Spherical supervarieties
[Supervariétés sphériques]
Annales de l'Institut Fourier, Tome 71 (2021) no. 4, pp. 1449-1492.

Nous introduisons les supervariétés sphériques, une généralisation des variétés sphériques. Nous prouvons une caractérisation des supervariétés sphériques affines qui généralise une caractérisation classique des variétés sphériques affines. De plus, nous montrons quelques propriétés du monoïde des plus grands poids. Nous discutons plusieurs exemples intéressants qui montrent des différences avec le cas classique parmi lesquels la représentation régulière, les supervariétés symétriques, et les actions de super groupes gradués.

We give a definition of the notion of spherical varieties in the world of complex supervarieties with actions of algebraic supergroups. A characterization of affine spherical supervarieties is given which generalizes a characterization in the classical case. We also explain some general properties of the monoid of highest weights. Several examples are discussed that are interesting in their own right and highlight differences with the classical case, including the regular representation, symmetric supervarieties, and actions of graded supergroups.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/aif.3421
Classification : 17B05, 17B10, 14M27
Keywords: Lie superalgebras, spherical varieties
Mot clés : superalgèbres de Lie, variétés sphériques

Sherman, Alexander 1

1 Department of Mathematics University of California, Berkeley 970 Evans Hall Berkeley, CA 94720 (USA)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2021__71_4_1449_0,
     author = {Sherman, Alexander},
     title = {Spherical supervarieties},
     journal = {Annales de l'Institut Fourier},
     pages = {1449--1492},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {71},
     number = {4},
     year = {2021},
     doi = {10.5802/aif.3421},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3421/}
}
TY  - JOUR
AU  - Sherman, Alexander
TI  - Spherical supervarieties
JO  - Annales de l'Institut Fourier
PY  - 2021
SP  - 1449
EP  - 1492
VL  - 71
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3421/
DO  - 10.5802/aif.3421
LA  - en
ID  - AIF_2021__71_4_1449_0
ER  - 
%0 Journal Article
%A Sherman, Alexander
%T Spherical supervarieties
%J Annales de l'Institut Fourier
%D 2021
%P 1449-1492
%V 71
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3421/
%R 10.5802/aif.3421
%G en
%F AIF_2021__71_4_1449_0
Sherman, Alexander. Spherical supervarieties. Annales de l'Institut Fourier, Tome 71 (2021) no. 4, pp. 1449-1492. doi : 10.5802/aif.3421. https://aif.centre-mersenne.org/articles/10.5802/aif.3421/

[1] Alldridge, Alexander The Harish–Chandra isomorphism for reductive symmetric superpairs, Transform. Groups, Volume 17 (2012) no. 4, pp. 889-919 | DOI | MR | Zbl

[2] Alldridge, Alexander; Schmittner, Sebastian Spherical representations of Lie supergroups, J. Funct. Anal., Volume 268 (2015) no. 6, pp. 1403-1453 | DOI | MR | Zbl

[3] Balduzzi, Luigi Supermanifolds, super Lie groups, and super Harish–Chandra pairs functorial methods and actions, Ph. D. Thesis, Universita degli Studi di Genova (2011)

[4] Cacciatori, Sergio Luigi; Noja, Simone Projective superspaces in practice, J. Geom. Phys., Volume 130 (2018), pp. 40-62 | DOI | MR | Zbl

[5] Carmeli, Claudio; Caston, Lauren; Fioresi, Rita Mathematical foundations of supersymmetry, EMS Series of Lectures in Mathematics, 15, European Mathematical Society, 2011 | DOI

[6] Cheng, Shun-Jen; Wang, Weiqiang Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics, 144, American Mathematical Society, 2012 | DOI

[7] Deligne, Pierre; Morgan, John Notes on supersymmetry (following Joseph Bernstein), Quantum fields and strings: a course for mathematicians, American Mathematical Society, 1999, pp. 41-97 | Zbl

[8] Fioresi, Rita Smoothness of algebraic supervarieties and supergroups, Pac. J. Math., Volume 234 (2008) no. 2, pp. 295-310 | DOI | MR | Zbl

[9] Green, James A. Locally finite representations, J. Algebra, Volume 41 (1976) no. 1, pp. 137-171 | DOI | MR | Zbl

[10] Hartshorne, Robin Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 2013

[11] Kac, Victor G. Some remarks on nilpotent orbits, J. Algebra, Volume 64 (1980), pp. 190-213 | MR | Zbl

[12] Kapranov, Mikhail; Vasserot, Eric Supersymmetry and the formal loop space, Adv. Math., Volume 227 (2011) no. 3, pp. 1078-1128 | DOI | MR | Zbl

[13] Knop, Friedrich; Kraft, Hanspeter; Luna, Domingo; Vust, Thierry Local properties of algebraic group actions, Algebraische Transformationsgruppen und Invariantentheorie Algebraic Transformation Groups and Invariant Theory (DMV Seminar), Volume 13, Springer, 1989, pp. 63-75 | DOI | MR | Zbl

[14] Koszul, Jean-Louis Graded manifolds and graded Lie algebras, Proceedings of the International Meeting on Geometry and Physics (Bologna), Pitagora (1982), pp. 71-84

[15] Koszul, Jean-Louis Connections and splittings of supermanifolds, Differ. Geom. Appl., Volume 4 (1994) no. 2, pp. 151-161 | DOI | MR | Zbl

[16] La Scala, Roberto; Zubkov, Alexandr N Donkin–Koppinen filtration for general linear supergroups, Algebr. Represent. Theory, Volume 15 (2012) no. 5, pp. 883-899 | DOI | MR | Zbl

[17] Losev, Ivan V. Proof of the Knop conjecture, Ann. Inst. Fourier, Volume 59 (2009) no. 3, pp. 1105-1134 | DOI | Numdam | MR | Zbl

[18] Manin, Yuri I. Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften, 289, Springer, 2013

[19] Musson, Ian Malcolm Lie superalgebras and enveloping algebras, Graduate Studies in Mathematics, 131, American Mathematical Society, 2012 | DOI

[20] Penkov, Ivan B.; Serganova, Vera Generic irreducible representations of finite-dimensional Lie superalgebras, Int. J. Math., Volume 5 (1994) no. 03, pp. 389-419 | DOI | MR | Zbl

[21] Rothstein, Mitchell Equivariant splittings of supermanifolds, J. Geom. Phys., Volume 12 (1993) no. 2, pp. 145-152 | DOI | MR | Zbl

[22] Sahi, Siddhartha; Salmasian, Hadi The Capelli problem for 𝔤𝔩(m|n) and the spectrum of invariant differential operators, Adv. Math., Volume 303 (2016), pp. 1-38 | DOI | Zbl

[23] Sahi, Siddhartha; Salmasian, Hadi; Serganova, Vera The Capelli eigenvalue problem for Lie superalgebras (2018) (https://arxiv.org/abs/1807.07340)

[24] Scheunert, Manfred Invariant supersymmetric multilinear forms and the Casimir elements of P-type Lie superalgebras, J. Math. Phys., Volume 28 (1987) no. 5, pp. 1180-1191 | DOI | MR | Zbl

[25] Schmitt, Thomas Regular sequences in Z2-graded commutative algebra, J. Algebra, Volume 124 (1989) no. 1, pp. 60-118 | DOI | MR | Zbl

[26] Serganova, Vera Classification of real simple Lie superalgebras and symmetric superspaces, Funct. Anal. Appl., Volume 17 (1983) no. 3, pp. 200-207 | DOI | Zbl

[27] Serganova, Vera On generalizations of root systems, Commun. Algebra, Volume 24 (1996) no. 13, pp. 4281-4299 | DOI | MR | Zbl

[28] Serganova, Vera Quasireductive supergroups, New developments in Lie theory and its applications (Contemporary Mathematics), Volume 544, American Mathematical Society, 2011, pp. 141-159 | DOI | MR | Zbl

[29] Serganova, Vera Representations of a central extension of the simple Lie superalgebra 𝔭(3), São Paulo J. Math. Sci., Volume 12 (2018) no. 2, pp. 359-376 | DOI | MR | Zbl

[30] Sergeev, Aleksandr N.; Veselov, Alexander P. Deformed quantum Calogero–Moser problems and Lie superalgebras, Commun. Math. Phys., Volume 245 (2004) no. 2, pp. 249-278 | DOI | MR | Zbl

[31] Sherman, Alexander Iwasawa Decomposition for Lie Superalgebras (2020) (https://arxiv.org/abs/2004.00657)

[32] Sherman, Alexander Layers of the Coradical Filtration (2020) (https://arxiv.org/abs/2004.00657)

[33] Sherman, Alexander Spherical indecomposable representations of Lie superalgebras, J. Algebra, Volume 547 (2020), pp. 262-311 | DOI | MR | Zbl

[34] Timashev, Dmitry A. Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, 138, Springer, 2011 | DOI | MR

[35] Vishnyakova, E. G. On complex Lie supergroups and split homogeneous supermanifolds, Transform. Groups, Volume 16 (2011) no. 1, pp. 265-285 | DOI | MR | Zbl

[36] Voronov, Alexander A.; Manin, Yuri I.; Penkov, Ivan B. Elements of supergeometry, J. Sov. Math., Volume 51 (1990) no. 1, pp. 2069-2083 | DOI | Zbl

Cité par Sources :