Limit shape and height fluctuations of random perfect matchings on square-hexagon lattices
[Forme limite et fluctuations de hauteur pour les couplages parfaits aléatoires des graphes carrés-hexagones]
Annales de l'Institut Fourier, Online first, 82 p.

Nous étudions les couplages parfaits de graphes, construits en prenant, pour chaque ligne, une ligne soit du réseau carré, soit du réseau hexagonal. Étant donnés des poids sur les arêtes avec une période 1×n, la fonction de partition est une fonction de Schur dépendant des poids. Nous obtenons dans la limite des grands systèmes une loi des grands nombres (forme limite) et un théorème central limite (convergence vers le champ libre) pour la fonction de hauteur associée. La distribution de certains dimères près du point de contact au bord converge vers celle des valeurs propres de l’ensemble unitaire gaussien. De plus, dans la limite d’échelle de systèmes pour lesquels chaque segment du bord croît linéairement avec la taille du graphe, le bord de la zone gelée est une courbe nuage avec des points de contact sur chaque segment du bord inférieur dont le nombre dépend de la période.

We study perfect matchings on the contracting square-hexagon lattice, constructed row by row either from a row of the square grid or of the hexagonal lattice. Given 1×n periodic weights to edges, we consider the probabilities of dimers proportional to the product of edge weights. We show that the partition function equals a Schur function of the edge weights. We then prove the Law of Large Numbers (limit shape) and the Central Limit Theorem (convergence to the Gaussian free field) for the corresponding height functions. We also show that certain types of dimers near the turning corner converge in distribution to the eigenvalues of Gaussian Unitary Ensemble, and that in the scaling limit when each segment of the bottom boundary grows linearly with respect to the dimension of the graph, the frozen boundary is a cloud curve with multiple tangent points (depending on the period) along each horizontal boundary segment.

Reçu le :
Accepté le :
Accepté après révision le :
Première publication :
DOI : https://doi.org/10.5802/aif.3442
Classification : 82B20,  05E05,  74A50,  60B20
Mots clés : dimères, couplage parfait, forme limite, champ libre gaussien, fonction de Schur
@unpublished{AIF_0__0_0_A48_0,
     author = {Boutillier, C\'edric and Li, Zhongyang},
     title = {Limit shape and height fluctuations of random perfect matchings on square-hexagon lattices},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2021},
     doi = {10.5802/aif.3442},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Boutillier, Cédric
AU  - Li, Zhongyang
TI  - Limit shape and height fluctuations of random perfect matchings on square-hexagon lattices
JO  - Annales de l'Institut Fourier
PY  - 2021
DA  - 2021///
PB  - Association des Annales de l’institut Fourier
N1  - Online first
UR  - https://doi.org/10.5802/aif.3442
DO  - 10.5802/aif.3442
LA  - en
ID  - AIF_0__0_0_A48_0
ER  - 
%0 Unpublished Work
%A Boutillier, Cédric
%A Li, Zhongyang
%T Limit shape and height fluctuations of random perfect matchings on square-hexagon lattices
%J Annales de l'Institut Fourier
%D 2021
%I Association des Annales de l’institut Fourier
%Z Online first
%U https://doi.org/10.5802/aif.3442
%R 10.5802/aif.3442
%G en
%F AIF_0__0_0_A48_0
Boutillier, Cédric; Li, Zhongyang. Limit shape and height fluctuations of random perfect matchings on square-hexagon lattices. Annales de l'Institut Fourier, Online first, 82 p.

[1] Borodin, Alexei Periodic Schur process and cylindrical partitions, Duke Math. J., Volume 140 (2007) no. 3, pp. 391-468 | Zbl 1131.22003

[2] Borodin, Alexei Schur dynamics of the Schur processes, Adv. Math., Volume 228 (2011) no. 4, pp. 2268-2291 | Article | MR 2836121 | Zbl 1234.60012

[3] Borodin, Alexei; Ferrari, Patrik L. Anisotropic growth of random surfaces in 2+1 dimensions, Commun. Math. Phys., Volume 325 (2014) no. 2, pp. 603-684 | Article | MR 3148098 | Zbl 1303.82015

[4] Borodin, Alexei; Ferrari, Patrik L. Random tilings and Markov chains for interlacing particles, Markov Process. Relat. Fields, Volume 24 (2018) no. 3, pp. 419-451 | MR 3821250 | Zbl 1401.05061

[5] Boutillier, Cédric; Bouttier, Jérémie; Chapuy, Guillaume; Corteel, Sylvie; Ramassamy, Sanjay Dimers on rail yard graphs, Ann. Inst. Henri Poincaré D, Comb. Phys. Interact. (AIHPD), Volume 4 (2017) no. 4, pp. 479-539 | Article | MR 3734415 | Zbl 1391.82008

[6] Bufetov, Alexey; Gorin, Vadim Representations of classical Lie groups and quantized free convolution, Geom. Funct. Anal., Volume 25 (2015) no. 3, pp. 763-814 | Article | MR 3361772 | Zbl 1326.22012

[7] Bufetov, Alexey; Gorin, Vadim Fluctuations of particle systems determined by Schur generating functions, Adv. Math., Volume 338 (2018), pp. 702-781 | Article | MR 3861715 | Zbl 1400.82064

[8] Bufetov, Alexey; Knizel, Alisa Asymptotics of random domino tilings of rectangular Aztec diamonds, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 54 (2018) no. 3, pp. 1250-1290 | MR 3825881 | Zbl 1401.60174

[9] Chhita, Sunil; Johansson, Kurt Domino statistics of the two-periodic Aztec diamond, Adv. Math., Volume 294 (2016), pp. 37-149 | Article | MR 3479561 | Zbl 1344.82021

[10] Cohn, Henry; Kenyon, Richard; Propp, James A variational principle for domino tilings, J. Am. Math. Soc., Volume 14 (2000) no. 2, pp. 297-346 | Article | MR 1815214 | Zbl 1037.82016

[11] Di Francesco, Philippe; Soto-Garrido, Rodrigo Arctic curves of the octahedron equation, J. Phys. A, Math. Theor., Volume 47 (2014) no. 28, 285204, 34 pages | MR 3228361 | Zbl 1296.05121

[12] Duits, Maurice Gaussian free field in an interlacing particle system with two jump rates, Commun. Pure Appl. Math., Volume 66 (2013) no. 4, pp. 600-643 | Article | MR 3020314 | Zbl 1259.82091

[13] Duits, Maurice On global fluctuations for non-colliding processes, Ann. Probab., Volume 46 (2018) no. 3, pp. 1279-1350 | MR 3785589 | Zbl 1429.60072

[14] Duse, Erik; Metcalfe, Anthony Asymptotic geometry of discrete interlaced patterns. I., Int. J. Math., Volume 26 (2015) no. 11, 1550093, 66 pages | MR 3413988 | Zbl 1359.60021

[15] Duse, Erik; Metcalfe, Anthony Universalité au bord pour la fluctuation de systèmes discrets de particules entrelacées, Ann. Math. Blaise Pascal, Volume 25 (2018) no. 1, pp. 75-197 | Zbl 1401.60010

[16] Gorin, Vadim; Panova, Greta Asymptotics of symmetric polynomials with applications to statistical mechanics and representation theory, Ann. Probab., Volume 43 (2015) no. 6, pp. 3052-3132 | MR 3433577 | Zbl 1390.05240

[17] Goulden, Ian P.; Guay-Paquet, Mathieu; Novak, Jonathan Monotone Hurwitz numbers and the HCIZ integral, Ann. Math. Blaise Pascal, Volume 21 (2014) no. 1, pp. 71-89 | Article | Numdam | MR 3248222 | Zbl 1296.05202

[18] Guionnet, Alice; Zeitouni, Ofer Large deviations asymptotics for spherical integrals, J. Funct. Anal., Volume 188 (2002) no. 2, pp. 461-515 | Article | MR 1883414 | Zbl 1002.60021

[19] Harish-Chandra Differential operators on a semisimple Lie algebra, Am. J. Math., Volume 79 (1957), pp. 87-120 | Article | MR 84104 | Zbl 0072.01901

[20] Itzykson, Claude; Zuber, Jean Bernard The planar approximation. II, J. Math. Phys., Volume 21 (1980) no. 3, pp. 411-421 | Article | MR 562985

[21] Johansson, Kurt The arctic circle boundary and the Airy process, Ann. Probab., Volume 33 (2005) no. 1, pp. 1-30 | MR 2118857 | Zbl 1096.60039

[22] Johansson, Kurt; Nordenstam, Eric Eigenvalues of GUE Minors, Electron. J. Probab., Volume 11 (2006), pp. 1342-1371 | MR 2268547 | Zbl 1127.60047

[23] Jokusch, Wiliam; Propp, James; Shor, Peter Random domino tilings and the arctic circle theorem (1998) (https://arxiv.org/abs/math/9801068)

[24] Kasteleyn, P. W. The statistics of dimers on a lattice, I. The number of dimer arrangements on a quadratic lattice, Physica, Volume 27 (1961), pp. 1209-1225 | Zbl 1244.82014

[25] Kenyon, Richard Conformal invariance of domino tiling, Ann. Probab., Volume 28 (2000) no. 2, pp. 759-795 | MR 1782431 | Zbl 1043.52014

[26] Kenyon, Richard Dominos and the Gaussian free field, Ann. Probab., Volume 29 (2001) no. 3, pp. 1128-1137 | MR 1872739 | Zbl 1034.82021

[27] Kenyon, Richard; Okounkov, Andrei Limit shapes and the complex Burgers equation, Acta Math., Volume 199 (2007) no. 2, pp. 263-302 | Article | MR 2358053 | Zbl 1156.14029

[28] Kenyon, Richard; Okounkov, Andrei; Sheffield, Scott Dimers and Amoebae, Ann. Math., Volume 163 (2006) no. 3, pp. 1019-1056 | Article | MR 2215138 | Zbl 1154.82007

[29] Li, Zhongyang Conformal invariance of dimer heights on isoradial double graphs, Ann. Inst. Henri Poincaré D, Comb. Phys. Interact. (AIHPD), Volume 4 (2017) no. 3, pp. 273-307 | MR 3713018 | Zbl 1377.82019

[30] Li, Zhongyang Fluctuations of dimer heights on contracting square-hexagon lattices (2018) (https://arxiv.org/abs/1809.08727)

[31] Li, Zhongyang Schur function at general points and limit shape of perfect matchings on contracting square hexagon lattices with piecewise boundary conditions (2018) (https://arxiv.org/abs/1807.06175)

[32] Li, Zhongyang Asymptotics of Schur functions on almost staircase partitions, Electron. Commun. Probab., Volume 25 (2020), 51, 13 pages | MR 4129675 | Zbl 1453.82013

[33] Macdonald, Ian G. Symmetric Functions and Hall Polynomials, Oxford Science Publications, Oxford University Press, 1998

[34] Mehta, Madan L. Random Matrices, Pure and Applied Mathematics, 142, Elsevier, 2004 | MR 2129906

[35] Mkrtchyan, Sevak; Petrov, Leonid GUE corners limit of q-distributed lozenge tilings, Electron. J. Probab., Volume 22 (2017), 101, 24 pages | MR 3733659 | Zbl 1386.60035

[36] Novak, Jonathan Lozenge tilings and Hurwitz numbers, J. Stat. Phys., Volume 161 (2015) no. 2, pp. 509-517 | Article | MR 3401028 | Zbl 1327.05057

[37] Okounkov, Andrei Toda equations for Hurwitz numbers, Math. Res. Lett., Volume 7 (2000) no. 4, pp. 447-453 | Article | MR 1783622 | Zbl 0969.37033

[38] Okounkov, Andrei; Reshetikhin, Nicolai Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Am. Math. Soc., Volume 16 (2003) no. 3, pp. 581-603 | Article | MR 1969205 | Zbl 1009.05134

[39] Okounkov, Andrei; Reshetikhin, Nicolai The birth of a random matrix, Mosc. Math. J., Volume 6 (2006) no. 3, pp. 553-566 | Article | MR 2274865 | Zbl 1130.15014

[40] Okounkov, Andrei; Reshetikhin, Nicolai Random skew plane partitions and Pearcey process, Commun. Math. Phys., Volume 269 (2007), pp. 571-609 | Article | MR 2276355 | Zbl 1115.60011

[41] Percus, Jerome K. One more technique for the dimer problem, J. Math. Phys., Volume 10 (1969), p. 1881 | Article | MR 250899

[42] Petrov, Leonid Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field, Ann. Probab., Volume 43 (2015) no. 1, pp. 1-43 | MR 3298467 | Zbl 1315.60062

[43] Sheffield, Scott Gaussian free fields for mathematicians, Probab. Theory Relat. Fields, Volume 139 (2007) no. 3-4, pp. 521-541 | Article | MR 2322706 | Zbl 1132.60072

[44] Thurston, William P. Conway’s tiling groups, Am. Math. Mon., Volume 97 (1990) no. 8, pp. 757-773 | Article | MR MR1072815 | Zbl 0714.52007

Cité par Sources :