol., Volume 14 (2014) no. 5, pp. 2511-2548 | Article | MR 3276839 | Zbl 1305.18030

[2] Berglund, Alexander; Börjeson, Kaj Koszul A-infinity algebras and free loop space homology, Proc. Edinb. Math. Soc., Volume 63 (2020) no. 1, pp. 37-65 | Article | Zbl 1448.55013

[3] Brieskorn, Egbert Sur les groupes de tresses [d’après V. I. Arnold], Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401 (Lecture Notes in Mathematics), Volume 317, Springer, 1973, pp. 21-44 | Article | MR 0422674 | Zbl 0277.55003

[4] Boavida de Brito, Pedro; Horel, Geoffroy On the formality of the little disks operad in positive characteristic, J. Lond. Math. Soc., Volume 104 (2021) no. 2, pp. 634-667 | Article | MR 4311106 | Zbl 07429318

[5] Callegaro, Filippo; D’Adderio, Michele; Delucchi, Emanuele; Migliorini, Luca; Pagaria, Roberto Orlik–Solomon type presentations for the cohomology algebra of toric arrangements, Trans. Am. Math. Soc., Volume 373 (2019) no. 3, pp. 1909-1940 | Article | MR 4068285 | Zbl 1433.14048

[6] Cirici, Joana; Horel, Geoffroy Étale cohomology, purity and formality with torsion coefficients (2018) (https://arxiv.org/abs/1806.03006)

[7] Cirici, Joana; Horel, Geoffroy Mixed Hodge structures and formality of symmetric monoidal functors, Ann. Sci. Éc. Norm. Supér., Volume 53 (2020) no. 4, pp. 1071-1104 | Article | MR 4157110 | Zbl 1457.32080

[8] Cohen, Frederick R.; Gitler, Samuel On loop spaces of configuration spaces, Trans. Am. Math. Soc., Volume 354 (2002) no. 5, pp. 1705-1748 | Article | MR 1881013 | Zbl 0992.55006

[9] d’Antonio, Giacomo; Delucchi, Emanuele Minimality of toric arrangements, J. Eur. Math. Soc., Volume 017 (2015) no. 3, pp. 483-521 | Article | MR 3323196 | Zbl 1316.52032

[10] Deligne, Pierre Théorie de Hodge: II, Publ. Math., Inst. Hautes Étud. Sci., Volume 40 (1971), pp. 5-57 | Article | Numdam | Zbl 0219.14007

[11] Deligne, Pierre Théorie de Hodge: III, Publ. Math., Inst. Hautes Étud. Sci., Volume 44 (1974), pp. 5-77 | Article | Numdam | Zbl 0237.14003

[12] Deligne, Pierre; Griffiths, Phillip; Morgan, John; Sullivan, Dennis Real homotopy theory of Kähler manifolds, Invent. Math., Volume 29 (1975) no. 3, pp. 245-274 | Article | Zbl 0312.55011

[13] Dotsenko, Vladimir; Shadrin, Sergey; Vallette, Bruno Pre-Lie Deformation Theory, Mosc. Math. J., Volume 16 (2016) no. 3, pp. 505-543 | Article | MR 3510210 | Zbl 1386.18054

[14] Dupont, Clément Purity, formality, and arrangement complements, Int. Math. Res. Not., Volume 2016 (2015) no. 13, pp. 4132-4144 | Article | MR 3544631 | Zbl 1404.55013

[15] Félix, Yves; Halperin, Steve; Thomas, Jean-Claude Rational Homotopy Theory, Graduate Texts in Mathematics, 205, Springer, 2001 | Article

[16] Fernández, Marisa; Muñoz, Vicente Formality of Donaldson submanifolds, Math. Z., Volume 250 (2005) no. 1, pp. 149-175 | Article | MR 2136647 | Zbl 1071.57024

[17] Ginzburg, Victor; Kapranov, Mikhail M. Koszul duality for operads, Duke Math. J., Volume 76 (1994), pp. 203-272 | MR 1301191 | Zbl 0855.18006

[18] Goncharov, Alexander B. Hidden Hodge symmetries and Hodge correlators (2011) (https://arxiv.org/abs/1107.5710)

[19] Guillén Santos, F.; Navarro, Vicente; Pascual, Pere; Roig, Agustí Moduli spaces and formal operads, Duke Math. J., Volume 129 (2005) no. 2, pp. 291-335 | Article | MR 2165544 | Zbl 1120.14018

[20] Hinich, Vladimir Rectification of algebras and modules, Doc. Math., Volume 20 (2015), pp. 879-926 | MR 3404213 | Zbl 1339.18013

[21] Kadeishvili, Tornike V. On the homology theory of fibre spaces, Russ. Math. Surv., Volume 35 (1980) no. 3, pp. 231-238 | Article | Zbl 0521.55015

[22] Kim, Minhyong Weights in cohomology groups arising from hyperplane arrangements, Proc. Am. Math. Soc., Volume 120 (1994) no. 3, pp. 697-703 | MR 1179589 | Zbl 0816.14008

[23] Kontsevich, Maxim Deformation Quantization of Poisson Manifolds, Lett. Math. Phys., Volume 66 (2003) no. 3, pp. 157-216 | Article | MR 2062626 | Zbl 1058.53065

[24] van der Laan, Pepijn Coloured Koszul duality and strongly homotopy operads (2003) (https://arxiv.org/abs/math/031247v2)

[25] Le Grignou, Brice; Lejay, Damien Homotopy Theory of linear cogebras (2018) (https://arxiv.org/abs/1803.01376)

[26] Loday, Jean-Louis; Vallette, Bruno Algebraic Operads, Grundlehren der Mathematischen Wissenschaften, 346, Springer, 2012 | Article

[27] Looijenga, Eduard Cohomology of 3 1 and 1 , Mapping class groups and moduli spaces of Riemann surfaces (Contemporary Mathematics), Volume 150, American Mathematical Society, 1993, pp. 205-228 | Article | MR 1234266 | Zbl 0814.14029

[28] Măcinic, Anca Daniela Cohomology rings and formality properties of nilpotent groups, J. Pure Appl. Algebra, Volume 214 (2010) no. 10, pp. 1818-1826 | Article | MR 2608110 | Zbl 1238.20052

[29] Mandell, Michael A. Cochains and homotopy type, Publ. Math., Inst. Hautes Étud. Sci., Volume 103 (2006) no. 1, pp. 213-246 | Article | MR 2233853 | Zbl 1105.55003

[30] Markl, Martin Homotopy algebras are homotopy algebras, Forum Math., Volume 16 (2004), pp. 129-160 | MR 2034546 | Zbl 1067.55011

[31] Matei, Daniel Massey products of complex hypersurface complements, Singularity theory and its applications (Advanced Studies in Pure Mathematics), Volume 43, Mathematical Society of Japan, 2006, pp. 205-219 | Article | MR 2325139 | Zbl 1135.32026

[32] Petersen, Dan Minimal models, GT-action and formality of the little disk operad, Sel. Math., New Ser., Volume 20 (2014) no. 3, pp. 817-822 | Article | MR 3217461 | Zbl 1312.55008

[33] Saleh, Bashar Noncommutative formality implies commutative and Lie formality, Algebr. Geom. Topol., Volume 17 (2017) no. 4, pp. 2523-2542 | Article | MR 3686405 | Zbl 1410.55006

[34] Sullivan, Dennis Infinitesimal computations in topology, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 269-331 | Article | Numdam | Zbl 0374.57002

[35] Tamarkin, Dmitry E. Formality of chain operad of little discs, Lett. Math. Phys., Volume 66 (2003), pp. 65-72 | Article | MR 2064592 | Zbl 1048.18007

Cité par Sources :