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STABILITY AND HÖLDER REGULARITY OF
SOLUTIONS TO COMPLEX MONGE–AMPÈRE

EQUATIONS ON COMPACT HERMITIAN MANIFOLDS

by Chinh H. LU, Trong-Thuc PHUNG & Tât-Dat TÔ (*)

Abstract. — Let (X, ω) be a compact Hermitian manifold. We establish a sta-
bility result for solutions to complex Monge–Ampère equations with right-hand side
in Lp, p > 1. Using this we prove that the solutions are Hölder continuous with
the same exponent as in the Kähler case by Demailly–Dinew–Guedj–Kołodziej–
Pham–Zeriahi. Our techniques also apply to the setting of big cohomology classes
on compact Kähler manifolds.
Résumé. — Soit (X, ω) une variété Hermitienne compacte de dimension n. On

établit la stabilité des solutions des équations de Monge–Ampère avec second
membre dans Lp, p > 1. En utilisant ce résultat on montre que les solutions sont
continues höldériennes avec le même exposant que celui obtenu dans le cas Käh-
lérien par Demailly-Dinew–Guedj–Kołodziej–Pham–Zeriahi. Notre méthode s’ap-
plique également dans le contexte des classes de cohomologie sur une variété Käh-
lérienne.

1. Introduction

One of the central problems in complex geometry is the existence of
canonical metrics. On compact Kähler manifolds this question is intimately
related to the study of complex Monge–Ampère equations. Culminating
with Yau’s work [56], which solves Calabi’s conjecture, complex Monge–
Ampère equations have been studied and generalized in several directions
with many important geometric applications.

Keywords: Hermitian manifold, Complex Monge–Ampère equation, Stability, Compari-
son principle.
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An essential step in solving complex Monge–Ampère equations on com-
pact manifolds is the uniform L∞ estimate. In Yau’s work [56], it was
achieved via Moser iteration process. Twenty years later, Kołodziej [42]
gave a novel proof using pluripotential theory which has been applied to
many geometric situations. In the recent breakthrough of X.X. Chen and
J. Cheng [10, 11, 12], pluripotential estimates of Kołodziej [42] and Błocki,
see [4, 5], were used to obtain a uniform estimate along the continuity path
introduced earlier by X.X. Chen [9].
In this paper we shall study complex Monge–Ampère equations on com-

pact (non-Kähler) Hermitian manifolds (X,ω) of dimension n,

(1.1) (ω + ddcu)n = cfωn,

where 0 6 f ∈ Lp(X), for some p > 1, and c is a positive constant.
Here, if nothing is stated, the Lp-norm is computed with respect to the
volume form ωn. Unlike the Kähler case, here we have an extra variable: the
constant c which is in general not determined by X,ω. The non-degenerate
case, i.e. when 0 < f is smooth, has been studied by Cherrier [14], Guan–
Li [36] under restrictive conditions. The general case was recently proved by
Tosatti and Weinkove [53]: there exists a unique constant c = cf > 0 and a
unique (modulo adding a constant) smooth function u with ω + ddcu > 0,
solving (1.1).
In the last decade, pluripotential theory on compact Hermitian manifolds

has been developed intensively by S. Dinew, S. Kołodziej, and N-C. Nguyên
(see [29, 30, 46, 51]). The main difficulty in the Hermitian setting is that the
comparison principle, which in the Kähler setting says that, for bounded
ω-psh functions u, v,

(1.2)
∫
{u<v}

ωnv 6
∫
{u<v}

ωnu ,

is missing. Nevertheless, a replacement for this, called the “modified com-
parison principle” was established in [46] which is a key tool in proving the
existence of continuous solutions [46, Theorem 5.8]. The uniqueness of the
constant c was later proved in [51].
Our first main result is a generalization of [38] to the Hermitian setting.

Theorem 1.1. — Fix 0 6 f, g ∈ Lp(X,ωn), p > 1 such that
∫
X
fωn > 0

and
∫
X
gωn > 0. Assume that u and v are bounded ω-psh functions on X

satisfying

(ω + ddcu)n = eufωn and (ω + ddcv)n = evgωn.
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Then for some constant C > 0 depending on X,ω, n, p, an upper bound for
‖f‖p, ‖g‖p and a positive lower bound for

∫
X
f1/nωn,

∫
X
g1/nωn, we have

‖u− v‖L∞(X) 6 C ‖f − g‖
1/n
p .

The proof of Theorem 1.1 goes along the same lines as in [38]. An imme-
diate consequence of Theorem 1.1 is a stability estimate for the constant c:

Corollary 1.2. — Assume that 0 6 f, g ∈ Lp(X) for some p > 1.
Then

|cf − cg| 6 C ‖f − g‖1/np ,

where C > 0 is a constant depending on (X,ω, n, p), an upper bound for
‖f‖p, ‖g‖p and a positive lower bound for ‖f‖1/n, ‖g‖1/n.

Using Theorem 1.1 we can greatly improve the stability exponent in [48,
Theorem A] :

Theorem 1.3. — Assume that u, v are ω-psh continuous solutions to

(ω + ddcu)n = fωn ; (ω + ddcv)n = gωn, sup
X
u = sup

X
v = 0,

where f, g ∈ Lp(X), p > 1 and f > c0 > 0. Then

‖u− v‖∞ 6 C ‖f − g‖
1/n
p ,

where C depends on X,ω, n, p, c0 and an upper bound for ‖f‖p, ‖g‖p, and
a positive lower bound for ‖g‖1/n.

Compared to [48] the exponent is improved to be the same as in the Käh-
ler case [31], but we still assume that f > c0 > 0 for some positive constant
c0. It is interesting to know whether our techniques can be applied to treat
more general right-hand sides considered in [49]. Improving the stability
exponent is an interesting question because, at least, the stability estimate
can be used to prove the Hölder continuity of solutions. Moreover, in the
recent breakthrough of Chen–Donaldson–Sun [13] the Hölder continuity of
solutions to degenerate complex Monge–Ampère equations was exploited.
If the comparison principle (1.2) holds on (X,ω) then many arguments

from the Kähler case can be employed. In particular, Theorem 1.3 holds
without the strict positivity condition. Our argument also applies to the
more general case of big cohomology classes, improving a stability result of
Guedj–Zeriahi [39]:

Theorem 1.4. — Let (X,ω) be a compact Kähler manifold of dimen-
sion n. Fix a closed smooth real (1, 1)-form θ whose cohomology class {θ}
is big. Assume that 0 6 f, g ∈ Lp(X,ωn) are such that

∫
X
fωn =

∫
X
gωn
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= Vol(θ) = 1. If u and v are θ-psh functions with minimal singularities on
X such that

θnu = fωn, θnv = gωn, sup
X
u = sup

X
v = 0,

then, for some constant C > 0 depending on (X,ω, n, θ, p) and an upper
bound for ‖f‖p, ‖g‖p, we have

sup
X
|u− v| 6 C ‖f − g‖1/np .

Compared to [39, Theorem C], here we have improved the exponent from
1

2n(n+ 1)− 1 to 1
n
.

Note that one can replace the Lp norm by the L1 norm and the exponent
becomes slightly smaller (see [38, Remark 2.2]). The proof of Theorem 1.4
uses [38, Theorem A] and Kołodziej’s techniques as in [43, Theorem 4.1].
The main point here is that using [38, Theorem A] we reduce the problem
to the case in which the two densities f, g are very close to each other in
the following sense: e−εf 6 g 6 eεf , for some small constant ε > 0. In
case θ is additionally semipositive we get the same exponent as in [31].
Our arguments also apply to the setting of prescribed singularities, where
instead of asking for u, v to have minimal singularities we ask u, v to have
the same singularity type as a given model potential [19, 21, 22].
A classical use of such stability estimates is in proving Hölder continuity

of solutions. Given 0 6 f ∈ Lp and u a continuous solution to ωnu = fωn,
it was proved by S. Kołodziej and N.C. Nguyên [48, Theorem B] that if
f > c0 > 0 then u is Hölder continuous. The strict positivity assumption
was relaxed by the same authors recently in [47], but the exponent is not
optimal. Also, due to the lack of uniqueness, the result in [47] does not give
that all solutions are Hölder continuous. In the Kähler case, the Hölder
continuity was first proved by Kołodziej [44] and improved by Demailly–
Dinew–Guedj–Kołodziej–Pham–Zeriahi [26] using Demailly’s approxima-
tion theorem [24]. Related questions on Hölder continuity of solutions to
complex Monge–Ampère equations on compact Kähler manifolds have been
studied by many authors. T.C. Dinh and V.A. Nguyên [32] proved that a
probability measure µ admits a Hölder continuous solution ϕµ, i.e. ϕµ is
ω-psh and (ω + ddcϕµ)n = µ, if and only if the super-potential associated
to µ is Hölder continuous. The notion of super-potentials was introduced
by T.C. Dinh and N. Sibony [34]. Using this notion, D.V. Vu has estab-
lished in [55] a Hölder stability of families of Monge–Ampère measures of
Hölder continuous potentials. He has also studied in [54] Hölder continuity
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of potentials of probability measures supported in real C3 submanifolds.
The study of Hölder continuity of solutions to complex Monge–Ampère
equations has many important applications in complex dynamics, we refer
the reader to [33] for more details.
Using Theorem 1.1 we prove that any bounded solution to (1.1) is Hölder

continuous with exponent in (0, pn). The constant pn here is the same as
the one obtained in the Kähler case in [26].

Theorem 1.5. — Let (X,ω) be a compact Hermitian manifold of di-
mension n. Fix 0 6 f ∈ Lp(X), p > 1 with

∫
X
fωn > 0. Then any solution

u to ωnu = cffω
n is Hölder continuous with Hölder exponent in (0, pn),

where pn = 2
nq+1 .

Here, q is the conjugate of p, i.e. 1/p + 1/q = 1. The proof strictly
follows [48] and [26] in which the stability estimate is used. The only differ-
ence is that we use Theorem 1.1 to construct the perturbation functions,
allowing to avoid the technical assumption f > c0 > 0. Interestingly, our
method also increases the Hölder exponent by a factor n compared to [48,
Theorem B].
In the last part of the paper we adapt the techniques of [3] to establish

Hölder regularity of plurisubharmonic envelopes, see Theorem 4.3.

Organization of the paper

In Section 2 we collect several known tools in pluripotential theory on
compact Hermitian manifolds. The stability results will be proved in Sec-
tion 3, while Theorem 1.5 will be proved in Section 4.
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2. Backgrounds

Fix (X,ω) a compact Hermitian manifold of dimension n. In this section
we review some background material in pluripotential theory on compact
Hermitian manifolds. For a detailed treatment we refer the reader to [30],
[46, Section 1] and the recent surveys [29, 45].
A function u : X → R∪{−∞} is quasi plurisubharmonic if locally it is the

sum of a smooth and a psh function. We say that u is ω-psh if u is quasi-psh
and ω+ddcu > 0 in the sense of currents. Here, d = ∂+ ∂̄ and dc = i(∂̄−∂)
are real differential operators so that ddc = 2i∂∂̄. We let PSH(X,ω) denote
the set of all ω-psh functions on X which are not identically −∞. It follows
from Demailly’s approximation theorem [23] that any ω-psh function can
be approximated from above by smooth strictly ω-psh functions.

For a bounded ω-psh function u, the complex Monge–Ampère operator
ωnu is defined by the method of Bedford and Taylor [1]. It was proved in [46,
Remark 5.7] that

∫
X
ωnu > 0, if u is bounded.

The main difficulty in the Hermitian setting is that the total mass of the
Monge–Ampère measure ωnu depends on the function u. This is why the
comparison principle does not hold in general. It was proved in [46] that
the following replacement for the comparison principle holds.

Theorem 2.1 (Modified comparison principle [46, Theorem 2.3]). —
Let u, v ∈ PSH(X,ω) ∩ L∞(X). Fix 0 < ε < 1 and set

mε := inf
X

(u− (1− ε)v) .

Then for all 0 < s < ε3

16B ,∫
{u< (1−ε) v+mε + s}

ωn(1−ε)v 6

(
1 + Cs

εn

)∫
{u< (1−ε)v+mε+s}

ωnu ,

where C > 0 is a constant depending on n,B.

The constant B depends only on (X,ω, n), it is chosen so that{
−Bω2 6 2nddcω 6 Bω2

−Bω3 6 4n2dω ∧ dcω 6 Bω3 .

Note that the modified comparison principle is only valid on very small
sublevel sets. This local analysis is suitable for proving the domination
principle. The proof of this result is (implicitly) written in [51, Lemma 2.3].
In the Kähler case, the domination principle was proved by Dinew (see [6,
Proposition A1]) using his uniqueness result [28] (see [17, Proposition 2.21],
and [50] for a different proof using the envelope technique).
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Proposition 2.2. — If u, v are bounded ω-psh functions such that
ωnu(u < v) = 0 then u > v.

Proof. — Assume by contradiction that U := {u < v} is not empty and
set mε := infX(u− (1− ε)v), for ε ∈ [0, 1). Since v is bounded and m0 < 0,
we see that for ε > 0 small enough mε < m0/2 < 0. Set U(ε, s) := {u <
(1 − ε)v + mε + s}. Then for s > 0 and ε > 0 small enough we have
U(ε, s) ⊂ U . Hence by the modified comparison principle we have

εn
∫
U(ε, s)

ωn 6
∫
U(ε, s)

ωn(1−ε)v 6

(
1 + Cs

εn

)∫
U(ε, s)

ωnu = 0.

It follows that, for such choice of s, ε,
∫
U(ε, s) ω

n = 0, hence U(ε, s) = ∅
which is a contradiction. �

Using the modified comparison principle, it was proved in [51, Lemma 2.3]
that subsolutions are smaller than supersolutions for Lp-density. The same
proof applies to give the following:

Proposition 2.3 ([51]). — Assume that u and v are bounded ω-psh
functions such that

ωnu > e
λ(u−v)ωnv ,

for some constant λ > 0. Then u 6 v.

Yet another application of the modified comparison principle yields the
following minimum principle:

Proposition 2.4 ([48, Proposition 2.5], [51, Corollary 2.4]). — Assume
that u and v are continuous ω-psh functions such that ωnu 6 cωnv on an open
set Ω ⊂ X. If c < 1 then Ω 6= X and

min
Ω

(u− v) = min
∂ Ω

(u− v).

As shown in [46], given 0 6 f ∈ Lp with
∫
X
fωn > 0, there exist a unique

constant cf > 0 and u ∈ PSH(X,ω) ∩ L∞(X) such that ωnu = cffω
n. The

density f is MA-admissible if cf = 1. The total mass of an admissible
density in Lp is uniformly controlled from below.

Proposition 2.5 ([48, Proposition 2.4], [49, Proposition 2.7]). — Fix
a constant A0 > 1. Then there exists a constant Vmin > 0 depending on
(X,ω, n,A0) such that for any MA-admissible 0 6 f ∈ Lp with ‖f‖p 6 A0,
we have ∫

X

fωn > 2n+1Vmin.

Although the total mass of ωnu depends on u, we can control the total
mass of the Laplacian of u by using a Gauduchon metric.
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Lemma 2.6. — There exists a uniform constant C > 0 such that

C−1 6
∫
X

ωu ∧ ωn−1 6 C, ∀ u ∈ PSH(X,ω) ∩ L∞(X).

Proof. — Let G be a smooth function on X such that ddc(eGωn−1) = 0.
The existence of G follows from [35]. Using Stokes’ theorem we then have∫

X

ωu ∧
(
eGωn−1) =

∫
X

eGωn,

from which the estimates follow. �

3. Stability of solutions

3.1. On Hermitian manifolds

We first extend the elliptic stability theorem in [38] to the non-Kähler
case.

Theorem 3.1. — Fix 0 6 f, g ∈ Lp(X,ωn), p > 1 such that
∫
X
fωn > 0

and
∫
X
gωn > 0. Assume that u, v are bounded ω-psh functions on X

satisfying

(ω + ddcu)n = eufωn and (ω + ddcv)n = evgωn.

Then for some constant C > 0 depending on X,ω, n, p, an upper bound for
‖f‖p, ‖g‖p and a positive lower bound for ‖f‖1/n, ‖g‖1/n, we have

(3.1) |u− v| 6 C ‖f − g‖1/np .

Remark 3.2. — As shown in [38, Remark 2.2] the Lp-norm can be re-
placed by the L1-norm and the exponent becomes 1/(n + ε), where ε > 0
is arbitrarily small.

Proof. — The proof uses a perturbation argument due to Kołodziej [41].
By uniqueness, [51, Theorem 0.1], if ‖f − g‖p = 0 then u = v and (3.1)
holds for any C. Hence we can assume that ‖f − g‖p > 0.
Let ϕ be a bounded ω-psh function on X such that supX ϕ = 0 and

(ω + ddcϕ)n = cffω
n,

where cf is a constant. The existence of ϕ and cf follows from [46, The-
orem 5.8]. It follows from [48, Proposition 2.4] that 0 < cf is uniformly
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bounded from below. To bound cf from above we use the Gauduchon met-
ric as in [51]. Let G be a smooth function on X such that ddc(eGωn−1) = 0.
It follows from the mixed Monge–Ampère inequality, [51, Lemma 1.9] that

(ω + ddcϕ) ∧ eGωn−1 > eG(cff)1/nωn.

Integrating over X and using Stokes theorem we arrive at∫
X

eGωn > eminX G

∫
X

(cff)1/n
ωn.

Thus cf > 0 is uniformly bounded. The uniform a priori estimate in [46]
also ensures that ϕ is uniformly bounded. Hence, for some uniform constant
C1 > 0 we have that

(ω + ddcϕ)n > eϕ−C1fωn ; (ω + ddcϕ)n 6 eϕ+C1fωn.

Combining this with [51, Lemma 2.3], we obtain ϕ−C1 6 u 6 ϕ+C1, hence
u is also uniformly bounded by a constant C2 depending on the parameters
in the statement of Theorem 1.1. By the same arguments as above, we see
that |v| 6 C3 for some uniform constant C3 > 0.
Let ρ be the unique continuous ω-psh function on X, normalized by

supX ρ = 0, such that

(3.2) (ω + ddcρ)n = chhω
n = ch

(
|f − g|
‖f − g‖p

+ 1
)
ωn.

The existence of ρ follows from [46, Theorem 5.8]. It follows from [48,
Lemma 2.1] that ch 6 1. Since 1 6 ‖h‖p 6 2, it follows from [48, Proposi-
tion 2.4] that ch > c1 > 0 where c1 is a uniform constant.
We now set ε := e(supX u−ln c1)/n‖f − g‖1/np and consider two cases. If

ε > 1/2 then

‖f − g‖1/np >
c
1/n
1
2 e− supX u,

hence, for C > 2(C2 + C3)c−1/n
1 esupX u/n, we have

|u− v| 6 C2 + C3 6 C ‖f − g‖1/np .

If ε 6 1/2 we consider

φ := (1− ε)u+ ερ−Kε+ n log (1− ε) ,

where K > 0 is a constant to be specified later. The Monge–Ampère mea-
sure of φ is estimated as follows:

(ω + ddcφ)n > eu+n log(1−ε)fωn + eu|f − g|ωn > eu+n log(1−ε)gωn.

TOME 71 (2021), FASCICULE 5
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If we choose K = supX(−u) then

(ω + ddcφ)n > eφgωn,

and Proposition 2.3 yields φ 6 v, hence u− v 6 C4ε. Reversing the role of
u and v we obtain the result. �

Using Theorem 3.1 we will improve the stability exponent in [48]. We
first prove the following refinement of [48, Lemma 3.4].

Lemma 3.3. — Assume that 0 6 f, g ∈ Lp (X) satisfy

(3.3) e−εf 6 g 6 eεf,

for some (small) positive constant ε. Let u and v be continuous ω-psh
functions on X such that

ωnu = fωn, ωnv = gωn and sup
X
u = sup

X
v = 0.

Fix t1 > t0 := infX(u−v). If
∫
{u−v<t1} fω

n 6 Vmin then, for some uniform
constant C > 0 depending on (X,ω, n, p), an upper bound Cp for ‖f‖p,
and a positive lower bound for ‖f‖1/n, we have

t1 − t0 6 Cε.

Here Vmin is the constant in Proposition 2.5 corresponding to A0 := 2nCp.

Proof. — Define

f̂(z) =
{
f(z), if u(z) < v(z) + t1,
1
Af(z), if u(z) > v(z) + t1,

where A > 1 is a uniform constant ensuring that
∫
X
f̂ωn < 2Vmin. Let

ĉ > 0 be a constant and û be a continuous ω-psh function such that

(ω + ddcû)n = ĉf̂ωn, sup
X
û = 0.

It follows from Proposition 2.5 and [51, Corollary 2.4] that 2n 6 ĉ 6 A,
hence by [46, Corollary 5.6], û is uniformly bounded.

For s ∈ (0, 1), define ψs := (1− s)v + sû. By the mixed Monge–Ampère
inequality [51, Lemma 1.9] we have

(ω + ddcψs)n >
(

(1− s)g1/n + s (ĉf)1/n
)n

ωn

on Ω(t1) := {u < v + t1}. By the assumption (3.3) and the inequality
a1/n > a, for a ∈ (0, 1), we have

(ω + ddcψs)n >
(

(1− s)e−ε/nf1/n + s(2nf)1/n
)n

ωn,
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in Ω(t1). Thus, for s = ε we have (ω+ddcψs)n > (1+ε2/n)fωn in Ω(t1). As
in [48, Lemma 3.4] we now invoke the minimum principle, Proposition 2.4,
to obtain

max
Ω(t1)

(ψs − u) = max
∂Ω(t1)

(ψs − u) .

But on ∂Ω(t1) we have u = v+t1, hence ψs−u+t1 6 C1s on ∂Ω(t1), where
C1 is a uniform constant. Let x0 ∈ X be such that u(x0)−v(x0) = t0. Then
x0 ∈ Ω(t1), hence ψs(x0)− u(x0) 6 max∂Ω(t1)(ψs − u). We then infer that
t1 − t0 6 Cs as desired. �

Proposition 3.4. — Assume that u is a continuous ω-psh function such
that ωnu = fωn, where 0 6 f ∈ Lp(X), p > 1. Let fj > 0 be a sequence
of smooth densities converging to f in Lp(X) and let uj be a sequence of
smooth ω-psh functions decreasing to u. Let vj be the unique smooth ω-psh
function such that

ωnvj = evj−ujfjω
n.

Then vj converges uniformly to u.

Note that the smoothness of vj follows from [14].
Proof. — Recall that, from [48, Remark 5.7] we have

∫
X
f1/nωn > 0.

Set Fj := e−ujfj and F := e−uf . By [46, Corollary 5.6], vj is uniformly
bounded. Hence 1/C 6

∫
X
F

1/n
j and ‖Fj‖p 6 C1, for a uniform constant

C1. Theorem 1.1 yields |vj − u| 6 C2‖Fj − F‖1/np , for a uniform constant
C2. Hence vj uniformly converges to u. �

Theorem 3.5. — Assume that u and v are ω-psh continuous solutions
to

(ω + ddcu)n = fωn , (ω + ddcv)n = gωn, sup
X
u = sup

X
v = 0,

where f, g ∈ Lp(X), p > 1 and f > c0 > 0. Then

sup
X
|u− v| 6 C ‖f − g‖1/np ,

where C depends on X,ω, n, p, c0, an upper bound for ‖f‖p + ‖g‖p, and a
positive lower bound for ‖g‖1/n.

Proof. — For convenience we can assume that
∫
X
ωn = 1. We first as-

sume that u, v are smooth and

(3.4) e−εf 6 g 6 eεf,

for some small constant ε > 0. Then, following the proof of [48, Theorem A]
we obtain

|u− v| 6 Cε,
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for a uniform constant C > 0. The only difference compared to [48, Lem-
ma 3.4] is that we can replace εα by ε (see Lemma 3.3). For convenience
of the reader we briefly recall the arguments of [48].
We set t0 := minX(u − v), t̂0 := maxX(u − v) > t0. Then t0 6 0 and

t̂0 > 0. The goal is to prove that t̂0 − t0 6 Cε. Set

t1 := sup
{
t > t0 ;

∫
{u<v+t}

fωn 6 Vmin/2
}
,

t̂1 := inf
{
t 6 t̂0 ;

∫
{u>v+t}

fωn 6 Vmin/2
}
.

It follows from Lemma 3.3 that t1 6 t0 +Cε. Since ε is small we infer that∫
{v <u−t} gω

n 6 Vmin, for all t̂1 < t 6 t̂0. It thus follows from Lemma 3.3
that −t̂1 + t̂0 6 Cε. Hence it remains to prove that t̂1 − t1 6 Cε. Set
s1 := t1 + ε and ŝ1 := t̂1 − ε. We prove that ŝ1 − s1 6 Cε. By definition of
t1 and t̂1 we have∫

{u<v+s1}
fωn > Vmin/2 ;

∫
{u>v+ŝ1}

fωn > Vmin/2.

We choose a uniform constant γ > 0 depending on ‖f‖p, p, and Vmin such
that, for all Borel set E ⊂ X,∫

E

fωn > Vmin/2 =⇒
∫
E

ωn > γ.

The existence and uniformity of γ follow from the Hölder inequality.
We now use the main novelty of [48]: estimate of the Laplacian mass on

small collars (which uses the assumption f > c0 > 0). Define s0 := t0,
sk := 2k−1(s1 − s0) + s0, for k > 2.
If
∫
{u>v+sN} fω

n > Vmin/2, then
∫
{u>v+sN} ω

n > γ and [48, Proposi-
tion 3.8] applies, giving∫

{s0 <u−v6 sN}
ωu ∧ ωn−1 > (N − 1)Cc0γ4.

But the left hand side is uniformly bounded by a constant depending on
(X,ω) (see Lemma 2.6). It thus follows that for N large enough we have∫
{u>v+sN} fω

n < Vmin/2. By definition of t̂1 we have t̂1 6 sN . But sN −s0

6 2N−1Cε, hence ŝ1 − s1 6 Cε as desired. The first step is completed.
We next assume that u, v are smooth but we remove the assumption (3.4).

Let w be the unique smooth ω-psh function such that

(ω + ddcw)n = ew−vfωn =: hωn.
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The smoothness of w was proved by Cherrier [14]. Since v satisfies ωnv =
ev−vgωn, we can apply Theorem 1.1 with F = e−vf and G = e−vg and
obtain

(3.5) |w − v| 6 C1 ‖f − g‖1/np ,

where C1 > 0 is a uniform constant.
We thus have e−εf 6 h 6 eεf, where ε := C1‖f − g‖1/np . The previous

step yields ∣∣∣∣w − sup
X
w − u

∣∣∣∣ 6 C2ε.

But from (3.5) we see that | supX w| 6 2ε, hence the result follows.
We now treat the general case. We approximate u, v as in Proposition 3.4.

Let uj , vj be smooth ω-psh functions decreasing to u, v. Let fj , gj be smooth
functions converging to f, g in Lp and fj > c0/2. Let ϕj , ψj be smooth ω-
psh functions solving

(ω + ddcϕj)n = eϕj−ujfjω
n , (ω + ddcψj)n = eψj−vjgjω

n.

It follows from Proposition 3.4 that ϕj , ψj converge uniformly to u, v. For
j large enough we have Fj := eϕj−ujfj > c0/4. Set Gj := eψj−vjgj and
observe that ‖Fj‖p, ‖Gj‖p are uniformly bounded. It thus follows from the
second step that

|ϕj − ψj | 6 C ‖Fj −Gj‖1/np ,

where C > 0 is a uniform constant. Letting j → +∞ we arrive at the
result. �

Using the same ideas we prove a stability estimate for the MA-constant.
Recall that (see [46, 48]) for each 0 6 f ∈ Lp, p > 1 with

∫
X
fωn > 0 there

exists a unique constant c = cf > 0 such that the equation ωnu = cffω
n

has a bounded weak solution in PSH(X,ω).

Corollary 3.6. — Assume that 0 6 f, g ∈ Lp for some p > 1. Then

|cf − cg| 6 C ‖f − g‖1/np ,

where C > 0 is a constant depending on (X,ω, n, p), an upper bound for
‖f‖p, ‖g‖p, and a positive lower bound for ‖f‖1/n, ‖g‖1/n.

Proof. — Let u be a continuous ω-psh function on X, normalized by
supX u = 0, such that (ω+ddcu)n = cffω

n. By Lemma 2.6 and the mixed
Monge-Ampère inequality [51, Lemma 1.9] we have that

(ω + ddcu) ∧ eGωn−1 > c1/nf f1/neGωn,

TOME 71 (2021), FASCICULE 5



2032 Chinh H. LU, Trong-Thuc PHUNG & Tât-Dat TÔ

where G is a smooth function such that ddc(eGωn−1) = 0 (see [35]). In-
tegrating on X we see that cf is uniformly bounded from above. Proposi-
tion 2.5 then ensures that cf is uniformly bounded from below. It follows
from [51, Theorem 0.1] that there exists a unique continuous ω-psh function
v such that

(ω + ddcv)n = ev−ucfgω
n.

Theorem 1.1 yields |v − u| 6 C1cf‖f − g‖1/np , for a uniform constant C1,
hence(

1− C2 ‖f − g‖1/np

)
cfgω

n 6 (ω + ddcv)n 6
(

1 + C2 ‖f − g‖1/np

)
cfgω

n,

for some uniform constant C2. It thus follows from [48, Lemma 2.1] that(
1− C2 ‖f − g‖1/np

)
cf 6 cg 6

(
1 + C2 ‖f − g‖1/np

)
cf ,

yielding
|cf − cg| 6 C2 ‖f − g‖1/np ,

and concluding the proof of Corollary 3.6. �

3.2. The case of big cohomology classes on Kähler manifolds

Using the idea of the proof of Theorem 1.1 we can also improve [39,
Theorem C]. We first recall a few known facts on pluripotential theory in
big cohomology classes. We refer the reader to [2, 8, 18, 19, 20, 21, 22] for
more details.

We assume (only in this section) that ω is Kähler (i.e. dω = 0). Fix a
closed smooth real (1, 1)-form θ. A function u : X → R ∪ {−∞} is θ-psh if
it is quasi-psh and θ+ ddcu > 0 in the sense of currents. We let PSH(X, θ)
denote the set of all θ-psh functions which are not identically −∞. By
elementary properties of psh functions one has PSH(X, θ) ⊂ L1(X). Here,
if nothing is stated, L1(X) is L1(X,ωn). The De Rham cohomology class
{θ} is big if PSH(X, θ − εω) is non-empty for some ε > 0.

We let Vθ denote the envelope:

Vθ := sup {u ∈ PSH(X, θ) | u 6 0} .

There is a Zariski open set Ω, called the ample locus of {θ}, on which Vθ is
locally bounded. A θ-psh function u has minimal singularities if u − Vθ is
globally bounded on X. For a θ-psh function u with minimal singularities
the operator (θ + ddcu)n is well-defined as a positive Borel measure on Ω.
One extends this measure trivially over X. The total mass of the resulting
measure depends only on the cohomology class of θ and is called the volume
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of θ, denoted by Vol(θ) (see [8, 7]). Given a θ-psh function u, the non-
pluripolar Monge–Ampère measure of u is defined by

(θ + ddcu)n := lim
j→+∞

1{u>Vθ−j}
(
θ + ddc max (u, Vθ − j)

)n
,

where the sequence of measures on the right-hand side is increasing in j.
Note that

∫
X

(θ + ddcu)n 6 Vol(θ) and the equality holds if and only if
u ∈ E(X, θ).
It was proved in [8] that for all Lp-density (p > 1), 0 6 f with

∫
X
fωn

= Vol(θ), there exists a unique θ-psh function with minimal singularities u
such that supX u = 0 and θnu = fωn.
We assume throughout this section the following normalization:

(3.6)
∫
X

ωn = Vol(θ) = 1.

Theorem 3.7. — Under the above setting, assume that 0 6 f, g ∈
Lp(X,ωn), p > 1. If u, v are θ-psh functions with minimal singularities on
X such that

θnu = fωn, θnv = gωn, sup
X
u = sup

X
v = 0,

then for some constant C > 0 depending on (X,ω, n, θ, p) and an upper
bound for ‖f‖p, ‖g‖p we have

sup
X
|u− v| 6 C ‖f − g‖1/np .

In the proof below we let C1, C2, . . . denote various uniform constants.
Proof. — By [8, Theorem 4.1], for some uniform constant C1 > 0, we

have
u > Vθ − C1 and v > Vθ − C1.

From this we get v − C1 6 u 6 v + C1.
By the uniform version of Skoda’s integrability theorem, see [40, The-

orem 8.11], [57], and the Hölder inequality, there exists a small positive
constant a > 0 such that

∫
X
e−aϕfωn < +∞ for all ϕ ∈ PSH(X, θ). By [21,

Theorem 5.3] there exists a unique w ∈ E(X, θ) such that

(3.7) (θ + ddcw)n = ea(w−v)fωn =: hωn.

Observe that u − C1 (respectively u − C1) is a subsolution (respectively
supersolution) to the above equation, hence by the comparison principle
(see e.g. [19, Lemma 4.24]) we have u− C1 6 w 6 u+ C1.
We claim that |w−v| 6 A1‖f−g‖1/np , for some uniform constant A1 > 0.
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We set ε := e2aC1/n‖f − g‖1/np and consider two cases. If ε > 1/2 then,
by choosing A1 = 4C1e

2aC1/n we have

|w − v| 6 2C1 6 A1 ‖f − g‖1/np .

Assume that ε 6 1/2. By the Hölder inequality and the normaliza-
tion (3.6) we can find a constant b > 0 such that∫

X

(
|f − g|
‖f − g‖p

+ b

)
ωn = Vol(θ).

Let ρ ∈ PSH(X, θ) be the unique solution with minimal singularities to

(θ + ddcρ)n =
(
|f − g|
‖f − g‖p

+ b

)
ωn, sup

X
ρ = 0.

It follows from [8, Theorem 4.1] that ρ > Vθ−C3, hence |ρ−w| 6 C4. We
now show that for a suitable choice of B > 0, the function ϕ := (1 − ε)w
+ ερ−Bε is a subsolution to (3.7). Indeed,

θnϕ > (1− ε)nea(w−v)fωn + e2aC1 |f − g|ωn > ea(w−v)+n log(1−ε)gωn.

For B large enough (depending on C4, a) we have that aϕ 6 aw+n log(1−
ε), hence ϕ is a subsolution to (θ + ddcφ)n = ea(φ−v)gωn. We thus have,
by the comparison principle, that ϕ 6 v. Exchanging the role of v and w
we finish the proof of the claim.
We next prove that |w − u| 6 A2‖f − g‖1/np , for some uniform con-

stant A2 > 0. Since |w − v| 6 A1‖f − g‖1/np and supX v = 0 it follows
that | supX w| 6 A1‖f − g‖1/np . It thus suffices to prove that oscX(w − u)
6 A2‖f −g‖1/np . Replacing w by w+ c, for some constant c, we can assume
that

sup
X

(w − u) = sup
X

(u− w) =: s > 0.

It is then enough to prove that s 6 A2‖f−g‖1/np . To do this we can assume
that

2
∫
{w<u}

hωn 6
∫
X

hωn

(otherwise we change the role of w and u). Note that

θnw = hωn ; θnu = fωn, 2−δh 6 f 6 2δh,

where δ = C5‖f−g‖1/np . Now, it suffices to prove that u 6 w+A2‖f−g‖1/np .
Set U := {w < u}. Let ρ be the unique θ-psh function with minimal
singularities such that

θnρ = 2h1Uωn + b1ω
n, sup

X
ρ = 0,
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where b1 > 0 is a normalization constant. It follows from [8, Theorem 4.1]
that |ρ− u| 6 C6, hence

V :=
{
w < (1− δ)u+ δ (ρ− C6)

}
⊂ U.

On U , the Monge–Ampère measure θn(1−δ)u+δρ can be estimated as follows,
using the mixed Monge–Ampère inequalities (see [8, 27]),

θn(1−δ)u+δρ >
(

(1− δ)f1/n + δ(2h)1/n
)n

ωn

>
(

(1− δ)2−δ/n + 21/nδ
)n

hωn.

Using the inequality 2x = ex log 2 > 1 + x log 2 we have, for δ ∈ (0, 1),

(1− δ)2−δ/n + 21/nδ > (1− δ)
(

1− δ log 2
n

)
+
(

1 + log 2
n

)
δ

= 1 + δ2 log 2
n

=: 1 + γ.

We thus have
θn(1−δ)u+δρ > (1 + γ)hωn.

The comparison principle, see [8, Corollary 2.3], gives∫
V

(1 + γ)hωn 6
∫
V

θn(1−δ)u+δρ 6
∫
V

θnw =
∫
V

hωn,

hence
∫
V
hωn = 0. Using the domination principle, see [19, Corollary 3.10],

we then infer w > (1 − δ)u + δ(ρ − C6), hence w − u > −C6‖f − g‖1/np

which completes the proof. �

Remark 3.8. — In the Hermitian setting, if the comparison principle
holds (which implies certain geometric conditions on X, see [15]), then
the above proof can be applied.

4. Hölder continuity

4.1. Hölder regularity of solutions

Theorem 4.1. — Let (X,ω) be a compact Hermitian manifold of di-
mension n. Fix 0 6 f ∈ Lp(X), p > 1 with

∫
X
fωn > 0. Then any solution

u to ωnu = fωn is Hölder continuous with Hölder exponent in (0, pn), where
pn = 2/(nq + 1).
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We note here that bounded solutions to (1.1) are automatically contin-
uous. Indeed, let u be a bounded solution and v be a continuous ω-psh
function such that ωnv = ev−ufωn. The existence of v follows from [51]. By
uniqueness v = u, hence u is continuous.

Proof. — Assume that u is a bounded ω-psh function solving

(ω + ddcu)n = fωn.

By adding a constant to u we can assume that infX u = 1 and set b :=
2 supX u. We will use the same notations as in [48, Section 4]. Fix α ∈
(0, pn). We prove that u is Hölder continuous with exponent α by showing
that ρtu− u 6 ctα, for t small enough (see [26, page 632], [37, Lemma 4.2]
or Lemma 4.4 below). Here, following Demailly [23], ρt(u) is defined by

(4.1) ρt(u)(z) := 1
t2n

∫
TzX

u (exphz(ζ)) ρ
(
‖ζ‖2ω
t2

)
dVω(ζ),

where ζ 7→ exphz(ζ) is the (formal) holomorphic part of the Taylor expan-
sion of the exponential map of the Chern connection on the tangent bundle
of X associated to ω, and ρ is a smoothing kernel defined by

ρ(t) :=


η

(1−t)2 exp
(

1
t−1

)
, if t ∈ [0, 1],

0, if t > 1,

where η > 0 is a constant such that
∫
Cn ρ(‖z‖2)dV (z) = 1. Here dV is the

Lebesgue measure on Cn.
Following [23] and [48], we define the Kiselman–Legendre transform:

(4.2) Uδ, c := inf
t∈ [0, δ]

(
ρt(u) +K

(
t2 − δ2)+K(t− δ)− c log(t/δ)

)
,

where c > 0, δ > 0, and K is a positive (curvature) constant and as in [23]
we choose K to ensure that t 7→ ρt(u) + Kt2 is increasing in t. In the
following arguments we choose c = δα and we write Uδ instead of Uδ, c. It
follows from [48, Lemma 4.1] that

ω + ddcUδ > −Aδαω,

where A > 0 is a uniform curvature constant. Setting

uδ := 1
1 + 2AδαUδ,

we then have ω + ddcuδ > γω, for some positive constant γ. Note that by
construction and by the choice of K, we have

ρδ(u) +Kδ2 > u, and ρδ(u) > Uδ.
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Set s := e−5Ab and

E(δ) := {ρδ(u)− u > Abδα} , F (δ) := {ρsδu > u+ 5Abδα} .

Up to decreasing δ we can assume that 2Kδ 6 Abδα. We claim that on
F (δ) we have Uδ − u > 4Abδα. Indeed, since t 7→ ρtu + Kt2 is increasing
and s is small, we have

ρt(u) +K
(
t2 − δ2)+K(t− δ)− δα log(t/δ)

> u− 2Kδ + 5Abδα, ∀ t ∈ [0, sδ] ,

and

ρt(u) +K
(
t2 − δ2)+K(t− δ)− δα log(t/δ)

> ρsδu− 2Kδ, ∀ t ∈ [sδ, δ] .

It thus follows that on F (δ) we have Uδ > u+ 4Abδα, as claimed.
Now we prove that the set F (δ) is empty for δ > 0 small enough. It

follows from [48, equation (4.9)] (which is a lemma in [26]) that∫
X

(ρtu− u)ωn 6 Ct2.

Hence ∫
E(δ)

ωn 6
C

Ab
δ2−α,

and an application of the Hölder inequality yields∫
E(δ)

fωn 6 C1δ
β ,

where β := (2− α)/q, and q is the conjugate of p.
We let v be the unique continuous ω-psh function such that

(ω + ddcv)n = ev−uf1X\E(δ)ω
n.

Theorem 1.1 yields, for each ε > 0, |v−u| 6 C3δ
β/(n+ε), where C3 depends

also on ε. Since α < pn we can choose ε > 0 so small that β/(n + ε) > α.
Decreasing δ we can ensure that |v− u| 6 Abδα/2. The choice of b ensures
that

|uδ − Uδ| 6
Abδα

2 .

Assume by contradiction that F (δ) 6= ∅. On F (δ) we have

uδ − v = uδ − Uδ + Uδ − u+ u− v > 3Abδα,
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while on X \ E(δ), we have

uδ − v = uδ − Uδ + Uδ − ρδu+ ρδu− u 6 2Abδα.

It thus follows that uδ − v attains its maximum over X at some point
z0 ∈ E(δ), contradicting the minimum principle (Proposition 2.4) since
ωnv = 0 < ωnuδ on E(δ). Hence, for δ small enough, F (δ) is empty. This
completes the proof. �

4.2. Hölder regularity of plurisubharmonic envelopes

For a continuous function f : X → R we define its ω-psh envelope by:

Pω(f) :=
(

sup {φ |φ ∈ PSH(X,ω) and φ 6 f}
)∗
.

Is was proved in [52] (for the Kähler case) and in [16] (for the Hermitian
case) that Pω(f) belongs to C1,1(X) if f is smooth. If f is (Lipschitz)
continuous then Pω(f) is also (Lipschitz) continuous [16]. In this section we
prove that Pω(f) is Hölder continuous provided that f is Hölder continuous.

Lemma 4.2. — If f ∈ C0(X) then Pω(f) ∈ C0(X).

Proof. — Let fj ∈ C∞(X) be a sequence of smooth functions which
converges uniformly to f . Since Pω(fj) is continuous and

‖Pω (fj)− Pω(f)‖L∞(X) 6 ‖fj − f‖L∞(X) ,

we see that Pω(f) is continuous. �

Theorem 4.3. — Assume that f ∈ C0, α(X) for some α ∈ (0, 1). Then
Pω(f) ∈ C0, α(X).

Proof. — It follows from Choquet’s lemma and the definition of the psh
envelope that there exists a sequence of ω-psh functions (φj)j ∈N such that

Pω(f) =
(

sup
j
φj
)∗

, φj 6 f and
∥∥φj∥∥∞ 6 C (‖f‖∞) .

Replacing φj by (supk6 j φ
k)∗ we can assume that φj ↗ Pω(f). Since Pω(f)

is continuous on X we also have, by Dini’s theorem, that φj converges
uniformly to Pω(f).
For a ω-psh function u we consider the convolution ρtu defined as in (4.1)

and the Kiselman–Legendre transform defined as in (4.2). Since φj 6 f and
f ∈ C0,α(X), we have

(4.3) ρδφ
j 6 ρδf 6 f + Cδα‖f‖0, α,
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where C depends only on X,ω.
We now use the Kiselman–Legendre transform Φjδ, c := Φδ, c(φj). From

(4.2), with t = δ, we have that Φjδ, c 6 ρδφj . It follows from [48, Lemma 4.1]
that

ω + ddcΦjδ, c > − (Ac+ 2Kδ)ω,
where A is a positive curvature constant.
We now fix c = (δα − 2Kδ)/A so that Ac+ 2Kδ = δα. We have

ω + ddcΦjδ, c > −δ
αω.

Setting
ϕjδ := (1− δα) Φjδ, c

we then have ω+ddcϕjδ > δ2αω and ‖ϕjδ−Φjδ, c‖ 6 C0δ
α, where C0 depends

on ‖φj‖∞. From (4.3) and the fact that Φjδ, c 6 ρδφj , we infer ϕ
j
δ−C1δ

α 6 f ,
where C1 depends only on |f‖0, α, ‖φj‖∞ and A. Therefore we get

(4.4) ϕjδ − C1δ
α 6 Pω(f)

by the definition of Pω(f) and the fact that ϕjδ is ω-psh. This implies that

(4.5) Φjδ, c − Pω(f) 6 C2δ
α,

where C2 depending only C1 and ‖φj‖∞. Since φj converges uniformly to
Pω(f) we infer

(4.6) Φjδ,c − φ
j 6 2C2δ

α,

for j sufficiently large.
Following [47] we now use (4.6) to estimate ρδφj−Pω(f). For any x ∈ X,

the minimum in the definition of Φjδ, c achieves at t0 = t0(x, j). It follows
from (4.6) that

(4.7) ρt0φ
j +K(t0 − δ) +K

(
t20 − δ2)− c log (t0/δ)− φj 6 C3δ

α,

where C3 depends only on ‖f‖0, α, ‖φj‖∞. Since ρtφj +Kt2 +Kt−φj > 0,
we have

c log t0
δ
> −C4δ

α.

For δ small enough we have c > δα/(2A), hence

(4.8) t0 > aδ, for a = e−2AC4 .

Since ρt +Kt2 +Kt is increasing in t and t0 > aδ, we infer

ρaδφ
j +Kaδ +K(aδ)2 − Pω(f) 6 ρt0φj +Kt0 +Kt20 − Pω(f)

6 Φjδ, c − Pω(f)− c log a
6 C5δ

α,
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where C5 depends only on ‖f‖0, α, ‖φj‖∞, K, A, and in the last line we
have used (4.5). Since φj ↗ Pω(f), we have that ρδφj converges to ρδPω(f)
as j →∞. Therefore, letting j tend to∞, and then replacing aδ by δ we get

(4.9) ρδPω(f)− C6δ
α 6 Pω(f),

where C6 depends only on ‖f‖0, α, K and A. Invoking Lemma 4.4 below
we conclude that Pω(f) ∈ Lipα(X). �

Lemma 4.4. — Assume that u is a bounded ω-psh function on X such
that ρtu 6 u + C0t

α for some positive constants C0 and 0 < α < 1. Then
u ∈ Lipα(X).

The proof of the lemma was implicitly written in [26], [37]. We include
it for completeness.

Proof. — We can assume that u 6 0. Let d be the Riemann distance on
X induced by the metric ω. Define

τ(δ) := sup {|u(x)− u(y)| |x, y ∈ X, d(x, y) 6 δ} , δ > 0.

We assume by contradiction that lim supδ→0+ δ−ατ(δ) = +∞. For each
δ > 0 we can find xδ ∈ X, yδ ∈ X such that d(xδ, yδ) 6 δ and τ(δ) =
u(yδ) − u(xδ) > 0. We can thus find x0 ∈ X and a sequence δj ↘ 0 such
that

lim
j→+∞

d
(
xδj , x0

)
= lim
j→+∞

d
(
yδj , x0

)
= 0

and

lim
j→+∞

δ−αj
∣∣u (xδj)− u (yδj)∣∣ = +∞.

Let B ⊂ X be a small ball around x0 which will be identified with the unit
ball B of Cn via a biholomorphism. Up to adding a smooth function we can
now view u as a psh function in B and d(x, y) ' ‖x − y‖ for x, y ∈ B. It
follows from [24, Remark 4.6] that ρru(xδ) = u ? ρr(xδ) +O(r2). Fix b > 1
so large that

(b+ 2)α
(

1− b2n

(b+ 1)2n

)
<

1
2 .

Fix δ > 0 so small that 2(b+ 1)δ < 1. For ξ ∈ B we denote (see [25, p. 32])

µS (u; ξ, r) := 1
σ2n−1

∫
S
u(ξ + rx)dσ(x),

µB (u; ξ, r) := 1
V2nr2n

∫
B(ξ,r)

u(x)dV (x).

ANNALES DE L’INSTITUT FOURIER



STABILITY OF COMPLEX MONGE–AMPÈRE EQUATIONS 2041

Here, σ is the area measure of the unit sphere S = ∂B, σ2n−1 = σ(S(0, 1)),
V2n = Vol(B). Note that µS > µB and these are non-decreasing in r. By
the mean value inequality we have that, for r = (b+ 1)δ,

µB (u;xδ, r)

= 1
V2nr2n

∫
B(xδ, r)

u(x)dV (x)

= 1
V2nr2n

(∫
B(yδ, bδ)

u(x)dV (x) +
∫
B(xδ, r)\B(yδ, bδ)

u(x)dV (x)
)

>
b2n

(b+ 1)2nu (yδ) +
(

1− b2n

(b+ 1)2n

)(
u(yδ)− τ(r + δ)

)
= u(yδ)−

(
1− b2n

(b+ 1)2n

)
τ
(
(b+ 2)δ

)
.

Since µS(u;xδ, t)− u(xδ) > 0 and non decreasing in t > 0, we have

u ? ρ2r(xδ)− u(xδ) = σ2n−1

∫ 1

0

(
µS (u;xδ, 2tr)− u(xδ)

)
t2n−1ρ(t)dt

>
(
µS (u;xδ, r)− u(xδ)

)
σ2n−1

∫ 1

1
2

t2n−1ρ(t)dt

> C2
(
µB (u;xδ, r)− u(xδ)

)
> C2

(
τ(δ)− 1

2
τ((b+ 2)δ)

(b+ 2)α

)
.

Using these estimates and the assumption that ρ2ru(xδ) 6 u(xδ)+C0(2r)α
we arrive at

τ(δ)− 1
2
τ
(
(b+ 2)δ

)
(b+ 2)α 6 C5δ

α.

We set h(δ) = δ−ατ(δ). For δ > 0 small enough, say δ ∈ (0, ε0] for some
ε0 > 0 fixed, and c = b+ 2 we then have

h(δ) 6 1
2h(cδ) + C5.

Applying this several times we obtain, for all k ∈ N with ck−1δ 6 ε0,

(4.10) h(δ) 6 2−kh
(
ckδ
)

+ 2C5, k ∈ N.

We are now ready to derive a contradiction. We set

C6 := sup
δ ∈ [ε0, cε0]

h(δ) < +∞.
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We have assumed that there exists a sequence δj ↘ 0 such that h(δj) →
+∞. Take j so large that δj < ε0 and h(δj) > 2C5 + C6 + 1. We choose
k ∈ N such that

log (ε0/δj)
log c 6 k 6

log (ε0/δj)
log c + 1.

Then ckδj ∈ [ε0, cε0]. From this and (4.10) we obtain h(δj) 6 2−kh(ckδj) +
2C5 6 2C5 + C6, a contradiction. �
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