Stability and Hölder regularity of solutions to complex Monge–Ampère equations on compact Hermitian manifolds
[Stabilité et Continuité Höldérienne des solutions des équations de Monge–Ampère complexes sur des variétés Hermitiennes compactes]
Annales de l'Institut Fourier, Online first, 27 p.

Soit (X,ω) une variété Hermitienne compacte de dimension n. On établit la stabilité des solutions des équations de Monge–Ampère avec second membre dans L p , p>1. En utilisant ce résultat on montre que les solutions sont continues höldériennes avec le même exposant que celui obtenu dans le cas Kählérien par Demailly-Dinew–Guedj–Kołodziej–Pham–Zeriahi. Notre méthode s’applique également dans le contexte des classes de cohomologie sur une variété Kählérienne.

Let (X,ω) be a compact Hermitian manifold. We establish a stability result for solutions to complex Monge–Ampère equations with right-hand side in L p , p>1. Using this we prove that the solutions are Hölder continuous with the same exponent as in the Kähler case by Demailly–Dinew–Guedj–Kołodziej–Pham–Zeriahi. Our techniques also apply to the setting of big cohomology classes on compact Kähler manifolds.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : https://doi.org/10.5802/aif.3436
Classification : 32W20,  32U05,  32Q15
Mots clés : Variété hermitienne, Équation de Monge–Ampère complexe, Stabilité, Principe de comparaison
@unpublished{AIF_0__0_0_A40_0,
     author = {Lu, Chinh H. and Phung, Trong-Thuc and T\^o, T\^at-Dat},
     title = {Stability and {H\"older} regularity of solutions to complex {Monge{\textendash}Amp\`ere} equations on compact {Hermitian} manifolds},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2021},
     doi = {10.5802/aif.3436},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Lu, Chinh H.
AU  - Phung, Trong-Thuc
AU  - Tô, Tât-Dat
TI  - Stability and Hölder regularity of solutions to complex Monge–Ampère equations on compact Hermitian manifolds
JO  - Annales de l'Institut Fourier
PY  - 2021
DA  - 2021///
PB  - Association des Annales de l’institut Fourier
N1  - Online first
UR  - https://doi.org/10.5802/aif.3436
DO  - 10.5802/aif.3436
LA  - en
ID  - AIF_0__0_0_A40_0
ER  - 
%0 Unpublished Work
%A Lu, Chinh H.
%A Phung, Trong-Thuc
%A Tô, Tât-Dat
%T Stability and Hölder regularity of solutions to complex Monge–Ampère equations on compact Hermitian manifolds
%J Annales de l'Institut Fourier
%D 2021
%I Association des Annales de l’institut Fourier
%Z Online first
%U https://doi.org/10.5802/aif.3436
%R 10.5802/aif.3436
%G en
%F AIF_0__0_0_A40_0
Lu, Chinh H.; Phung, Trong-Thuc; Tô, Tât-Dat. Stability and Hölder regularity of solutions to complex Monge–Ampère equations on compact Hermitian manifolds. Annales de l'Institut Fourier, Online first, 27 p.

[1] Bedford, Eric; Taylor, B. A. The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math., Volume 37 (1976) no. 1, pp. 1-44 | Article | Zbl 0315.31007

[2] Berman, Robert J.; Boucksom, Sébastien; Guedj, Vincent; Zeriahi, Ahmed A variational approach to complex Monge–Ampère equations, Publ. Math., Inst. Hautes Étud. Sci., Volume 117 (2013), pp. 179-245 | Article | Numdam | Zbl 1277.32049

[3] Berman, Robert J.; Demailly, Jean-Pierre Regularity of plurisubharmonic upper envelopes in big cohomology classes, Perspectives in analysis, geometry, and topology. On the occasion of the 60th birthday of Oleg Viro. Based on the Marcus Wallenberg symposium on perspectives in analysis, geometry, and topology, Stockholm, Sweden, May 19–25, 2008 (Progress in Mathematics), Volume 296, Birkhäuser, 2012, pp. 39-66 | Article | MR 2884031 | Zbl 1258.32010

[4] Błocki, Zbigniew On uniform estimate in Calabi–Yau theorem, Sci. China, Ser. A, Volume 48 (2005) no. suppl., pp. 244-247 | Article | MR 2156505 | Zbl 1128.32025

[5] Błocki, Zbigniew On the uniform estimate in the Calabi–Yau theorem. II, Sci. China, Math., Volume 54 (2011) no. 7, pp. 1375-1377 | Article | MR 2817572 | Zbl 1239.32032

[6] Bloom, Thomas; Levenberg, Norman Pluripotential energy, Potential Anal., Volume 36 (2012) no. 1, pp. 155-176 | Article | MR 2886457 | Zbl 1235.32025

[7] Boucksom, Sébastien Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 45-76 | Article | Numdam | MR 2050205 | Zbl 1054.32010

[8] Boucksom, Sébastien; Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed Monge–Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | Article | Zbl 1213.32025

[9] Chen, Xiuxiong On the existence of constant scalar curvature Kähler metric: a new perspective (2015) (https://arxiv.org/abs/1506.06423 to appear in theAnnales mathématiques de Québec)

[10] Chen, Xiuxiong; Cheng, Jingrui On the constant scalar curvature Kähler metrics, apriori estimates (2017) (https://arxiv.org/abs/1712.06697)

[11] Chen, Xiuxiong; Cheng, Jingrui On the constant scalar curvature Kähler metrics, existence results (2018) (https://arxiv.org/abs/1801.00656)

[12] Chen, Xiuxiong; Cheng, Jingrui On the constant scalar curvature Kähler metrics, general automorphism group (2018) (https://arxiv.org/abs/1801.05907)

[13] Chen, Xiuxiong; Donaldson, Simon; Sun, Song Kähler–Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Am. Math. Soc., Volume 28 (2015) no. 1, pp. 183-197 | Article | Zbl 1312.53097

[14] Cherrier, Pascal Équations de Monge–Ampère sur les variétés Hermitiennes compactes, Bull. Sci. Math., Volume 111 (1987), pp. 343-385 | Zbl 0629.58028

[15] Chiose, Ionut On the invariance of the total Monge–Ampère volume of Hermitian metrics (2016) (https://arxiv.org/abs/1609.05945)

[16] Chu, Jianchu; Zhou, Bin Optimal regularity of plurisubharmonic envelopes on compact Hermitian manifolds, Sci. China, Math., Volume 62 (2019) no. 2, pp. 371-380 | Article | MR 3915068 | Zbl 1409.32029

[17] Darvas, Támas Geometric pluripotential theory on Kähler manifolds, Advances in complex geometry. Contributions from the JHU-UMD complex geometry seminar, John Hopkins University, Baltimore, MD, USA and University of Maryland, College Park, MD, USA, 2015–2018 (Contemporary Mathematics), Volume 735, American Mathematical Society, 2019, pp. 1-104 | Article | Zbl 1439.32061

[18] Darvas, Támas; Di Nezza, Eleonora; Lu, Chinh H. L 1 metric geometry of big cohomology classes, Ann. Inst. Fourier, Volume 68 (2018) no. 7, pp. 3053-3086 | Article | Numdam | MR 3959105 | Zbl 07058400

[19] Darvas, Támas; Di Nezza, Eleonora; Lu, Chinh H. Monotonicity of nonpluripolar products and complex Monge–Ampère equations with prescribed singularity, Anal. PDE, Volume 11 (2018) no. 8, pp. 2049-2087 | Article | Zbl 1396.32011

[20] Darvas, Támas; Di Nezza, Eleonora; Lu, Chinh H. On the singularity type of full mass currents in big cohomology classes, Compos. Math., Volume 154 (2018) no. 2, pp. 380-409 | Article | MR 3738831 | Zbl 1398.32042

[21] Darvas, Támas; Di Nezza, Eleonora; Lu, Chinh H. Log-concavity of volume and complex Monge–Ampère equations with prescribed singularity (2019) (https://arxiv.org/abs/1807.00276, to appear in Mathematische Annalen)

[22] Darvas, Támas; Di Nezza, Eleonora; Lu, Chinh H. The metric geometry of singularity types (2019) https://arxiv.org/abs/1909.00839, to appear in Journal für die Reine und Angewandte Mathematik (Crelle’s Journal) | Article

[23] Demailly, Jean-Pierre Regularization of closed positive currents and intersection theory, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 361-409 | MR 1158622 | Zbl 0777.32016

[24] Demailly, Jean-Pierre Regularization of closed positive currents of type (1,1) by the flow of a Chern connection, Contributions to complex analysis and analytic geometry. Based on a colloquium dedicated to Pierre Dolbeault, Paris, France, June 23-26, 1992 (Aspects of Mathematics), Volume E26, Vieweg & Sohn, 1994, pp. 105-126 | Zbl 0824.53064

[25] Demailly, Jean-Pierre Complex Analytic and Differential Geometry, 2012 (Demailly’s webpage: https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf)

[26] Demailly, Jean-Pierre; Dinew, Sławomir; Guedj, Vincent; Kołodziej, Sławomir; Hiep, Pham Hoang; Zeriahi, Ahmed Hölder continuous solutions to Monge–Ampère equations, J. Eur. Math. Soc., Volume 16 (2014) no. 4, pp. 619-647 | Article | Zbl 1296.32012

[27] Dinew, Sławomir An inequality for mixed Monge–Ampère measures, Math. Z., Volume 262 (2009) no. 1, pp. 1-15 | Article | Zbl 1169.32007

[28] Dinew, Sławomir Uniqueness in (X,ω), J. Funct. Anal., Volume 256 (2009) no. 7, pp. 2113-2122 | Article | Zbl 1171.32024

[29] Dinew, Sławomir Pluripotential theory on compact Hermitian manifolds, Ann. Fac. Sci. Toulouse, Math., Volume 25 (2016) no. 1, pp. 91-139 | Article | Numdam | MR 3485292 | Zbl 1342.32022

[30] Dinew, Sławomir; Kołodziej, Sławomir Pluripotential estimates on compact Hermitian manifolds, Advances in geometric analysis. Collected papers of the workshop on geometry in honour of Shing-Tung Yau’s 60th birthday, Warsaw, Poland, April 6–8, 2009 (Advanced Lectures in Mathematics (ALM)), Volume 21, International Press, 2012, pp. 69-86 | MR 3077248 | Zbl 1317.32066

[31] Dinew, Sławomir; Zhang, Zhou On stability and continuity of bounded solutions of degenerate complex Monge–Ampère equations over compact Kähler manifolds, Adv. Math., Volume 225 (2010) no. 1, pp. 367-388 | Article | Zbl 1210.32020

[32] Dinh, Tien-Cuong; Nguyên, Viêt-Anh Characterization of Monge–Ampère measures with Hölder continuous potentials, J. Funct. Anal., Volume 266 (2014) no. 1, pp. 67-84 | Article | Zbl 1305.32018

[33] Dinh, Tien-Cuong; Nguyên, Viêt-Anh; Sibony, Nessim Exponential estimates for plurisubharmonic functions and stochastic dynamics, J. Differ. Geom., Volume 84 (2010) no. 3, pp. 465-488 | MR 2669362 | Zbl 1211.32021

[34] Dinh, Tien-Cuong; Sibony, Nessim Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms, J. Algebr. Geom., Volume 19 (2010) no. 3, pp. 473-529 | Article | Zbl 1202.32033

[35] Gauduchon, Paul Le théorème de l’excentricité nulle, C. R. Math. Acad. Sci. Paris, Volume 285 (1977) no. 5, pp. 387-390 | Zbl 0362.53024

[36] Guan, Bo; Li, Qun Complex Monge–Ampère equations and totally real submanifolds, Adv. Math., Volume 225 (2010) no. 3, pp. 1185-1223 | Article | Zbl 1206.58007

[37] Guedj, Vincent; Kołodziej, Sławomir; Zeriahi, Ahmed Hölder continuous solutions to Monge–Ampère equations, Bull. Lond. Math. Soc., Volume 40 (2008) no. 6, pp. 1070-1080 | Article | Zbl 1157.32033

[38] Guedj, Vincent; Lu, Chinh H.; Zeriahi, Ahmed Stability of solutions to complex Monge–Ampère flows, Ann. Inst. Fourier, Volume 68 (2018) no. 7, pp. 2819-2836 | Article | Numdam | Zbl 1414.53068

[39] Guedj, Vincent; Zeriahi, Ahmed Stability of solutions to complex Monge–Ampère equations in big cohomology classes, Math. Res. Lett., Volume 19 (2012) no. 5, pp. 1025-1042 | Article | Zbl 1273.32040

[40] Guedj, Vincent; Zeriahi, Ahmed Degenerate complex Monge–Ampère equations, EMS Tracts in Mathematics, 26, European Mathematical Society, 2017 | Article | Zbl 1373.32001

[41] Kołodziej, Sławomir Some sufficient conditions for solvability of the Dirichlet problem for the complex Monge–Ampère operator, Ann. Pol. Math., Volume 65 (1996) no. 1, pp. 11-21 | Article | Zbl 0878.32015

[42] Kołodziej, Sławomir The complex Monge–Ampère equation, Acta Math., Volume 180 (1998) no. 1, pp. 69-117 | Article | Zbl 0913.35043

[43] Kołodziej, Sławomir The Monge–Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J., Volume 52 (2003) no. 3, pp. 667-686 | Article | Zbl 1039.32050

[44] Kołodziej, Sławomir Hölder continuity of solutions to the complex Monge–Ampère equation with the right-hand side in L p : the case of compact Kähler manifolds, Math. Ann., Volume 342 (2008) no. 2, pp. 379-386 | Article | Zbl 1149.32018

[45] Kołodziej, Sławomir Weak solutions of the Monge–Ampère equation on compact Hermitian manifolds, Int. J. Math., Volume 28 (2017) no. 9, 1740002 | Article | Zbl 1384.32029

[46] Kołodziej, Sławomir; Cuong, Nguyen Ngoc Weak solutions to the complex Monge–Ampère equation on Hermitian manifolds, Analysis, complex geometry, and mathematical physics: in honor of Duong H. Phong. Proceedings of the conference, Columbia University, New York, NY, USA, May 7–11, 2013 (Contemporary Mathematics), Volume 644, American Mathematical Society, 2015, pp. 141-158 | Article | Zbl 1343.32031

[47] Kołodziej, Sławomir; Cuong, Nguyen Ngoc Hölder continuous solutions of the Monge–Ampère equation on compact Hermitian manifolds, Ann. Inst. Fourier, Volume 68 (2018) no. 7, pp. 2951-2964 | Article | Numdam | Zbl 1419.53070

[48] Kołodziej, Sławomir; Cuong, Nguyen Ngoc Stability and regularity of solutions of the Monge–Ampère equation on Hermitian manifolds, Adv. Math., Volume 346 (2019), pp. 264-304 | Article | Zbl 1427.53089

[49] Kołodziej, Sławomir; Cuong, Nguyen Ngoc Continuous solutions to Monge–Ampère equations on Hermitian manifolds for measures dominated by capacity (2020) (https://arxiv.org/abs/2003.05061)

[50] Lu, Chinh H.; Nguyên, Van-Dong Complex Hessian equations with prescribed singularity on compact Kähler manifolds (2019) (https://arxiv.org/abs/1909.02469. To appear in Annali della Scuola Normale Superiore di Pisa)

[51] Nguyen, Ngoc Cuong The complex Monge–Ampère type equation on compact Hermitian manifolds and applications, Adv. Math., Volume 286 (2016), pp. 240-285 | Article | MR 3415685 | Zbl 1337.53088

[52] Tosatti, Valentino Regularity of envelopes in Kähler classes, Math. Res. Lett., Volume 25 (2018) no. 1, pp. 281-289 | Article | Zbl 1397.32005

[53] Tosatti, Valentino; Weinkove, Ben The complex Monge–Ampère equation on compact Hermitian manifolds, J. Am. Math. Soc., Volume 23 (2010) no. 4, pp. 1187-1195 | Article | Zbl 1208.53075

[54] Vu, Duc-Viet Complex Monge–Ampère equation for measures supported on real submanifolds, Math. Ann., Volume 372 (2018) no. 1-2, pp. 321-367 | Article | MR 3856815 | Zbl 1441.32013

[55] Vu, Duc-Viet Families of Monge–Ampère measures with Hölder continuous potentials, Proc. Am. Math. Soc., Volume 146 (2018) no. 10, pp. 4275-4282 | Article | MR 3834657 | Zbl 1404.32076

[56] Yau, Shing-Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I, Commun. Pure Appl. Math., Volume 31 (1978) no. 3, pp. 339-411 | Article | Zbl 0369.53059

[57] Zeriahi, Ahmed Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions, Indiana Univ. Math. J., Volume 50 (2001) no. 1, pp. 671-703 | Article | MR 1857051 | Zbl 1138.31302

Cité par Sources :