Nous introduisons les supervariétés sphériques, une généralisation des variétés sphériques. Nous prouvons une caractérisation des supervariétés sphériques affines qui généralise une caractérisation classique des variétés sphériques affines. De plus, nous montrons quelques propriétés du monoïde des plus grands poids. Nous discutons plusieurs exemples intéressants qui montrent des différences avec le cas classique parmi lesquels la représentation régulière, les supervariétés symétriques, et les actions de super groupes gradués.
We give a definition of the notion of spherical varieties in the world of complex supervarieties with actions of algebraic supergroups. A characterization of affine spherical supervarieties is given which generalizes a characterization in the classical case. We also explain some general properties of the monoid of highest weights. Several examples are discussed that are interesting in their own right and highlight differences with the classical case, including the regular representation, symmetric supervarieties, and actions of graded supergroups.
Accepté le :
Première publication :
Publié le :
Keywords: Lie superalgebras, spherical varieties
Mot clés : superalgèbres de Lie, variétés sphériques
Sherman, Alexander 1
@article{AIF_2021__71_4_1449_0, author = {Sherman, Alexander}, title = {Spherical supervarieties}, journal = {Annales de l'Institut Fourier}, pages = {1449--1492}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {4}, year = {2021}, doi = {10.5802/aif.3421}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3421/} }
TY - JOUR AU - Sherman, Alexander TI - Spherical supervarieties JO - Annales de l'Institut Fourier PY - 2021 SP - 1449 EP - 1492 VL - 71 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3421/ DO - 10.5802/aif.3421 LA - en ID - AIF_2021__71_4_1449_0 ER -
Sherman, Alexander. Spherical supervarieties. Annales de l'Institut Fourier, Tome 71 (2021) no. 4, pp. 1449-1492. doi : 10.5802/aif.3421. https://aif.centre-mersenne.org/articles/10.5802/aif.3421/
[1] The Harish–Chandra isomorphism for reductive symmetric superpairs, Transform. Groups, Volume 17 (2012) no. 4, pp. 889-919 | DOI | MR | Zbl
[2] Spherical representations of Lie supergroups, J. Funct. Anal., Volume 268 (2015) no. 6, pp. 1403-1453 | DOI | MR | Zbl
[3] Supermanifolds, super Lie groups, and super Harish–Chandra pairs functorial methods and actions, Ph. D. Thesis, Universita degli Studi di Genova (2011)
[4] Projective superspaces in practice, J. Geom. Phys., Volume 130 (2018), pp. 40-62 | DOI | MR | Zbl
[5] Mathematical foundations of supersymmetry, EMS Series of Lectures in Mathematics, 15, European Mathematical Society, 2011 | DOI
[6] Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics, 144, American Mathematical Society, 2012 | DOI
[7] Notes on supersymmetry (following Joseph Bernstein), Quantum fields and strings: a course for mathematicians, American Mathematical Society, 1999, pp. 41-97 | Zbl
[8] Smoothness of algebraic supervarieties and supergroups, Pac. J. Math., Volume 234 (2008) no. 2, pp. 295-310 | DOI | MR | Zbl
[9] Locally finite representations, J. Algebra, Volume 41 (1976) no. 1, pp. 137-171 | DOI | MR | Zbl
[10] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 2013
[11] Some remarks on nilpotent orbits, J. Algebra, Volume 64 (1980), pp. 190-213 | MR | Zbl
[12] Supersymmetry and the formal loop space, Adv. Math., Volume 227 (2011) no. 3, pp. 1078-1128 | DOI | MR | Zbl
[13] Local properties of algebraic group actions, Algebraische Transformationsgruppen und Invariantentheorie Algebraic Transformation Groups and Invariant Theory (DMV Seminar), Volume 13, Springer, 1989, pp. 63-75 | DOI | MR | Zbl
[14] Graded manifolds and graded Lie algebras, Proceedings of the International Meeting on Geometry and Physics (Bologna), Pitagora (1982), pp. 71-84
[15] Connections and splittings of supermanifolds, Differ. Geom. Appl., Volume 4 (1994) no. 2, pp. 151-161 | DOI | MR | Zbl
[16] Donkin–Koppinen filtration for general linear supergroups, Algebr. Represent. Theory, Volume 15 (2012) no. 5, pp. 883-899 | DOI | MR | Zbl
[17] Proof of the Knop conjecture, Ann. Inst. Fourier, Volume 59 (2009) no. 3, pp. 1105-1134 | DOI | Numdam | MR | Zbl
[18] Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften, 289, Springer, 2013
[19] Lie superalgebras and enveloping algebras, Graduate Studies in Mathematics, 131, American Mathematical Society, 2012 | DOI
[20] Generic irreducible representations of finite-dimensional Lie superalgebras, Int. J. Math., Volume 5 (1994) no. 03, pp. 389-419 | DOI | MR | Zbl
[21] Equivariant splittings of supermanifolds, J. Geom. Phys., Volume 12 (1993) no. 2, pp. 145-152 | DOI | MR | Zbl
[22] The Capelli problem for and the spectrum of invariant differential operators, Adv. Math., Volume 303 (2016), pp. 1-38 | DOI | Zbl
[23] The Capelli eigenvalue problem for Lie superalgebras (2018) (https://arxiv.org/abs/1807.07340)
[24] Invariant supersymmetric multilinear forms and the Casimir elements of P-type Lie superalgebras, J. Math. Phys., Volume 28 (1987) no. 5, pp. 1180-1191 | DOI | MR | Zbl
[25] Regular sequences in Z2-graded commutative algebra, J. Algebra, Volume 124 (1989) no. 1, pp. 60-118 | DOI | MR | Zbl
[26] Classification of real simple Lie superalgebras and symmetric superspaces, Funct. Anal. Appl., Volume 17 (1983) no. 3, pp. 200-207 | DOI | Zbl
[27] On generalizations of root systems, Commun. Algebra, Volume 24 (1996) no. 13, pp. 4281-4299 | DOI | MR | Zbl
[28] Quasireductive supergroups, New developments in Lie theory and its applications (Contemporary Mathematics), Volume 544, American Mathematical Society, 2011, pp. 141-159 | DOI | MR | Zbl
[29] Representations of a central extension of the simple Lie superalgebra , São Paulo J. Math. Sci., Volume 12 (2018) no. 2, pp. 359-376 | DOI | MR | Zbl
[30] Deformed quantum Calogero–Moser problems and Lie superalgebras, Commun. Math. Phys., Volume 245 (2004) no. 2, pp. 249-278 | DOI | MR | Zbl
[31] Iwasawa Decomposition for Lie Superalgebras (2020) (https://arxiv.org/abs/2004.00657)
[32] Layers of the Coradical Filtration (2020) (https://arxiv.org/abs/2004.00657)
[33] Spherical indecomposable representations of Lie superalgebras, J. Algebra, Volume 547 (2020), pp. 262-311 | DOI | MR | Zbl
[34] Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, 138, Springer, 2011 | DOI | MR
[35] On complex Lie supergroups and split homogeneous supermanifolds, Transform. Groups, Volume 16 (2011) no. 1, pp. 265-285 | DOI | MR | Zbl
[36] Elements of supergeometry, J. Sov. Math., Volume 51 (1990) no. 1, pp. 2069-2083 | DOI | Zbl
Cité par Sources :