[Stabilité et Continuité Höldérienne des solutions des équations de Monge–Ampère complexes sur des variétés Hermitiennes compactes]
Soit une variété Hermitienne compacte de dimension . On établit la stabilité des solutions des équations de Monge–Ampère avec second membre dans , . En utilisant ce résultat on montre que les solutions sont continues höldériennes avec le même exposant que celui obtenu dans le cas Kählérien par Demailly-Dinew–Guedj–Kołodziej–Pham–Zeriahi. Notre méthode s’applique également dans le contexte des classes de cohomologie sur une variété Kählérienne.
Let be a compact Hermitian manifold. We establish a stability result for solutions to complex Monge–Ampère equations with right-hand side in , . Using this we prove that the solutions are Hölder continuous with the same exponent as in the Kähler case by Demailly–Dinew–Guedj–Kołodziej–Pham–Zeriahi. Our techniques also apply to the setting of big cohomology classes on compact Kähler manifolds.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Hermitian manifold, Complex Monge–Ampère equation, Stability, Comparison principle
Mot clés : Variété hermitienne, Équation de Monge–Ampère complexe, Stabilité, Principe de comparaison
Lu, Chinh H. 1 ; Phung, Trong-Thuc 2 ; Tô, Tât-Dat 3, 4
@article{AIF_2021__71_5_2019_0, author = {Lu, Chinh H. and Phung, Trong-Thuc and T\^o, T\^at-Dat}, title = {Stability and {H\"older} regularity of solutions to complex {Monge{\textendash}Amp\`ere} equations on compact {Hermitian} manifolds}, journal = {Annales de l'Institut Fourier}, pages = {2019--2045}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {5}, year = {2021}, doi = {10.5802/aif.3436}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3436/} }
TY - JOUR AU - Lu, Chinh H. AU - Phung, Trong-Thuc AU - Tô, Tât-Dat TI - Stability and Hölder regularity of solutions to complex Monge–Ampère equations on compact Hermitian manifolds JO - Annales de l'Institut Fourier PY - 2021 SP - 2019 EP - 2045 VL - 71 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3436/ DO - 10.5802/aif.3436 LA - en ID - AIF_2021__71_5_2019_0 ER -
%0 Journal Article %A Lu, Chinh H. %A Phung, Trong-Thuc %A Tô, Tât-Dat %T Stability and Hölder regularity of solutions to complex Monge–Ampère equations on compact Hermitian manifolds %J Annales de l'Institut Fourier %D 2021 %P 2019-2045 %V 71 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3436/ %R 10.5802/aif.3436 %G en %F AIF_2021__71_5_2019_0
Lu, Chinh H.; Phung, Trong-Thuc; Tô, Tât-Dat. Stability and Hölder regularity of solutions to complex Monge–Ampère equations on compact Hermitian manifolds. Annales de l'Institut Fourier, Tome 71 (2021) no. 5, pp. 2019-2045. doi : 10.5802/aif.3436. https://aif.centre-mersenne.org/articles/10.5802/aif.3436/
[1] The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math., Volume 37 (1976) no. 1, pp. 1-44 | DOI | Zbl
[2] A variational approach to complex Monge–Ampère equations, Publ. Math., Inst. Hautes Étud. Sci., Volume 117 (2013), pp. 179-245 | DOI | Numdam | Zbl
[3] Regularity of plurisubharmonic upper envelopes in big cohomology classes, Perspectives in analysis, geometry, and topology. On the occasion of the 60th birthday of Oleg Viro. Based on the Marcus Wallenberg symposium on perspectives in analysis, geometry, and topology, Stockholm, Sweden, May 19–25, 2008 (Progress in Mathematics), Volume 296, Birkhäuser, 2012, pp. 39-66 | DOI | MR | Zbl
[4] On uniform estimate in Calabi–Yau theorem, Sci. China, Ser. A, Volume 48 (2005) no. suppl., pp. 244-247 | DOI | MR | Zbl
[5] On the uniform estimate in the Calabi–Yau theorem. II, Sci. China, Math., Volume 54 (2011) no. 7, pp. 1375-1377 | DOI | MR | Zbl
[6] Pluripotential energy, Potential Anal., Volume 36 (2012) no. 1, pp. 155-176 | DOI | MR | Zbl
[7] Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 45-76 | DOI | Numdam | MR | Zbl
[8] Monge–Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | Zbl
[9] On the existence of constant scalar curvature Kähler metric: a new perspective (2015) (https://arxiv.org/abs/1506.06423 to appear in theAnnales mathématiques de Québec)
[10] On the constant scalar curvature Kähler metrics, apriori estimates (2017) (https://arxiv.org/abs/1712.06697)
[11] On the constant scalar curvature Kähler metrics, existence results (2018) (https://arxiv.org/abs/1801.00656)
[12] On the constant scalar curvature Kähler metrics, general automorphism group (2018) (https://arxiv.org/abs/1801.05907)
[13] Kähler–Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Am. Math. Soc., Volume 28 (2015) no. 1, pp. 183-197 | DOI | Zbl
[14] Équations de Monge–Ampère sur les variétés Hermitiennes compactes, Bull. Sci. Math., Volume 111 (1987), pp. 343-385 | MR | Zbl
[15] On the invariance of the total Monge–Ampère volume of Hermitian metrics (2016) (https://arxiv.org/abs/1609.05945)
[16] Optimal regularity of plurisubharmonic envelopes on compact Hermitian manifolds, Sci. China, Math., Volume 62 (2019) no. 2, pp. 371-380 | DOI | MR | Zbl
[17] Geometric pluripotential theory on Kähler manifolds, Advances in complex geometry. Contributions from the JHU-UMD complex geometry seminar, John Hopkins University, Baltimore, MD, USA and University of Maryland, College Park, MD, USA, 2015–2018 (Contemporary Mathematics), Volume 735, American Mathematical Society, 2019, pp. 1-104 | DOI | Zbl
[18] metric geometry of big cohomology classes, Ann. Inst. Fourier, Volume 68 (2018) no. 7, pp. 3053-3086 | DOI | Numdam | MR | Zbl
[19] Monotonicity of nonpluripolar products and complex Monge–Ampère equations with prescribed singularity, Anal. PDE, Volume 11 (2018) no. 8, pp. 2049-2087 | DOI | Zbl
[20] On the singularity type of full mass currents in big cohomology classes, Compos. Math., Volume 154 (2018) no. 2, pp. 380-409 | DOI | MR | Zbl
[21] Log-concavity of volume and complex Monge–Ampère equations with prescribed singularity (2019) (https://arxiv.org/abs/1807.00276, to appear in Mathematische Annalen)
[22] The metric geometry of singularity types (2019) https://arxiv.org/abs/1909.00839, to appear in Journal für die Reine und Angewandte Mathematik (Crelle’s Journal) | DOI
[23] Regularization of closed positive currents and intersection theory, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 361-409 | MR | Zbl
[24] Regularization of closed positive currents of type by the flow of a Chern connection, Contributions to complex analysis and analytic geometry. Based on a colloquium dedicated to Pierre Dolbeault, Paris, France, June 23-26, 1992 (Aspects of Mathematics), Volume E26, Vieweg & Sohn, 1994, pp. 105-126 | Zbl
[25] Complex Analytic and Differential Geometry, 2012 (Demailly’s webpage: https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf)
[26] Hölder continuous solutions to Monge–Ampère equations, J. Eur. Math. Soc., Volume 16 (2014) no. 4, pp. 619-647 | DOI | Zbl
[27] An inequality for mixed Monge–Ampère measures, Math. Z., Volume 262 (2009) no. 1, pp. 1-15 | DOI | Zbl
[28] Uniqueness in , J. Funct. Anal., Volume 256 (2009) no. 7, pp. 2113-2122 | DOI | Zbl
[29] Pluripotential theory on compact Hermitian manifolds, Ann. Fac. Sci. Toulouse, Math., Volume 25 (2016) no. 1, pp. 91-139 | DOI | Numdam | MR | Zbl
[30] Pluripotential estimates on compact Hermitian manifolds, Advances in geometric analysis. Collected papers of the workshop on geometry in honour of Shing-Tung Yau’s 60th birthday, Warsaw, Poland, April 6–8, 2009 (Advanced Lectures in Mathematics (ALM)), Volume 21, International Press, 2012, pp. 69-86 | MR | Zbl
[31] On stability and continuity of bounded solutions of degenerate complex Monge–Ampère equations over compact Kähler manifolds, Adv. Math., Volume 225 (2010) no. 1, pp. 367-388 | DOI | Zbl
[32] Characterization of Monge–Ampère measures with Hölder continuous potentials, J. Funct. Anal., Volume 266 (2014) no. 1, pp. 67-84 | DOI | Zbl
[33] Exponential estimates for plurisubharmonic functions and stochastic dynamics, J. Differ. Geom., Volume 84 (2010) no. 3, pp. 465-488 | MR | Zbl
[34] Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms, J. Algebr. Geom., Volume 19 (2010) no. 3, pp. 473-529 | DOI | Zbl
[35] Le théorème de l’excentricité nulle, C. R. Math. Acad. Sci. Paris, Volume 285 (1977) no. 5, pp. 387-390 | Zbl
[36] Complex Monge–Ampère equations and totally real submanifolds, Adv. Math., Volume 225 (2010) no. 3, pp. 1185-1223 | DOI | Zbl
[37] Hölder continuous solutions to Monge–Ampère equations, Bull. Lond. Math. Soc., Volume 40 (2008) no. 6, pp. 1070-1080 | DOI | Zbl
[38] Stability of solutions to complex Monge–Ampère flows, Ann. Inst. Fourier, Volume 68 (2018) no. 7, pp. 2819-2836 | DOI | Numdam | Zbl
[39] Stability of solutions to complex Monge–Ampère equations in big cohomology classes, Math. Res. Lett., Volume 19 (2012) no. 5, pp. 1025-1042 | DOI | Zbl
[40] Degenerate complex Monge–Ampère equations, EMS Tracts in Mathematics, 26, European Mathematical Society, 2017 | DOI | Zbl
[41] Some sufficient conditions for solvability of the Dirichlet problem for the complex Monge–Ampère operator, Ann. Pol. Math., Volume 65 (1996) no. 1, pp. 11-21 | DOI | Zbl
[42] The complex Monge–Ampère equation, Acta Math., Volume 180 (1998) no. 1, pp. 69-117 | DOI | Zbl
[43] The Monge–Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J., Volume 52 (2003) no. 3, pp. 667-686 | DOI | Zbl
[44] Hölder continuity of solutions to the complex Monge–Ampère equation with the right-hand side in : the case of compact Kähler manifolds, Math. Ann., Volume 342 (2008) no. 2, pp. 379-386 | DOI | Zbl
[45] Weak solutions of the Monge–Ampère equation on compact Hermitian manifolds, Int. J. Math., Volume 28 (2017) no. 9, 1740002 | DOI | Zbl
[46] Weak solutions to the complex Monge–Ampère equation on Hermitian manifolds, Analysis, complex geometry, and mathematical physics: in honor of Duong H. Phong. Proceedings of the conference, Columbia University, New York, NY, USA, May 7–11, 2013 (Contemporary Mathematics), Volume 644, American Mathematical Society, 2015, pp. 141-158 | DOI | Zbl
[47] Hölder continuous solutions of the Monge–Ampère equation on compact Hermitian manifolds, Ann. Inst. Fourier, Volume 68 (2018) no. 7, pp. 2951-2964 | DOI | Numdam | Zbl
[48] Stability and regularity of solutions of the Monge–Ampère equation on Hermitian manifolds, Adv. Math., Volume 346 (2019), pp. 264-304 | DOI | Zbl
[49] Continuous solutions to Monge–Ampère equations on Hermitian manifolds for measures dominated by capacity (2020) (https://arxiv.org/abs/2003.05061)
[50] Complex Hessian equations with prescribed singularity on compact Kähler manifolds (2019) (https://arxiv.org/abs/1909.02469. To appear in Annali della Scuola Normale Superiore di Pisa)
[51] The complex Monge–Ampère type equation on compact Hermitian manifolds and applications, Adv. Math., Volume 286 (2016), pp. 240-285 | DOI | MR | Zbl
[52] Regularity of envelopes in Kähler classes, Math. Res. Lett., Volume 25 (2018) no. 1, pp. 281-289 | DOI | MR | Zbl
[53] The complex Monge–Ampère equation on compact Hermitian manifolds, J. Am. Math. Soc., Volume 23 (2010) no. 4, pp. 1187-1195 | DOI | Zbl
[54] Complex Monge–Ampère equation for measures supported on real submanifolds, Math. Ann., Volume 372 (2018) no. 1-2, pp. 321-367 | DOI | MR | Zbl
[55] Families of Monge–Ampère measures with Hölder continuous potentials, Proc. Am. Math. Soc., Volume 146 (2018) no. 10, pp. 4275-4282 | DOI | MR | Zbl
[56] On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I, Commun. Pure Appl. Math., Volume 31 (1978) no. 3, pp. 339-411 | DOI | Zbl
[57] Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions, Indiana Univ. Math. J., Volume 50 (2001) no. 1, pp. 671-703 | DOI | MR | Zbl
Cité par Sources :