Nous étudions les couplages parfaits de graphes, construits en prenant, pour chaque ligne, une ligne soit du réseau carré, soit du réseau hexagonal. Étant donnés des poids sur les arêtes avec une période , la fonction de partition est une fonction de Schur dépendant des poids. Nous obtenons dans la limite des grands systèmes une loi des grands nombres (forme limite) et un théorème central limite (convergence vers le champ libre) pour la fonction de hauteur associée. La distribution de certains dimères près du point de contact au bord converge vers celle des valeurs propres de l’ensemble unitaire gaussien. De plus, dans la limite d’échelle de systèmes pour lesquels chaque segment du bord croît linéairement avec la taille du graphe, le bord de la zone gelée est une courbe nuage avec des points de contact sur chaque segment du bord inférieur dont le nombre dépend de la période.
We study perfect matchings on the contracting square-hexagon lattice, constructed row by row either from a row of the square grid or of the hexagonal lattice. Given periodic weights to edges, we consider the probabilities of dimers proportional to the product of edge weights. We show that the partition function equals a Schur function of the edge weights. We then prove the Law of Large Numbers (limit shape) and the Central Limit Theorem (convergence to the Gaussian free field) for the corresponding height functions. We also show that certain types of dimers near the turning corner converge in distribution to the eigenvalues of Gaussian Unitary Ensemble, and that in the scaling limit when each segment of the bottom boundary grows linearly with respect to the dimension of the graph, the frozen boundary is a cloud curve with multiple tangent points (depending on the period) along each horizontal boundary segment.
Accepté le :
Accepté après révision le :
Première publication :
Publié le :
DOI : 10.5802/aif.3442
Keywords: dimer, perfect matching, limit shape, Gaussian free field, Schur function
Mot clés : dimères, couplage parfait, forme limite, champ libre gaussien, fonction de Schur
Boutillier, Cédric 1 ; Li, Zhongyang 2
@article{AIF_2021__71_6_2305_0, author = {Boutillier, C\'edric and Li, Zhongyang}, title = {Limit shape and height fluctuations of random perfect matchings on square-hexagon lattices}, journal = {Annales de l'Institut Fourier}, pages = {2305--2386}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {6}, year = {2021}, doi = {10.5802/aif.3442}, zbl = {07554449}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3442/} }
TY - JOUR AU - Boutillier, Cédric AU - Li, Zhongyang TI - Limit shape and height fluctuations of random perfect matchings on square-hexagon lattices JO - Annales de l'Institut Fourier PY - 2021 SP - 2305 EP - 2386 VL - 71 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3442/ DO - 10.5802/aif.3442 LA - en ID - AIF_2021__71_6_2305_0 ER -
%0 Journal Article %A Boutillier, Cédric %A Li, Zhongyang %T Limit shape and height fluctuations of random perfect matchings on square-hexagon lattices %J Annales de l'Institut Fourier %D 2021 %P 2305-2386 %V 71 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3442/ %R 10.5802/aif.3442 %G en %F AIF_2021__71_6_2305_0
Boutillier, Cédric; Li, Zhongyang. Limit shape and height fluctuations of random perfect matchings on square-hexagon lattices. Annales de l'Institut Fourier, Tome 71 (2021) no. 6, pp. 2305-2386. doi : 10.5802/aif.3442. https://aif.centre-mersenne.org/articles/10.5802/aif.3442/
[1] Periodic Schur process and cylindrical partitions, Duke Math. J., Volume 140 (2007) no. 3, pp. 391-468 | Zbl
[2] Schur dynamics of the Schur processes, Adv. Math., Volume 228 (2011) no. 4, pp. 2268-2291 | DOI | MR | Zbl
[3] Anisotropic growth of random surfaces in dimensions, Commun. Math. Phys., Volume 325 (2014) no. 2, pp. 603-684 | DOI | MR | Zbl
[4] Random tilings and Markov chains for interlacing particles, Markov Process. Relat. Fields, Volume 24 (2018) no. 3, pp. 419-451 | MR | Zbl
[5] Dimers on rail yard graphs, Ann. Inst. Henri Poincaré D, Comb. Phys. Interact. (AIHPD), Volume 4 (2017) no. 4, pp. 479-539 | DOI | MR | Zbl
[6] Representations of classical Lie groups and quantized free convolution, Geom. Funct. Anal., Volume 25 (2015) no. 3, pp. 763-814 | DOI | MR | Zbl
[7] Fluctuations of particle systems determined by Schur generating functions, Adv. Math., Volume 338 (2018), pp. 702-781 | DOI | MR | Zbl
[8] Asymptotics of random domino tilings of rectangular Aztec diamonds, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 54 (2018) no. 3, pp. 1250-1290 | MR | Zbl
[9] Domino statistics of the two-periodic Aztec diamond, Adv. Math., Volume 294 (2016), pp. 37-149 | DOI | MR | Zbl
[10] A variational principle for domino tilings, J. Am. Math. Soc., Volume 14 (2000) no. 2, pp. 297-346 | DOI | MR | Zbl
[11] Arctic curves of the octahedron equation, J. Phys. A, Math. Theor., Volume 47 (2014) no. 28, 285204, 34 pages | MR | Zbl
[12] Gaussian free field in an interlacing particle system with two jump rates, Commun. Pure Appl. Math., Volume 66 (2013) no. 4, pp. 600-643 | DOI | MR | Zbl
[13] On global fluctuations for non-colliding processes, Ann. Probab., Volume 46 (2018) no. 3, pp. 1279-1350 | MR | Zbl
[14] Asymptotic geometry of discrete interlaced patterns. I., Int. J. Math., Volume 26 (2015) no. 11, 1550093, 66 pages | MR | Zbl
[15] Universalité au bord pour la fluctuation de systèmes discrets de particules entrelacées, Ann. Math. Blaise Pascal, Volume 25 (2018) no. 1, pp. 75-197 | Zbl
[16] Asymptotics of symmetric polynomials with applications to statistical mechanics and representation theory, Ann. Probab., Volume 43 (2015) no. 6, pp. 3052-3132 | MR | Zbl
[17] Monotone Hurwitz numbers and the HCIZ integral, Ann. Math. Blaise Pascal, Volume 21 (2014) no. 1, pp. 71-89 | DOI | Numdam | MR | Zbl
[18] Large deviations asymptotics for spherical integrals, J. Funct. Anal., Volume 188 (2002) no. 2, pp. 461-515 | DOI | MR | Zbl
[19] Differential operators on a semisimple Lie algebra, Am. J. Math., Volume 79 (1957), pp. 87-120 | DOI | MR | Zbl
[20] The planar approximation. II, J. Math. Phys., Volume 21 (1980) no. 3, pp. 411-421 | DOI | MR
[21] The arctic circle boundary and the Airy process, Ann. Probab., Volume 33 (2005) no. 1, pp. 1-30 | MR | Zbl
[22] Eigenvalues of GUE Minors, Electron. J. Probab., Volume 11 (2006), pp. 1342-1371 | MR | Zbl
[23] Random domino tilings and the arctic circle theorem (1998) (https://arxiv.org/abs/math/9801068)
[24] The statistics of dimers on a lattice, I. The number of dimer arrangements on a quadratic lattice, Physica, Volume 27 (1961), pp. 1209-1225 | Zbl
[25] Conformal invariance of domino tiling, Ann. Probab., Volume 28 (2000) no. 2, pp. 759-795 | MR | Zbl
[26] Dominos and the Gaussian free field, Ann. Probab., Volume 29 (2001) no. 3, pp. 1128-1137 | MR | Zbl
[27] Limit shapes and the complex Burgers equation, Acta Math., Volume 199 (2007) no. 2, pp. 263-302 | DOI | MR | Zbl
[28] Dimers and Amoebae, Ann. Math., Volume 163 (2006) no. 3, pp. 1019-1056 | DOI | MR | Zbl
[29] Conformal invariance of dimer heights on isoradial double graphs, Ann. Inst. Henri Poincaré D, Comb. Phys. Interact. (AIHPD), Volume 4 (2017) no. 3, pp. 273-307 | MR | Zbl
[30] Fluctuations of dimer heights on contracting square-hexagon lattices (2018) (https://arxiv.org/abs/1809.08727)
[31] Schur function at general points and limit shape of perfect matchings on contracting square hexagon lattices with piecewise boundary conditions (2018) (https://arxiv.org/abs/1807.06175)
[32] Asymptotics of Schur functions on almost staircase partitions, Electron. Commun. Probab., Volume 25 (2020), 51, 13 pages | MR | Zbl
[33] Symmetric Functions and Hall Polynomials, Oxford Science Publications, Oxford University Press, 1998
[34] Random Matrices, Pure and Applied Mathematics, 142, Elsevier, 2004 | MR
[35] GUE corners limit of -distributed lozenge tilings, Electron. J. Probab., Volume 22 (2017), 101, 24 pages | MR | Zbl
[36] Lozenge tilings and Hurwitz numbers, J. Stat. Phys., Volume 161 (2015) no. 2, pp. 509-517 | DOI | MR | Zbl
[37] Toda equations for Hurwitz numbers, Math. Res. Lett., Volume 7 (2000) no. 4, pp. 447-453 | DOI | MR | Zbl
[38] Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Am. Math. Soc., Volume 16 (2003) no. 3, pp. 581-603 | DOI | MR | Zbl
[39] The birth of a random matrix, Mosc. Math. J., Volume 6 (2006) no. 3, pp. 553-566 | DOI | MR | Zbl
[40] Random skew plane partitions and Pearcey process, Commun. Math. Phys., Volume 269 (2007), pp. 571-609 | DOI | MR | Zbl
[41] One more technique for the dimer problem, J. Math. Phys., Volume 10 (1969), p. 1881 | DOI | MR
[42] Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field, Ann. Probab., Volume 43 (2015) no. 1, pp. 1-43 | MR | Zbl
[43] Gaussian free fields for mathematicians, Probab. Theory Relat. Fields, Volume 139 (2007) no. 3-4, pp. 521-541 | DOI | MR | Zbl
[44] Conway’s tiling groups, Am. Math. Mon., Volume 97 (1990) no. 8, pp. 757-773 | DOI | MR | Zbl
Cité par Sources :