Nous prouvons une formule de fibré canonique pour des morphismes génériquement finis dans le cadre de paires généralisées (avec -coefficients). Cela complète la formule de fibré canonique de Filipazzi pour les morphismes à fibres connectées. Elle est ensuite appliquée pour obtenir une formule de sous-jonction pour les centres log canoniques de paires généralisées. Comme une autre application, nous montrons que l’image d’une paire généralisée canonique anti-nef log a la structure d’une paire généralisée canonique log numériquement triviale. Cela implique un résultat de Chen–Zhang. Au passage, nous prouvons que les ensembles convexes de type de Shokurov pour les diviseurs log canoniques anti-nef sont en effet des ensembles polyédriques rationnels.
We prove a canonical bundle formula for generically finite morphisms in the setting of generalized pairs (with -coefficients). This complements Filipazzi’s canonical bundle formula for morphisms with connected fibres. It is then applied to obtain a subadjunction formula for log canonical centers of generalized pairs. As another application, we show that the image of an anti-nef log canonical generalized pair has the structure of a numerically trivial log canonical generalized pair. This readily implies a result of Chen–Zhang. Along the way we prove that the Shokurov type convex sets for anti-nef log canonical divisors are indeed rational polyhedral sets.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: generalized pair, canonical bundle formula, subadjunction
Mot clés : paire généralisée, formule de fibré canonique, sous-adjonction
Han, Jingjun 1, 2, 3 ; Liu, Wenfei 4
@article{AIF_2021__71_5_2047_0, author = {Han, Jingjun and Liu, Wenfei}, title = {On a generalized canonical bundle formula for generically finite morphisms}, journal = {Annales de l'Institut Fourier}, pages = {2047--2077}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {5}, year = {2021}, doi = {10.5802/aif.3437}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3437/} }
TY - JOUR AU - Han, Jingjun AU - Liu, Wenfei TI - On a generalized canonical bundle formula for generically finite morphisms JO - Annales de l'Institut Fourier PY - 2021 SP - 2047 EP - 2077 VL - 71 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3437/ DO - 10.5802/aif.3437 LA - en ID - AIF_2021__71_5_2047_0 ER -
%0 Journal Article %A Han, Jingjun %A Liu, Wenfei %T On a generalized canonical bundle formula for generically finite morphisms %J Annales de l'Institut Fourier %D 2021 %P 2047-2077 %V 71 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3437/ %R 10.5802/aif.3437 %G en %F AIF_2021__71_5_2047_0
Han, Jingjun; Liu, Wenfei. On a generalized canonical bundle formula for generically finite morphisms. Annales de l'Institut Fourier, Tome 71 (2021) no. 5, pp. 2047-2077. doi : 10.5802/aif.3437. https://aif.centre-mersenne.org/articles/10.5802/aif.3437/
[1] Shokurov’s boundary property, J. Differ. Geom., Volume 67 (2004) no. 2, pp. 229-255 | MR | Zbl
[2] The moduli -divisor of an lc-trivial fibration, Compos. Math., Volume 141 (2005) no. 2, pp. 385-403 | DOI | MR | Zbl
[3] On existence of log minimal models. II, J. Reine Angew. Math., Volume 658 (2011), pp. 99-113 | DOI | MR | Zbl
[4] Anti-pluricanonical systems on Fano varieties, Ann. Math., Volume 190 (2019) no. 2, pp. 345-463 | DOI | MR | Zbl
[5] Geometry and moduli of polarised varieties (2020) (https://arxiv.org/abs/2006.11238)
[6] On connectedness of non-klt loci of singularities of pairs (2020) (https://arxiv.org/abs/2010.08226)
[7] Generalised pairs in birational geometry, EMS Surv. Math. Sci., Volume 8 (2021) no. 1-2, pp. 5-24 | DOI | MR | Zbl
[8] Singularities on toric fibrations (2020) (https://arxiv.org/abs/2010.07651)
[9] Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs, Publ. Math., Inst. Hautes Étud. Sci., Volume 123 (2016), pp. 283-331 | DOI | MR | Zbl
[10] Boundedness of -complements for generalized pairs (2020) (https://arxiv.org/abs/2003.04237)
[11] Boundedness of ()-Complements for projective generalized pairs of Fano type (2020) (https://arxiv.org/abs/2008.07121)
[12] On a question of Demailly–Peternell–Schneider, J. Eur. Math. Soc., Volume 15 (2013) no. 5, pp. 1853-1858 | DOI | MR | Zbl
[13] 3-fold flips after Shokurov, Flips for 3-folds and 4-folds (Oxford Lecture Series in Mathematics and its Applications), Volume 35, Oxford University Press, 2007, pp. 18-48 | DOI | MR | Zbl
[14] Generically finite morphisms and simultaneous resolution of singularities, Commutative algebra. Interactions with algebraic geometry. Proceedings of the international conference, Grenoble, France, July 9–13, 2001 and the special session at the joint international meeting of the American Mathematical Society and the Société Mathématique de France, Lyon, France, July 17–20, 2001 (Contemporary Mathematics), Volume 331, American Mathematical Society, 2003, pp. 75-99 | DOI | MR | Zbl
[15] Boundedness of log canonical surface generalized polarized pairs, Taiwanese J. Math., Volume 22 (2018) no. 4, pp. 813-850 | DOI | MR | Zbl
[16] Generalized pairs in birational geometry, Ph. D. Thesis, The University of Utah, USA (2019) | MR
[17] On a generalized canonical bundle formula and generalized adjunction, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 21, Spec. Iss. (2020), pp. 1187-1221 | MR | Zbl
[18] On the boundedness of -folds with (2020) (https://arxiv.org/abs/2005.05508)
[19] Invariance of plurigenera and boundedness for generalized pairs, Mat. Contemp., Volume 47 (2020), pp. 114-150 | MR
[20] On the connectedness principle and dual complexes for generalized pairs (2020) (https://arxiv.org/abs/2010.08018)
[21] Connectedness principle in characteristic (2020) (https://arxiv.org/abs/2010.08414)
[22] Applications of Kawamata’s positivity theorem, Proc. Japan Acad., Ser. A, Volume 75 (1999) no. 6, pp. 75-79 | MR | Zbl
[23] Some remarks on the minimal model program for log canonical pairs, J. Math. Sci., Tokyo, Volume 22 (2015) no. 1, pp. 149-192 | MR | Zbl
[24] Foundations of the minimal model program, MSJ Memoirs, 35, Mathematical Society of Japan, 2017 | MR | Zbl
[25] Fundamental properties of basic slc-trivial fibrations (2018) (https://arxiv.org/abs/1804.11134, to appear in Publications of the Research Institute for Mathematical Sciences, Kyoto University)
[26] On canonical bundle formulas and subadjunctions, Mich. Math. J., Volume 61 (2012) no. 2, pp. 255-264 | DOI | MR | Zbl
[27] On the moduli b-divisors of lc-trivial fibrations, Ann. Inst. Fourier, Volume 64 (2014) no. 4, pp. 1721-1735 | DOI | Numdam | MR | Zbl
[28] A canonical bundle formula, J. Differ. Geom., Volume 56 (2000) no. 1, pp. 167-188 | MR | Zbl
[29] On weak Zariski decompositions and termination of flips, Math. Res. Lett., Volume 27 (2020) no. 5, pp. 1393-1421 | DOI | MR | Zbl
[30] Weak Zariski decompositions and log terminal models for generalized polarized pairs (2018) (https://arxiv.org/abs/1806.01234)
[31] On Fujita’s conjecture for pseudo-effective thresholds, Math. Res. Lett., Volume 27 (2020) no. 2, pp. 377-396 | DOI | MR | Zbl
[32] On accumulation points of pseudo-effective thresholds, Manuscr. Math., Volume 165 (2021) no. 3-4, pp. 537-558 | DOI | MR | Zbl
[33] Effective birationality for sub-pairs with real coefficients (2020) (https://arxiv.org/abs/2007.01849)
[34] On numerical nonvanishing for generalized log canonical pairs, Doc. Math., Volume 25 (2020), pp. 93-123 | MR | Zbl
[35] Subadjunction of log canonical divisors for a subvariety of codimension , Birational algebraic geometry. A conference on algebraic geometry in memory of Wei-Liang Chow (1911–1995), Baltimore, MD, USA, April 11–14, 1996 (Contemporary Mathematics), Volume 207, American Mathematical Society, 1997, pp. 79-88 | DOI | MR | Zbl
[36] Subadjunction of log canonical divisors. II, Am. J. Math., Volume 120 (1998) no. 5, pp. 893-899 | DOI | MR | Zbl
[37] On the structure of compact complex analytic surfaces. I, Am. J. Math., Volume 86 (1964), pp. 751-798 | DOI | MR | Zbl
[38] Flips and abundance for algebraic threefolds, Astérisque, 211, Société Mathématique de France, 1992, pp. 1-258 (Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991) | Numdam | MR | Zbl
[39] Singularities of the minimal model program, Cambridge Tracts in Mathematics, 200, Cambridge University Press, 2013, x+370 pages (with a collaboration of Sándor Kovács) | DOI | MR | Zbl
[40] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI | MR | Zbl
[41] Special termination for log canonical pairs (2020) (https://arxiv.org/abs/2007.06458)
[42] On generalised abundance. I, Publ. Res. Inst. Math. Sci., Volume 56 (2020) no. 2, pp. 353-389 | DOI | MR | Zbl
[43] On the existence of minimal models for log canonical pairs (2019) (https://arxiv.org/abs/1905.05576, to appear in Publications of the Research Institute for Mathematical Sciences, Kyoto University)
[44] Boundedness of the base varieties of certain fibrations (2020) (https://arxiv.org/abs/2002.06565)
[45] Sarkisov program for generalized pairs, Osaka J. Math, Volume 58 (2021) no. 4, pp. 899-920 | MR | Zbl
[46] Classification of higher-dimensional varieties, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) (Proceedings of Symposia in Pure Mathematics), Volume 46, American Mathematical Society, 1987, pp. 269-331 | MR | Zbl
[47] Towards the second main theorem on complements, J. Algebr. Geom., Volume 18 (2009) no. 1, pp. 151-199 | DOI | MR | Zbl
[48] Stacks Project, 2018 (https://stacks.math.columbia.edu)
Cité par Sources :