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SPHERICAL SUPERVARIETIES

by Alexander SHERMAN (*)

Abstract. — We give a definition of the notion of spherical varieties in the
world of complex supervarieties with actions of algebraic supergroups. A charac-
terization of affine spherical supervarieties is given which generalizes a characteri-
zation in the classical case. We also explain some general properties of the monoid
of highest weights. Several examples are discussed that are interesting in their
own right and highlight differences with the classical case, including the regular
representation, symmetric supervarieties, and actions of graded supergroups.
Résumé. — Nous introduisons les supervariétés sphériques, une généralisation

des variétés sphériques. Nous prouvons une caractérisation des supervariétés sphé-
riques affines qui généralise une caractérisation classique des variétés sphériques
affines. De plus, nous montrons quelques propriétés du monoïde des plus grands
poids. Nous discutons plusieurs exemples intéressants qui montrent des différences
avec le cas classique parmi lesquels la représentation régulière, les supervariétés
symétriques, et les actions de super groupes gradués.

1. Introduction

Let G be a complex algebraic supergroup with G0 reductive, where G0 is
the even underlying algebraic group of G. We call such supergroups quasire-
ductive. We would like to consider supervarieties with actions of such su-
pergroups which have an especially large amount of symmetry; namely, we
would like a hyperborel subgroup (see Definition 4.9) to have an open orbit.
For those familiar with Lie superalgebras, the notion of hyperborel subal-
gebra agrees with the usual notion of Borel subalgebra for many heavily
studied cases, apart from queer superalgebras (see Remark 4.4). We call
such supervarietes spherical, generalizing the classical notion to the super
world.

Keywords: Lie superalgebras, spherical varieties.
2020 Mathematics Subject Classification: 17B05, 17B10, 14M27.
(*) This research was partially supported by NSF grant DMS-1701532.



1450 Alexander SHERMAN

In the classical world, spherical varieties are a highly rich and well-studied
class of varieties which simultaneously generalizes toric varieties, flag va-
rieties, and symmetric spaces. They provide connections between repre-
sentation theory, combinatorics, and algebraic geometry. Affine spherical
varieties also have a close relationship with multiplicity-free spaces in sym-
plectic geometry, and were used by F. Knop and I. Losev to prove Delzant’s
conjecture ([17]). In work spanning several decades up to the mid-2010s,
Bravi, Brion, Cupit-Foutou, Knop, Losev, Luna, Pezzini, Vust, and others
completed the combinatorial classification of all spherical varieties.

It is interesting to ask how spherical varieties generalize to the super
world. Classically, the first theorem giving a connection to representation
theory states that an affine G-variety X is spherical if and only if C[X]
is multiplicity-free as a G-module. In the super case complete reducibility
is rare and so such a statement is too much to hope for. It is seen in this
article that C[X] may not be completely reducible for an affine spherical
supervariety X; however the socle of C[X] must be multiplicity-free.

On the flip side, and perhaps more surprising superficially, there are sit-
uations in which a G-supervariety X is affine, C[X] is completely reducible
and multiplicity-free, but X is not spherical. Thus this connection does not
generalize nicely to the super world. However, we find a characterization
of sphericity in terms of the subalgebra of C[X] generated by B-highest
weight functions, where B is a hyperborel subgroup (Theorem 5.5). This
characterization generalizes the classical fact that an affine G-variety X is
spherical if and only if X//N is a toric variety for a maximal torus T of a
Borel subgroup B, where N is the unipotent radical of B.
The author began studying examples of spherical varieties in [33]. In

that work, indecomposable spherical representations were found for a large
class of quasireductive groups, and the structure of the algebra of func-
tions was determined. That paper and this one seek to understand affine
G-supervarieties better, in particular in understanding how the geometry
of the action is connected to the representation theory of the space of func-
tions.
This work has been in progress for several years now by other authors

within the study of symmetric superspaces. In [22] and [23] the Capelli
eigenvalue problem has been studied for supersymmetric pairs coming from
simple Jordan superalgebras. In [1] a generalization of the Harish–Chandra
isomorphism theorem was given, and in [2] certain facts about the socle of
the space of functions is proven, amongst other things. Further, in [30] the
combinatorics of root systems gotten from supersymmetric pairs is used
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SPHERICAL SUPERVARIETIES 1451

to construct integrable systems. We hope further insight can be gained
through the more general lens of spherical supervarieties.

1.1. Structure of paper

We begin with definitions and explanations about notation for superva-
rieties in Section 2. In Section 3 we define actions by supergroups and state
some lemmas about actions we plan to use later on, and in Section 4 we
define quasireductive supergroups and the notion of hyperborel subgroup.
In Section 5 we define spherical supervarieties and give characterization
theorems and some consequences. Then in Section 6 we discuss several
examples the author has considered, with new results stated. The first ap-
pendix briefly looks at the notion of spherical actions of quasireductive Lie
superalgebras on supervarieties by vector fields. Finally, the second appen-
dix addresses some generalities about smoothness of supervarieties.

1.2. Acknowledgments

The author would like to thank his advisor, Vera Serganova, for stimu-
lating their interest in spherical supervarieties, and useful discussions along
the way. The author also thanks Alexander Alldridge for many insightful
explanations and discussions about supergeometry, supergroups, and their
actions.

2. Supergeometry

We are work in the algebraic setting. For the basic definitions on su-
perschemes, see Chapter 10 of [5]. Although we work over the complex
numbers, one could just as well work over any algebraically closed field of
characteristic zero.

2.1. Notation and terminology

For a super vector space V we write V = V0⊕V1̄ for its parity decompo-
sition, and ΠV = C0|1 ⊗ V for the parity shift, where C0|1 = 0⊕ C. Given
a homogeneous element v ∈ V , we write v ∈ Z/2Z = {0, 1} for its parity.
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1452 Alexander SHERMAN

For a superscheme X, write |X| for the underlying topological space of
X. Let OX denote its structure sheaf and OX = (OX)0 ⊕ (OX)1̄ for the
parity decomposition of this sheaf. For a point x ∈ |X|, we write OX,x for
the stalk of the sheaf OX at x which will be a local superalgebra, and mx
for its unique maximal ideal. For a superalgebra R, we write X(R) for the
SpecR-points of X. In particular, we write X(C) for the complex points
of X, which for the spaces we consider will be exactly the closed points.
For an open subset |U | ⊆ |X|, we write U for the superscheme obtained
by restriction of X = (|X|,OX) to |U |, and we call U an open subscheme
of X.

We writeX0 for the even subvariety of a superschemeX, that is the space
cut out by the ideal sheaf JX generated by (OX)1̄. Write iX : X0 ↪→ X for
the corresponding closed embedding, or sometimes simply i if the space is
clear from context. Let NX := JX/J 2

X be the conormal sheaf, which is a
quasicoherent sheaf on X0.
For a superscheme X such that |X| is Noetherian and irreducible, write

C(X) for the stalk of OX at the generic point of |X|. Then for any open
subscheme U of X we have a natural map Γ(|U |,OX)→ C(X). This map
may not be injective (although for us it always will be), but if f is a section
over |U | we will sometimes speak of it as an element of C(X) with the
understanding that we are talking about its image under this restriction
map.
Quasi-coherent, coherent sheaves, and line bundles on a superscheme may

be defined in the same way as for schemes. Further we may take direct sums
and tensor products between them to obtain new (quasi)-coherent sheaves.
For a quasicoherent sheaf F on a superscheme X, and a point x ∈ |X|,
we write Fx for its stalk at x. We say that F is globally generated if the
natural map

Γ(X,F)⊗C OX → F
is a surjective map of sheaves. Similarly, we say a subspace V ⊆ Γ(X,F)
generates F if the morphism

V ⊗C OX → F

is a surjective map of sheaves.

2.2. Supervarieties

Definition 2.1. — We define a supervariety to be an irreducible su-
perscheme X over C such that the following conditions are satisfied:

ANNALES DE L’INSTITUT FOURIER
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(1) X admits a finite cover by affine open subschemes of the form
SpecA, where A is a finitely-generated superalgebra over C;

(2) For any open subscheme U ⊆ X, the map Γ(U,OX) → C(X) is
injective;

(3) The superalgebra C(X) is an integral superdomain, that is the zero
divisors of C(X) are exactly (C(X)1̄);

(4) X is separated over C, that is the diagonal morphism X → X ×X
is a closed embedding.

Remark 2.2.

• If X is a supervariety, then for all open sets |U |, |U ′| ⊆ |X| with
|U ′| ⊆ |U |, the restriction map Γ(|U |,OX) → Γ(|U ′|,OX) is injec-
tive. This follows from functoriality of restriction.

• If A is a finitely generated C-algebra such that SpecA is a super-
variety, condition (2) implies that the zero divisors of A0 are all
nilpotent.

• Closures of supervarieties are supervarieties, as are orbit closures of
actions by supergroups.

• If X is a supervariety, X0 need not be a variety in the usual sense
in that it may not be integral. A natural example arises from the
action of the supergroup G = GL(1|2) on S2C1|2. The orbit closure
of an eigenvector for G0 is a supervariety, but the underlying scheme
has nilpotent functions and is not a variety. Nevertheless, X0 will
be integral on an open subscheme.

2.3. Quasiprojective supervarieties

Definition 2.3.

(1) An affine supervariety is a supervariety of the form SpecA for a
superalgebra A.

(2) Given an N-graded superalgebra A =
⊕

n∈NAn, one may define
ProjA as is done in [5], following [10]. We say a supervariety is
projective if it is of the form ProjA where A0 = C and A1 is finite-
dimensional. A supervariety is quasiprojective if it is a dense open
subscheme of a projective supervariety.

Remark 2.4. — Quasi-projective supervarieties are not as pervasive as
quasiprojective varieties in the category of varieties. Indeed, there are many
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1454 Alexander SHERMAN

linear algebraic supervarieties of importance which are not projective, in-
cluding ‘most’ super Grassmanians. (See [18] for a discussion in the analytic
setting, or [5] for the algebraic setting.) This is a significant hindrance in
understanding such spaces and how supergroups act on them.

Projective superspace Pm|n and very ample line bundles may be defined
as usual (see [5]). As in the classical setting, we have the following two
important results for quasiprojective supervarieties.

Lemma 2.5. — Let X be a quasiprojective supervariety and L a very
ample line bundle on X. Then for every homogeneous f ∈ C(X), there
exists n > 0 and homogeneous sections s1, s2 ∈ Γ(X,L⊗n) such that f =
s1/s2.

Proposition 2.6. — Let X be a quasiprojective supervariety, L a very
ample line bundle on X, and F a coherent sheaf on X. Then for some
n > 0, F ⊗OX

L⊗n is globally generated.

2.4. Graded supervarieties

LetX0 be a scheme andN a coherent sheaf onX0. ThenX = (|X0|,Λ•N )
is a superscheme in a natural way.

Definition 2.7. — We say that a supervariety X is graded if there
exists a coherent sheaf N on X0 and an isomorphism X ∼= (|X|,Λ•N ). We
call an isomorphism of X with (|X|,Λ•N ) a grading of X.
We say X is locally graded if it admits a covering by open subschemes

that are graded.

Remark 2.8.
• If X is graded and X ∼= (|X|,Λ•N ), then NX ∼= N .
• Smooth affine supervarieties are always graded (see [36]). Thus
smooth supervarieties are always locally graded.

• Using the cohomology argument given in [36], one can show that
the property of being locally graded is affine local. Thus locally
graded affine supervarieties are graded.

Remark 2.9 (Caution). — The term graded is sometimes used instead
of super (see for instance [14]). Another term that has been used to mean
graded is split, as in [35]. However others (e.g. [36]) have used split to mean
there is a splitting of the surjective morphism OX → OX0 . We will use the
term graded and hope no confusion will arise.
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WhenX is graded, so that X ∼= (|X|,Λ•NX), its structure sheaf becomes
endowed with a Z-grading according to the exterior powers of the conormal
sheaf, namely (Λ•NX)i = ΛiNX . However a graded supervariety X has, in
general, many isomorphisms with (|X|,Λ•N ) (see for instance [15]).

2.5. Tangent sheaf and tangent spaces

Definition 2.10. — For a supervariety X, define the tangent sheaf TX
as the unique sheaf defined on any affine open subscheme U = SpecA of X
by Γ(|U |, TX) = Der(A), that is all (not necessarily even) C-linear algebra
derivations of A. In this way TX is a coherent sheaf of Lie superalgebras
on X, and Γ(U, TX) acts by super derivations on Γ(U,OX).

Definition 2.11. — Given x ∈ X(C), we define the tangent space at x
to be the super vector space TxX given by point derivations δ : OX,x → C,
i.e. maps of vector spaces such that δ(fg) = δ(f)g(x) + (−1)δF̄ f(x)δ(g).
Note that the minus sign is not strictly necessary since if F = 1 then
f(x) = 0.

Remark 2.12. — We have a natural identification TxX ∼= (mx/m2
x)∗. Fur-

ther, there is a natural map of super vector spaces

TX,x → TxX

given by D 7→ (f 7→ D(f)(x)). This map is not always surjective. We say
that X is smooth at x if it is surjective. See Appendix B for a discussion
of smoothness of superschemes.

3. Supergroups and their Actions

3.1. Supergroups

See Sections 8, 9, and 11 of [5] for more on the foundations of (algebraic)
supergroups and their actions.

Definition 3.1. — An algebraic supergroup is a complex supervariety
G equipped with morphisms m = mG : G×G→ G, s = sG : G→ G, and
e = eG : SpecC→ G satisfying the usual commutativity conditions:

m ◦ (m× idG) = m ◦ (idG×m),
m ◦ (e× idG) = m ◦ (idG×e) = idG,
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and

m ◦ (idG×s) ◦∆G = m ◦ (s× idG) ◦∆G = e.

where ∆G : G→ G×G is the diagonal embedding. In addition, we assume
throughout this article that G is linear, that is affine.

Definition 3.2. — For ue ∈ TeG, construct a right-invariant vector
field uL on G via left infinitesimal translation by the equation

uL(f) = −(ue ⊗ 1)(m∗(f))

Then the value of uL at e as a tangent vector is −ue. Write g = LieG for the
Lie superalgebra of right-invariant vector fields on G. The restriction map
g→ TeG is an isomorphism of super vector spaces, so we will freely identify
g with TeG when convenient. Given ue ∈ TeG we may also construct a left-
invariant vector field on G via right infinitesimal translation given by

uR(f) = (1⊗ ue)(m∗(f)).

The Lie superalgebra of left-invariant vector fields is canonically isomorphic
to the lie superalgebra of right vector fields via uL 7→ uR.

Remark 3.3. — If G is an algebraic supergroup, then G0 is an alge-
braic group in the usual sense, and we have a canonical isomorphism
g0
∼= Lie(G0).

3.2. Actions

Definition 3.4. — Let X be a supervariety and G an algebraic super-
group. An action of G on X is a morphism a : G×X → X such that

a ◦ (mG × idX) = a ◦ (idG×a)

and
a ◦ (e× idX) = idX

Given an action of G on X, we obtain a homomorphism ρa : g →
Γ(X, TX) as follows. For an open set U ⊆ X, choose an open subset U ′ ⊆ G
containing the identity such that a sends U ′×U into U . Let f ∈ Γ(U,OX)
and u ∈ g. Then define the action of u on f by

u(f) = −(ue ⊗ 1)(a∗(f)).

The map ρa determines an action of the Lie superalgebra g on X (see
Appendix A).
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Remark 3.5. — If a Lie supergroup G acts on a supervariety X, then by
functoriality G0 acts on both X and X0 in a natural way.

We omit the proof of the following result. It can be shown by developing
the notion of an action of a super Harish–Chandra pair, and showing it
is equivalent to an action of the corresponding supergroup. The result is
stated for supermanifolds without proof in [7] and a full proof for super-
manifolds is given in Section 4.5 of [3]. The author provided a full proof for
the algebraic case in their PhD thesis.

Theorem 3.6. — Let G be a Lie supergroup with g = Lie(G), and
suppose that X is a supervariety. Suppose that G0 acts on X via a0 :
G0 × X → X, and that we have a homomorphism of Lie superalgebras
ρ : g→ Γ(X, TX) such that

(1) ρ|g0
(u) = −(u⊗ 1) ◦ a∗0 for all u ∈ g0;

(2) ρ(Ad(g)(u)) = (ag
−1

0 )∗ ◦ρ(u)◦ (ag0)∗ for all g ∈ G0 and u ∈ g, where
ag0 = a0 ◦ (ig × idX), where ig : {g} → G0 is the natural inclusion.

Then there exists a unique action a : G × X → X of G on X such that
a|G0 = a0 and ρa = ρ.

We will often use this result in the form of the following corollary:

Corollary 3.7. — Suppose that a Lie supergroup G acts on a super-
variety X, and that the open subset |U | ⊆ |X| is stable under the action
of G0. Then the open subvariety U is stable under the action of G, i.e. the
action of G on X restricts to an action of G on U .

3.3. Orbit maps and stabilizers

For x ∈ X(C), we have an orbit map at x, ax : G → X, given by
a ◦ (idG×ix), where ix : {x} → X is the natural inclusion. We refer to
a−1
x (x), the fiber of this morphism over x, as the stabilizer StabG(x) of x,

a closed subgroup of G (see Section 11.8 of [5]. The following lemma is
well-known (see e.g. Lemma 4 of [35]).

Lemma 3.8. — For x ∈ X(C), the differential of the orbit map ax at the
identity of G, (dax)e : TeG → TxX, coincides with the natural evaluation
map ρa(g)→ TxX.

The Lie superalgebra of StabG(x) is then exactly the kernel of the re-
striction morphism ρa(g)→ TxX.
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Definition 3.9. — Suppose that G acts on X. We say that the action
is a submersion at a point x ∈ X(C) if the map ax : G→ X is a submersion
at eG ∈ G(C) (or equivalently at any point of G). In this case, the locus
of points where the map is a submersion will be an open subset of |X|,
and we refer to the open subvariety defined by this locus as an open orbit
of G. If all of X is an open orbit of G, we say that X is a homogeneous
G-supervariety.

Remark 3.10. — An action is a submersion at x if and only if the evalu-
ation map ρa(g)→ TxX is surjective by Lemma 3.8. By Theorem B.3, an
open orbit of G must be smooth.

Proposition 3.11. — Let X be a supervariety, and let a : G×X → X

be an action of an algebraic supergroup G on X. Then for x ∈ X(C) the
following are equivalent:

(1) ax is a submersion;
(2) the pullback morphism of sheaves a∗x : OX → (ax)∗OG is injective;
(3) there exists a line bundle L such that the pullback morphism a∗x :
L → (ax)∗a∗xL is injective.

(4) for all line bundles L on X, the pullback morphism a∗x : L →
(ax)∗a∗xL is injective.

Proof. — We first prove the equivalence (1) ⇐⇒ (2). Let K be the sta-
bilizer of x, and write π : G → G/K for the natural projection. Then the
natural map of sheaves OG/K → π∗OG is injective. There is an induced G-
equivariant immersion bx : G/K → X and this map factors the orbit map
ax. Therefore if ax is a submersion, G/K → X is too, and hence it induces
an isomorphism of G/K onto an open subset of X. By our assumption that
restriction of functions is injective on supervarieties, the map

OX → b∗OG/K → b∗π∗OG = (ax)∗OG

is injective.
If ax is not a submersion, first suppose that the underlying image of

G/K in X is not open. Then we may choose a non-nilpotent function on X
which vanishes on the underlying closed subscheme defined by its image,
so that some power of this function will vanish under pullback, and thus
a∗x is not injective. Therefore assume G/K has an underlying open image,
say |U | ⊆ |X|. Then we may restrict to the open subscheme U of X, and
there the morphism G/K → U will be an isomorphism on closed points
and an immersion, but not a submersion. One may then show that this
map is a closed embedding, by considering the map on local rings and
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using Nakayama’s lemma. Hence the map on stalks is surjective, and so if
it were also injective the map would be an isomorphism on this open set
U , contradicting the fact that ax is not submersive.
Now we show that (2)⇐⇒ (3)⇐⇒ (4). For any line bundle L on X, we

may coverX with open sets Ui for which L|Ui
∼= OUi . Then by functoriality,

over Ui the pullback morphism L → (ax)∗(ax)∗L is identified with OUi
→

(ax)∗(ax)∗OUi
∼= (ax)∗OUi

, and one is injective if and only if the other
is. Since injectivity of a morphism of sheaves is a local property, we are
done. �

Definition 3.12. — Let G be a supergroup,X a G-supervariety, and F
a quasicoherent sheaf on X. Write a : G×X → X for the action morphism
and p : G × X → X for the natural projection. A G-linearization of F is
a choice of isomorphism of OG×X -modules ϕF : a∗F ∼= p∗F such that the
following cocycle condition is satisfied:

(mG × idX)∗ϕF = p∗23ϕF ◦ (idG×a)∗ϕF ,

where p23 : G × G × X → G × X is the projection onto the second and
third factor.
We will also refer to a linearized quasicoherent sheaf as an equivariant

quasicoherent sheaf. A morphism of G-equivariant quasicoherent sheaves is
a morphism of quasicoherent sheaves that respects their equivariant struc-
ture. Further, the pullback and pushforward of an equivariant sheaf along
an equivariant map admits a natural equivariant structure.

From a linearization on a quasicoherent sheaf F , one obtains the struc-
ture of a G-module on Γ(X,F) and the structure of a g-module on rational
sections of F . The latter structure satisfies the following Liebniz property:
for u ∈ g, s a section of F , and f a section of OX , we have

u(fs) = u(f)s+ (−1)F̄ufu(s).

Definition 3.13. — If g acts on a supervariety X, and F is a qua-
sicoherent sheaf on X, then a g-linearization of F is a Lie superalgebra
homomorphism g→ End(F) satisfying the above Liebniz rule.

If L is an equivariant line bundle, then if we choose a trivialization ψ :
L|U → OX |U over an open subscheme U , we obtain an action of g on
sections of OX over U , which we write as uψ. For u ∈ g and f a section of
OX over U , the action satisfies

uψ(f) = u(f) + (−1)uF̄ fuψ(1).

TOME 71 (2021), FASCICULE 4
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Remark 3.14. — It is not true that every line bundle has some power
that admits a linearization from a group action, even on a smooth super-
variety. An example is given by P1|n for n > 2, whose Picard group is
Z ⊕ C2n−2(n−2)+1 (see [4]), but only the bundles from the Z factor have a
linearization.
Because of this we will often need an additional assumption that there

exists an equivariant very ample line bundle. The author does not know
whether such a line bundle must exist on a quasiprojective supervariety.

Proposition 3.15. — Let X be a G-supervariety. If X is homogeneous
then for any G-equivariant line bundle L, a non-zero G-submodule V of
Γ(X,L) generates L. Conversely, if X is quasiprojective and admits a very
ample G-equivariant line bundle L, then the converse also holds.

Proof. — Let L be a G-equivariant line bundle on X, and let V ⊆
Γ(X,L) be a nonzero G-submodule. Then if V does not generate L, there
must exist a point x ∈ X(C) such that when we pass to the stalk of L at x
we find that V ⊆ mxLx. Therefore there exists a maximal positive integer
n such that V ⊆ mnxLx.

Let s ∈ V be in mnxLx\mn+1
x Lx. Choose a trivialization ψ : Lx ∼= Ox and

write f = ψ(s) so that f ∈ mnx \ mn+1
x . Then because X is homogeneous

there exists u ∈ g such that u(f) ∈ mn−1
x \mnx . Therefore

uψ(f) = u(f) + (−1)F̄ufuψ(1) ∈ mn−1
x \mnx ,

so in particular u(s) ∈ mn−1
x Lx \ mnxLx and u(s) ∈ V , a contradiction.

Therefore instead V must generate L.
Let X be quasiprojective admitting a very ample G-equivariant line bun-

dle L, and suppose that X is not homogeneous. Then there exists x ∈ X(C)
such that ax is not a submersion. By Proposition 3.11, the pullback mor-
phism OX → (ax)∗OX is not injective. Write K for its kernel, so that we
obtain an exact sequence of G-equivariant sheaves

0→ K → OX → (ax)∗OX .

Since L is G-equivariant and flat as an OX -module, we may twist by it and
obtain for each n ∈ N an exact sequence of G-equivariant sheaves

0→ K(n)→ L⊗n → (ax)∗OX ⊗ L⊗n,

where we write K(n) := K⊗L⊗n. Since L is very ample, by Proposition 2.6
there exists n > 0 such that K(n) is globally generated, and so in particular
Γ(X,K(n)) 6= 0. However by left exactness of global sections, Γ(X,K(n)) ⊆
Γ(X,L⊗n) is a non-zero G-submodule. Since the morphism OX → (ax)∗Ox

ANNALES DE L’INSTITUT FOURIER



SPHERICAL SUPERVARIETIES 1461

is not zero, necessarily Γ(X,K(n)) cannot generate L⊗n, a contradiction,
and we are done. �

Remark 3.16. — This proof shows that if a Lie superalgebra g acts ho-
mogeneously on a supervariety X (see Appendix A for the meaning of
this) then if L is a g-equivariant line bundle and V is a non-zero g-stable
submodule of Γ(X,L), V must generate L.

Corollary 3.17. — If X is an affine G-supervariety and L is a G-
equivariant line bundle on X, then Γ(X,L) admits a non-zero G-stable
Γ(X,OX)-submodule if and only if X is not homogeneous. In particular,
C[X] has no nontrivial G-stable ideals if and only if X is homogeneous.

Proof. — We apply Proposition 3.15, using that if X is affine the global
sections functor is exact. �

3.4. Rational invariants

In the classical world, if an algebraic group G acts on a space X, then
it admits an open orbit if and only if C(X)g = C. In the super world, this
general principle no longer holds.

Example 3.18. — Consider the action of GL(0|n) on X = C0|n by the
standard representation of GL(0|n). This supervariety has one point, and
the orbit of that point is just itself, so there is not an open orbit. We have
C(X) = Λ•(Cn)∗, and this is a multiplicity-free representation of g = gl(n),
so in particular C(X)g = C.

We do have the forward direction:

Proposition 3.19. — If a Lie supergroup G acts on a supervariety X
with an open orbit, we have C(X)g = C.

Proof. — Let f ∈ C(X)g be non-zero, and choose an affine open subva-
riety SpecA of X contained in the open orbit of G on which f is regular.
Then A has no non-trivial g-stable ideals by Corollary 3.17 and the remark
following it. Therefore (f) = A, so f is non-vanishing on A. However, if
x ∈ SpecA(C), then f − f(x) is g-fixed and vanishes at x, i.e. is not in-
veritible, so (f − f(x)) is a g-stable ideal not equal to A. Thus it must be
trivial, i.e. f = f(x), so f is a constant function. �

As for a converse, we may state one for certain algebraic supergroups.
First we need some notation. Suppose that b is a solvable Lie superalge-
bra such that [b1̄, b1̄] ⊆ [b0, b0]. Then by Lemma 1.37 of [6], every finite-
dimensional irreducible representation of b is one-dimensional.
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If V is a representation of b, we write V (b) for the span of the b-
eigenvectors of V , which will be a semisimple representation of b. Write
Λb(V ) for the collection of characters λ of b such that there is a b-eigen-
vector of weight λ in V . Finally, if b acts by vector fields on the functions
of a supervariety X, set

Λ+
b (X) := Λb(C[X]), Λb(X) := Λb(C(X)).

Observe that if A is a superalgebra which b acts on by derivations, then
A(b) is a subalgebra of A.

Proposition 3.20. — Let B be a solvable connected algebraic super-
group such that [b1̄, b1̄] ⊆ [b0, b0] where b = Lie(B). Let X be a B-
supervariety. If C(X)(b) is a multiplicity-free b-representation such that
every non-zero f ∈ C(X)(b) is non-nilpotent, then X has an open B-orbit.
Equivalently, C(X)b = C and C(X)(b) is an integral domain.

Proof. — Write Λ for the character lattice of B, a finitely generated free
abelian group. By our assumptions, C(X)(b) is isomorphic to the group
algebra of a subgroup Λ(X) of Λ, and hence Λ(X) is free of some rank,
say n ∈ N. Choose rational B-eigenfunctions f1, . . . , fn ∈ C(X)(b) that
such that their weights form a Z-basis of Λ(X). Then by removing the
divisors of zeroes and poles of f1, . . . , fn, there exists a B-stable open sub-
variety U of X where f1, . . . , fn are regular and non-vanishing, and hence
C(X)(b) ⊆ C[U ]. We may shrink U further to assume that U0 is normal,
and we still may assume U is B-stable. Now apply Sumihiro’s theorem (see
for instance [13]) using normality of U0 and Corollary 3.7 to find a B-stable
affine open subvariety U ′ of U .
Now we claim that U ′ is a homogeneous B-supervariety. Indeed, if I ⊆

C[U ′] is a nontrivial B-stable ideal, then it admits a B-eigenfunction f ∈ I.
Then f ∈ C(X)(b), so by assumption f is invertible on U , and C[U ′] =
(f) = I. We conclude by Corollary 3.17. �

4. Quasireductive Supergroups and Hyperborels

Definition 4.1. — A supergroup G is quasireductive if G0 is reductive.
We say a Lie superalgebra g is quasireductive if it is the Lie superalgebra
of a quasireductive supergroup.

Example 4.2. — Many important and heavily studied supergroups are
quasireductive, including GL(m|n), OSP (m|2n), P (n), and Q(n).
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Despite having an even reductive part, the representation theory of a
quasireductive group is almost never semisimple. In fact the only quasire-
ductive supergroup with semisimple finite-dimensional representation the-
ory, which is not a group, is OSP (1|2n). See [28] for generalities on quasire-
ductive supergroups and their representation theory.

4.1. Hyperborels

In order to discuss the notion of a spherical supervariety, it is necessary
that we have a well-purposed generalization of Borel subgroup (subalgebra)
to the super case. There are different notions of Borel subalgebras used for
quasireductive Lie superalgebras, although the most common one seems
to coincide with the definition in Section 9.3 of [28]. We use a different
notion that is closer to the definition given in the beginning of Chapter 3
of [19], and agrees with this definition when the Cartan subalgebra of g is
purely even. In order to prevent confusion, we choose to call our subalgebras
hyperborels.

Definition 4.3. — Let g be quasireductive. A hyperborel subalgebra
of g is a subalgebra b ⊆ g such that

• b0 is a Borel of g0 in the usual sense;
• [b1̄, b1̄] ⊆ [b0, b0]; and,
• b is maximal with this property.

We now give a brief discussion of this definition.

Remark 4.4.
• Given a hyperborel subalgebra b and a choice of Cartan subalgebra
h0 ⊆ b0, we have b = h0 n n where n is a nilpotent ideal. We call n
the unipotent radical of b.

• We may always conjugate a hyperborel b by an inner automorphism
of g so that b0 is a chosen Borel of g0.

Remark 4.5. — By definition, hyperborels are solvable and all irreducible
representations of them are one-dimensional (see Lemma 1.37 of [6]). This
property is the primary way in which the notion of hyperborel subalgebra
is a generalization of Borel subalgebra for reductive Lie algebras. Further,
it is this property that is of importance for us in the characterization of
spherical supervarieties (Proposition 5.3 and Theorem 5.5).
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Recall that for Lie superalgebras there is a notion of Cartan subalge-
bras (see [24] and [20]). For a quasireductive Lie superalgebra, a Cartan
subalgebra h is given by a Cartan subalgebra h0 ⊆ g0, and then h is the
centralizer of h0 in g.

Definition 4.6. — We say a quasireductive Lie superalgebra g is
Cartan-even if for a Cartan subalgebra h ⊆ g, h = h0. We say a quasire-
ductive supergroup G is Cartan-even if Lie(G) is.

The notion of hyperborel is most natural for supergroups and super-
algebras which are Cartan-even. If g is Cartan-even then the notion of
hyperborel agrees with the definition of Borel given in [19]. Further, the
notion of hyperborel and Borel (as defined in [28]) coincide if g is one of
the following Cartan-even superalgebras: gl(m|n), sl(m|n) for m 6= n and
(m,n) 6= (1, 1), psl(n|n) or sl(n|n) for n > 3, p(n), osp(m|2n), or is one
of the exceptional basic simple Lie superalgebras. This is proven in Propo-
sition 4.6.1 of [19]. The case of p(n) is not considered there, but one can
show the notions agree for this superalgebra as well (although they do not
agree for the derived subalgebra of p(n)).

Remark 4.7. — If g is Cartan-even and b is a Borel subalgebra of g (as
defined in [28]), then b is contained in a hyperborel subalgebra. Indeed,
a Borel subalgebra satisfies all the conditions of being a hyperborel but
possibly maximality.

However if g is not Cartan-even, for instance g is the queer Lie super-
algebra q(n), then hyperborels greatly differ from Borels, as they do not
contain a Cartan subalgebra.

Remark 4.8. — If g is quasireductive and b a hyperborel of g, then for
a finite dimensional irreducible representation V of g, dimV (b) > 1 by
Remark 4.5. However, it is possible that dimV (b) > 1, and thus we no
longer have a bijective correspondence between certain characters of the
Borel and finite dimensional irreducible representations.
Indeed even when g is Cartan-even this phenomenon can occur; in [29],

a nontrivial central extension of the derived subalgebra of p(4) is consid-
ered, along with an irreducible representation Vt deforming the standard
representation of p(4). If t 6= 0, is shown that Λ2Vt is irreducible. However
there is a hyperborel subalgebra given by (in the notation of the paper)
b = g−2⊕b0⊕g1, where b0 is a Borel subalgebra of g0. One can check that
Λ2V

(b)
t is two-dimensional for any t.
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However, if a hyperborel subalgebra b contains a Borel subalgebra then
dimV (b) = 1 for an irreducible representation V of g, by highest weight
theory.

Definition 4.9. — If G is quasireductive, we call a subgroup B a hy-
perborel subgroup if it is connected and gotten by integrating a hyperborel
subalgebra b of g. If n is the unipotent radical, we write N for the connected
subgroup of B it integrates to in G and call it the maximal unipotent sub-
group of B. Finally, we write T for the connected subgroup of G that a
chosen Cartan subalgebra h0 ⊆ b integrates to, which will be a maximal
torus of G0; we call T a maximal torus of B.

Definition 4.10. — If X is a G-variety and B a hyperborel of G we
set Λ+

B(X) := Λ+
b (X) and ΛB(X) := Λb(X) (or simply Λ+(X), resp. Λ(X)

when there is no confusion).

There is a canonical identification of weights of T with characters of B via
the composition of maps T → B → B/N . The algebra C[X]N has a natural
T -action, and Λ+

B(X) are the weights of this action under this identification.
Also observe that neither Λ+

B(X) nor ΛB(X) are a monoid or group in
general, due to the presence of nilpotent functions. For example, consider
the action of an even torus on the functions of a purely odd representation
of it.

4.2. G0-equivariant gradings of supervarieties

Definition 4.11. — Let G0 be an algebraic group. For a G0-super-
variety X, we say it has a G0-equivariant grading if there exists a G0-
equivariant sheafM on X0 and a G0-equivariant isomorphism X ∼= Λ•M.

The following question was considered by Rothstein in [21] in the analytic
setting. Adapting the proof ideas there to the algebraic setting one can
prove the following proposition. A proof is given in the author’s PhD thesis.

Proposition 4.12. — Let G0 be a reductive group, X a G0-super-
variety. If X is graded, then X admits a G0-equivariant grading. In par-
ticular, if G is quasireductive and X is a graded G-supervariety, then X

admits a G0-equivariant grading.

5. Spherical Supervarieties

Let G be quasireductive.
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Definition 5.1. — We say a G-supervariety X is spherical if there
exists a hyperborel B of G with an open orbit on X. If a hyperborel B has
an open orbit on X, we say that X is B-spherical.

Remark 5.2.

• If a G-supervariety X is spherical, then the G0 variety X0 is also
spherical.

• Note that a spherical supervariety need not be spherical with re-
spect to every hyperborel; in fact if g is basic classical this occur-
rence would be a degeneracy.

Proposition 5.3. — Let G be quasireductive, B a hyperborel of G,
and X a supervariety. Then X is B-spherical if and only if C(X)(b) is a
multiplicity-free b-module whose nonzero elements are non-nilpotent.

Proof. — This follows immediately from Proposition 3.20. �

5.1. Affine Spherical Supervarieties

In the classical case we have a characterization of affine spherical varieties
by the fact the C[X] is a multiplicity-free representation. One might hope
that this generalizes to the super case. Of course there is a first issue that for
supergroups completely reducibility is a rare phenomenon to begin with.
But one might hope that perhaps C[X]N being multiplicity-free as a T -
module is sufficient. This turns out to not be the case as the next examples
demonstrate.

Example 5.4.

• Consider the action of GL(0|n) on C0|n by the standard represen-
tation. The algebra of functions is Λ•(Cn)∗, which is completely
reducible and multiplicity-free. However, there is only one point
and the orbit of it under the whole group is itself, so this space is
not spherical.

• An example which has a nontrivial even part is given by consid-
ering G = OSP (1|2) and letting X = OSP (1|2)/T , where T is a
maximal torus of G0. By the representation theory of OSP (1|2)
and Frobenius reciprocity, C[X] ∼=

⊕
n>0 ΠnL(n), where L(n) is

the irreducible representation of highest weight n with even highest
weight vector. Hence C[X] is completely reducible and multiplicity-
free. However, no hyperborel admits an open orbit since the odd
dimension of X is 2 while the odd dimension of any hyperborel is 1.
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The next theorem demonstrates that the issue with the above two spaces
is that some of the highest weight functions are nilpotent.

Theorem 5.5. — Let X be an affine G-supervariety, B a hyperborel of
G with maximal unipotent subgroup N and maximal torus T . Then the
following are equivalent:

(1) X is spherical for B.
(2) X0 is spherical for B0, and every nonzero B-highest weight function

in C[X] is non-nilpotent.
(3) Every nonzero B-highest weight function in C[X] is non-nilpotent,

and dimC[X]Nλ 6 1 for all weights λ of T .
(4) C[X]N is an even commutative algebra without nilpotents, and the

natural T -action is multiplicity-free.

Proof.
(1) =⇒ (2). — Let x ∈ X(C) be such that ax : B → X is a submersion,

so that a∗x is injective. In C[B], all B-highest weight functions are non-
nilpotent, and therefore the same must be true of the functions on X.
(2) =⇒ (3). — (Since X0 is spherical for B0, we have dimC[X0](b0)

λ 6
1 for all λ. Since the B-highest weight functions are non-nilpotent, the
restriction map C[X](b) → C[X0](b0) is injective, and we are done.
(3) =⇒ (4). — We see that C[X]N is the subalgebra generated by the

B-highest weight functions, so this is clear.
(4) =⇒ (1). — Let S be the submonoid of the character lattice of T

determined by C[X]N . Then because group generated by S is finitely gen-
erated, of rank say m, there exists weights λ1, . . . , λm ∈ S such that the
monoid generated by S and −λ1, . . . ,−λm is a group. Then if we let U be
the non-vanishing locus of fλ1 , . . . , fλm

, all B-eigenfunctions in C[U ] will be
invertible. Further, this open subscheme U will be B-stable. Choose a point
x ∈ U(C), and consider the orbit map ax : B → X. Since all fλ become
units on U , they must not be in the kernel of a∗x. But if a∗x is not injec-
tive, the kernel will contain a B-highest weight function, a contradiction.
Therefore ax must be a submersion, and so X is spherical. �

Definition 5.6. — If aG-supervarietyX is B-spherical, define the rank
of X to be the rank of the lattice ΛB(X).

A corollary of the proof of the above proposition is the following.

Corollary 5.7. — If X is B-spherical of rank m, there exists m B-
highest weight functions fλ1 , . . . , fλm

∈ C[X] such that their common non-
vanishing set is the open B-orbit.
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Corollary 5.8. — If X is spherical, the socle of C[X] is multiplicity
free.

Proof. — Suppose that an irreducible representation L shows up with
multiplicity greater than 1. If B is a hyperborel for which X is B-spherical,
there will be two B-eigenfunctions of the same weight in C[X]. This con-
tradicts Theorem 5.5(3). �

Now suppose that X is an affine B-spherical supervariety and U is the
open B-orbit. By the reasoning given in the proof of Proposition 3.20, we
know that all rational b-eigenfunctions will be regular (and in fact non-
vanishing) on U . Hence C[U ]N = C(X)(b), and because these functions are
all non-nilpotent we have

C(X)(b) = C[U ]N ∼= C[U0]N0 = C(X0)b0

by restriction of functions. Further, these algebras are all isomorphic to
group algebras on ΛB(X), a finitely generated free abelian subgroup of the
character lattice of T .
Now on all of X, restriction induces an injective map C[X]N → C[X0]N0 ,

and hence an inclusion Λ+
B(X) ⊆ Λ+

B0
(X0), and thus Λ+

B(X) will be a
submonoid of Λ+

B0
(X0). Note that C[X]N is the monoid algebra on Λ+

B(X)
and C[X0]N0 is the monoid algebra on Λ+

B0
(X0).

It is a classical fact about spherical varieties that C[X0]N0 is finitely gen-
erated, so choose generators g1, . . . , gn which are b0-eigenfunctions. Note
that U0 is precisely the non-vanishing locus of these functions. We may
uniquely lift these to b-eigenfunctions f1, . . . , fn on U .
Let us now assume in addition that X is graded. By Proposition 4.12

we may choose a G0-equivariant grading of X. Thus we may write C[X] =
Λ•M , whereM is a finitely generated G0-equivariant C[X0]-module. Let us
assume the largest non-zero exterior power of M is q. Then we may write

fi = gi +mi1 + · · ·+miq where mij ∈ ΛjMg1···gn .

Here Mg1···gn
is the localization of M to the non-vanishing locus of

g1, . . . , gn. We may do this because since fi is a b-eigenvector, each mij

must be a b0-eigenvector and it must be regular on the open B0-orbit. Now
the obstruction to regularity of fi is the poles of mij along g1 · · · gn = 0.
For each mij , there exists qij ∈ N such that (g1 · · · gk)qijmij ∈ ΛjM . By
choosing an integer p larger than q + maxi,j qij , we now have:

Proposition 5.9. — If X is graded then there exists an integer p > 0
such that fr11 · · · frn

n is regular whenever r1, . . . , rn > p.

ANNALES DE L’INSTITUT FOURIER



SPHERICAL SUPERVARIETIES 1469

Proof. — Expanding out the product, one sees that for any integer p
chosen as described in the paragraph before the proposition, the poles will
be resolved. �

Corollary 5.10. — If X is graded then the set Λ+
B(X), which is a

submonoid of Λ+
B0

(X0), generates ΛB(X) = ΛB0(X0) as a group. Further
it is Zariski dense in the vector space spanned by its weights.

Proof. — By Proposition 5.9, Λ+
B(X) contains the lattice points of a

translated orthant of R⊗Z ΛB(X), and so the results follow. �

Write X//N := SpecC[X]N . Then by Theorem 5.5(4), X//N is an even
variety and admits a natural T -action such that C[X//N ] is a multiplicity-
free T -module. In particular,X//N has an open T -orbit, hence is essentially
a toric variety but that it need not be normal or Noetherian. Indeed, we
observe it is isomorphic to the group algebra of Λ+

B(X), so being normal is
equivalent to this monoid being saturated, and being Noetherian is equiv-
alent to the monoid being finitely generated. We now present examples
showing how these properties can fail.

Example 5.11. — Consider the action of G = GL(1|2) on X = S2C1|2

as the second symmetric power of the standard representation. This is a
spherical supervariety as one can check (this was checked in [33]), and is
spherical exactly with respect to the hyperborels B+ and B− of upper
and lower triangular matrices, respectively. The coordinate ring C[X] is
a supersymmetric polynomial algebra given by S•(S2(C1|2)∗) as both an
algebra and a G-module.
As a G0 = GL(1) × GL(2)-representation X0 is a sum of two one-

dimensional representations of distinct weights. Therefore the B0-highest
weight functions of X0 are the monomials in two G0-eigenfunctions x, y,
where we let x have weight λ and y have weight µ. Let ξ, η ∈ (S2C1|2)∗1̄
be odd weight vectors of weights α, β. Then C[X] = C[x, y, ξ, η]. One can
show that ξη is a G0-eigenvector of weight λ+µ, and so one can show that
for any hyperborel B the rational B-eigenfunctions on X are, up to scalar,
all of the form:

fij = xiyj + cijx
iyj

ξη

xy

where i, j ∈ Z and cij ∈ C is a coefficient in C to be determined depending
on the choice of hyperborel. For the hyperborel B+, we find that cij = i and
for B− we find that cij = −j. These values for cij tell us which rational B-
eigenfunctions are regular on all of X, or equivalently tell us what Λ+

B±(X)
are. We draw the two monoids below to visualize the result:
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µ

λ

(a) Λ+
B+ (X)

µ

λ

(b) Λ+
B−

(X)

For comparison, the monoid Λ+
B0

(X) for any Borel subgroup B0 of G
consists of all the lattice points that are a nonnegative linear combination
of λ and µ. This example demonstrates that Λ+

B(X) need not be finitely
generated as neither of the above monoids are finitely generated.

Example 5.12. — Consider the action of G = OSP (3|4) × OSP (3|4)
on X = OSP (3|4) by left and right multiplication. The notion of Borel
and hyperborel coincide for both OSP (3|4) and OSP (3|4)×OSP (3|4). If
B is a Borel of OSP (3|4), then X is B × B−-spherical where B− is the
opposite Borel of B. As we will see in the examples section, Λ+

B×B−(X)
will be exactly the B-dominant weights of OSP (3|4). Now if we choose the
Borel determined by the simple roots δ1 − δ2, δ2 − ε1, ε1 as described in
Section 1.3.3 of [6], then by Theorem 2.11 of [6] the weight λ = ε1 + ε2 +
δ1 + δ2 is not dominant while kλ is dominant for k > 2. Thus Λ+(X) is will
not be saturated in this case.

5.2. Spherical quasiprojective supervarieties

Let G be quasireductive, X a quasiprojective G-supervariety, and B a
hyperborel subgroup.

Theorem 5.13. — Let X be a quasiprojective G-supervariety, B a hy-
perborel subgroup of G with unipotent radical N and maximal torus T .
Assume that there exists a very ample B-equivariant line bundle on X.
Then the following are equivalent:

(1) X is spherical for B.
(2) X0 is spherical for B0, and for every B-equivariant line bundle L,

the non-zero elements of Γ(X,L)N are non-vanishing at some point.
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(3) For every B-equivariant line bundle L, the non-zero elements of
Γ(X,L)N are non-vanishing at some point, and dim Γ(X,L)Nλ 6 1
for all weights λ of T .

Proof.

(1) =⇒ (2). — Let L be a B-equivariant line bundle on X. Write U for
the open B-orbit on X. Then if σ ∈ Γ(X,L) is a B-eigenvector, restricting
to U it spans a nonzero B-submodule of Γ(U,L). Since U is a homogeneous
B-supervariety, by Proposition 3.15 σ must generate L|U , and thus must
be non-vanishing on U .

(2) =⇒ (3). — It suffices to check that for a B-equivariant line bundle
L, dim Γ(X,L)Nλ 6 1 for all weights λ of T . Since X0 is spherical for B0
and i : X0 → X is G0-equivariant, i∗L is a B0-equivariant line bundle,
and the pullback morphism Γ(X,L) → Γ(X0, i

∗L) is B0-equivariant. The
map Γ(X,L)N → Γ(X0, i

∗L)N0 is injective by assumption, and since X0 is
spherical we have dim Γ(X0, i

∗L)N0
λ 6 1 for all weights λ.

(3) =⇒ (1). — Let L be a B-equivariant very ample line bundle on X.
Then if X does not have an open B-orbit, it must follow that C(X)(b)

either has a nilpotent function or is not multiplicity-free. If f ∈ C(X)(b)

is homogeneous, there exists n > 0 and a homogeneous global section s ∈
Γ(X,L⊗n) such that fs ∈ Γ(X,L⊗n) is also a global section. Let V ⊆
Γ(X,L⊗n) be the subspace of sections s such that fs ∈ Γ(X,L⊗n). Then V
is a B-submodule of Γ(X,L⊗n) and thus admits a non-zero B-eigenvector
s2. Let s1 := fs2. Then by construction s1 is also a B-eigenvector. In
particular, s1 and s2 both are non-vanishing at some point by assumption,
and thus f = s1/s2 is also non-vanishing at some point and therefore cannot
be nilpotent.
If f, g ∈ C(X)(b) are b-eigenvectors with the same weight for the action

of b, then f/g will be b-invariant. Thus by our construction there exists
an n > 0 and s1, s2 ∈ Γ(X,L⊗n)(b) such that f = s1/s2, and thus s1
and s2 have the same weight for b. But by assumption Γ(X,L⊗n)N is a
multiplicity-free T -module, so we obtain a contradiction. This completes
the proof. �

6. Examples

We present some examples of spherical supervarieties.
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6.1. Spherical Representations

Irreducible spherical representations of reductive algebraic groups were
originally classified by Kac in [11]. In [33], the author classified all inde-
composable spherical representations of the groups GL(m|n), OSP (m|2n),
Pn|n, and the basic exceptional simple groups. The case of Q(n) is also
looked at, however a different notion of spherical was used for this super-
group there.
We found there are a few infinite families of irreducible representations,

along with certain small exceptional cases. Below is a table of the in-
finite families; for the rest, we refer the reader to the paper. We write
GLm|n, OSPm|2n, and Pn|n respectively for the standard representations
of GL(m|n), OSP (m|2n), and P (n) respectively. We also state the dimen-
sion of the representation and whether the algebra of functions on it is
completely reducible.

V dims V Completely red.?
GLm|n (m|n) Yes
S2GLm|n (n(n−1)

2 + m(m+1)
2 |mn) Yes

ΠS2GLn|n (n2|n2) Yes
ΠS2GLn|n+1 (n(n+ 1)|n(n+ 1)) Yes

OSPm|2n, m > 2 (m|2n) Iff m is odd
or m > 2n

ΠOSPm|2n (2n|m) Yes
ΠPn|n (n|n) No

6.2. Symmetric Supervarieties

Let g be quasireductive. Given an involution θ of g, we write k = gθ for
the fixed points of θ, and call the pair (g, k) a supersymmetric pair. If G is
a Lie supergroup and K a subgroup with Lie(G) = g and Lie(K) = k, we
call the coset space G/K a symmetric supervariety.

In the classical world, symmetric varieties for reductive groups are always
spherical by the Iwasawa decomposition. We recall how this decomposition
works now, generalizing it to the super case. We keep the same notation,
letting g be quasireductive, θ an involution of g with fixed points k and
(−1)-eigenspace p. Then let a ⊆ p be a maximal toral subalgebra of p, i.e.
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a maximal abelian subspace of p0 with the property that the elements of a
are semisimple in g0. Then we may decompose g into weight spaces under
the adjoint action of a. Write Σ ⊆ a∗ for the set of non-zero weights under
this action. Choosing a generic hyperplane we obtain a subset Σ+ ⊆ Σ of
positive weights, and we define

n =
⊕
α∈Σ+

gα.

Write C(a) for the centralizer of a in g. Then we have C(a) = C(a) ∩ k ⊕
C(a) ∩ p.

Proposition 6.1. — The condition C(a) ∩ p = a is equivalent to the
following decomposition of g:

g = k⊕ a⊕ n.

We call such a decomposition an Iwasawa decomposition of the symmetric
pair (g, k) (or of the involution θ).

It is a well-known theorem that if g = g0 is reductive then every sym-
metric pair has an Iwasawa decomposition (see for instance Section 26.4
of [34]). However in the super world this no longer remains true. In partic-
ular, it is possible for C(a) ∩ p1̄ 6= 0. However, we do have the following:

Theorem 6.2. — If g is a basic classical simple Lie superalgebra and θ
is an involution that preserves the invariant bilinear form on g, then either
θ or δ ◦ θ has an Iwasawa decomposition, where δ ∈ Aut(g) is the grading
automorphism δ(x) = (−1)xx.

This result is proven in [31] using the framework of generalized root
systems as developed by Serganova in [27]. There the restricted root systems
of symmetric pairs is also studied as well as the notion of Satake diagrams.
The significance of an Iwasawa decomposition for our purposes is that

Theorem 6.3. — If a symmetric pair (g, k) admits an Iwasawa decom-
position, then there exists a hyperborel b of g such that b + k = g. In
particular, a symmetric supervariety G/K constructed from this symmet-
ric pair is spherical.

Proof. — Write g = k ⊕ a ⊕ n for the Iwasawa decomposition. Write
Σ+ ⊆ a∗ for the positive weights defining n. Let h0 ⊆ g0 be a Cartan
subalgebra containing a. Write ∆ ⊆ h∗ for the roots of g with respect
to h. Then we have a natural projection map h∗ → a∗ inducing a map
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∆ → Σ ∪ {0}. Choose a generic hyperplane in ∆ so that the image of ∆+

under this projection lands in Σ+ ∪ {0}. Then consider

b′ = h⊕
⊕
α∈∆+

gα

Then b′ satisfies all the properties of a hyperborel apart possibly from max-
imality, and thus is contained in a hyperborel subalgebra b of g. Further,
a⊕ n ⊆ b′ ⊆ b, and therefore k + b = g completing the proof. �

Below we list all supersymmetric pairs (up to conjugacy) for the algebras
gl(m|n), osp(m|2n), p(n), and the simple basic exceptional algebras. For all
cases but ab(1|3), g(1|2), and d(2|1;α) we refer to the classification in [26];
these remaining the cases were communicated to the author by Serganova.
For each we state whether or not the pair is spherical as well as whether it

admits an Iwasawa decomposition. Note that we only consider involutions
of gl(m|n) that fix the center.

6.3. G as a spherical supervariety

Let G be a quasireductive supergroup. Then G×G acts homogeneously
on G by left and right translation, and this identifies G as a symmetric
supervariety with respect to the involution θ of G × G which swaps the
factors.
Some is already known about the structure of C[G] as a representation.

For instance, in [28], the structure as a G-module under left translation
was computed and was shown to be a sum of injective modules. In [16] a
filtration of C[GL(m|n)] as a G×G-module was constructed following the
ideas of Donkin and Koppinen in the modular case, using the highest weight
category structure of representations of GL(m|n). Serganova’s result on the
structure of C[G] under left translation also follows from Green’s work on
coalgebras in [9], generalized to the setting of supercoalgebras. We state
some further results on C[G] looking at its structure as a G × G-module
that are straightforward extensions of results found in [9], in particular
on indecomposable block summands and the socle of C[G]. Then we state
a result that describes the Loewy layers of the socle filtration of C[G]
(Theorem 6.14) which the author has not found the literature.

Theorem 6.4. — Let g be a quasireductive Lie superalgebra and con-
sider the supersymmetric pair (g×g, g) defined by the involution θ of g×g

which swaps the factors. Then this supersymmetric pair admits an Iwasawa
decomposition if and only if g is Cartan-even.
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Symmetric Pair Spherical? Iwasawa decomposition?
(g, g0) Iff g = g0 Iff g = g0

(gl(m|n),
gl(r|s)× gl(m− r|n− s))

Iff r > m− r and s > n− s
or r 6 m− r and s 6 n− s Same condition

(gl(m|n), osp(m|2n)) Yes Yes
(gl(n|n), p(n)) Yes No
(gl(n|n), q(n)) Yes Yes
(osp(m|2n),

osp(r|2s)× osp(m− r, 2n− 2s))
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(osp(2m, 2n), gl(m|n)) Yes Yes
(p(n), p(r)× p(n− r)) Iff r = 1 No

(p(n), gl(r|n− r)) Iff n = 2, 3 No
(d(2|1;α), osp(2|2)× so(2)) Yes Yes

(ab(1|3), gosp(2|4)) Yes Yes
(ab(1|3), sl(1|4)) Yes Yes

(ab(1|3), d(2|1; 2)) Yes Yes
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Proof. — In this case a maximal toral subalgebra of the (−1)-eigenspace
is given by a = {(h,−h) : h ∈ h0} where h0 ⊆ g0 is a Cartan subalgebra of
g0. Therefore the centralizer of a is just the centralizer of h0 × h0 in g× g.
This is equal to h0 × h0 if and only if h0 is a Cartan subalgebra of g, i.e. g
is Cartan-even. �

Proposition 6.5. — If G is Cartan-even, the finite-dimensional irre-
ducible representations of G×G are exactly those of the form L1 �L2 for
finite-dimensional irreducible representations L1, L2 of G.

Proof. — A representation of this form is irreducible because EndG(Vi) ∼=
C for each i and the Jacobson density theorem. Conversely, if L is an ir-
reducible representation of G×G then after choosing a Borel subgroup, it
has a highest weight λ1 + λ2, where λi is a weight of ith copy of G in the
direct product. Thus L = LB(λ1)� LB(λ2). �

Definition 6.6. — Let V be a finite-dimensionalG-module correspond-
ing to the coaction V → C[G] ⊗ V . Define εV : V � V ∗ → C[G] to be the
canonical G×G-equivariant map corresponding to the coaction. Notice that
it is always nonzero if V is nonzero. Equivalently, εV may be defined by
Frobenius reciprocity; it is the unique element of HomG×G(V � V ∗,C[G])
that corresponds to the natural pairing V ⊗V ∗ → C under the isomorphism

HomG×G(V � V ∗,C[G]) ∼= HomG(V ⊗ V,C)

Remark 6.7. — If V is a finite-dimensional G-representation then there
is a canonical isomorphism of G × G-modules V � V ∗ ∼= (ΠV ) � (ΠV )∗,
and this map factors εV through εΠV . In particular, Im εV = Im εΠV .

For the rest of this section we will assume that G is Cartan-even. Given
an irreducible representation L of G, the map εL : L � L∗ → C[G] is
injective by irreducibility and the fact that εL is not the zero map. In this
way we obtain a natural inclusion⊕

L

L� L∗ ⊆ soc(C[G]),

where the sum runs over all irreducible representations of G up to parity.
We now go about showing this is the entire socle.
LetB′ be a Borel subgroup ofG (as defined in [28]) and (B′)− its opposite

Borel. Let B be a hyperborel subgroup containing B′ and B− a hyperborel
subgroup containing (B′)−. Then B×B− is a hyperborel of G×G, and G
is B ×B−-spherical. Further, (B−)0 is the Borel subgroup of B0 in G0.

Lemma 6.8. — If L is an irreducible representation of G, then
L(B) = L(B′).
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Proof. — Indeed L(B) ⊆ L(B′) but by Remark 4.5, 1 6 dimL(B) 6
dimL(B′) = 1. �

Definition 6.9. — For a hyperborel subgroup B of G, we say an inte-
gral weight λ is B-dominant if there exists an irreducible representation L
of G such that ΛB(L) = {λ}.

Recall that (for instance by the Peter–Weyl theorem),

Λ+
B0×(B−)0

(G0) = {(λ,−λ) : λ is a B0-dominant weight}.

Lemma 6.10. — We have

Λ+
B×B−(G) = {(λ,−λ) : λ is a B-dominant weight}.

Proof. — By the inclusion Λ+
B×B−(G) ⊆ Λ+

B0×(B−)0
(G0) we know that

Λ+
B×B−(G) must be contained in the RHS. However our socle computation

above shows that L(λ) � L(λ)∗ ⊆ C[G] for all B-dominant weights λ,
and this is exactly the G × G irreducible representation of highest weight
(λ,−λ). �

Corollary 6.11. — soc(C[G]) ∼=
⊕

L L�L
∗, where the sum runs over

all irreducible representations of G up to parity.

We explain further the structure of C[G]. Let Rep(G) denote the category
of finite-dimensional representations of G. Then we may decompose Rep(G)
into a sum of simple blocks, where a block B is an abelian subcategory of
Rep(G) such that if B′ is another block distinct from B, then Exti(V, V ′) =
Exti(V ′, V ) = 0 for all i and all objects V of B and V ′ of B′. A block B is
simple if it cannot be decomposed into a sum of smaller, nontrivial blocks.
Notice that every block must contain an irreducible representation.
Given a block B of G, we denote by ΠB the block consisting of all G-

modules ΠV where V is in B. If we write BlG for the set of blocks of G,
we want to consider the set BlG / ∼ where ∼ is the equivalence relation on
blocks generated by B ∼ ΠB for all blocks B. For B ∈ BlG / ∼, we write
IrrB for the set of irreducible representations that appear in B up to parity.
The following is an analogue of Theorem (1.5g)(ii) and Theorem (1.6a)
in [9].

Proposition 6.12. — We have as a G×G-module

C[G] =
⊕

B∈BlG /∼

MB

where MB is an indecomposable G×G-module given by

MB =
∑
V ∈B

Im εV .
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Further,
soc(MB) =

⊕
L∈IrrB

L� L∗.

Remark 6.13. — It follows MB is finite-dimensional if and only if IrrB
is finite. This example shows another phenomenon that may occur in the
super case: given a spherical G-supervariety X, C[X] need not be a direct
sum of finite-dimensional G-modules.

We can say more about the socle filtration of MB, and thus of C[G].
Recall that for a finite-dimensional G-module V , the Loewy length of V ,
which we write as ``(V ), is defined to be the length of a minimal semisimple
filtration of V (or equivalently the length of the socle or radical filtration of
V ). The first of the following results is an analogue of what was essentially
known in [9] for coalgebras. The author has not found the second result in
the literature. A proof is given for more general coalgebras in [32].

Theorem 6.14. — For each block B ∈ BlG / ∼ we have:
•

sockMB =
∑

V ∈B, ``(V )6k

Im εV

• For simple G-modules L,L′ which lie in a block of the equivalence
class B, we have

[sockMB/sock−1MB : L′ � L∗] = [L′ : sockI(L)/sock−1I(L)]

= dim HomG(P(L′), sock I(L)/sock−1I(L))

6.4. The case G = GL(1|1)

Let G = GL(1|1), and g = LieG. We give a very explicit description of
the g×g action on C[G]. In this case, there is only one block of Rep(G) which
is not semisimple, the principal block B0, and it contains the irreducible
representations where the center of gl(1|1) acts trivially. We draw a picture
depicting the local structure of MB0 below.
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Note that MB0 is infinite-dimensional since there are infinitely many
nonisomorphic simple modules in B0. Each dot in the picture represents
a weight vector, with the bottom and top rows having even parity and
the middle row having odd parity. We write u, v for the action of the odd
weight vectors of gl(1|1) by left translation, and u, v for the action of the
odd weight vectors by right translation. One can see rather explicitly here
that under left or right translation only this is just a sum of injective
modules.

6.5. Group-graded supergroups and actions

Next we study spherical varieties for an especially well-understood class
of quasireductive supergroups, those which are group-graded. We first give
a definition along with a brief discussion of group-graded supergroups and
their actions. This will closely follow the definitions and theorems of Sec-
tion 4 of [35], except that we are working in the algebraic category and not
the complex analytic category.

Introduce the category GSV whose objects are supervarieties of the form
X = (|X0|,Λ•N ) where X0 is a variety and N is a coherent sheaf on X0.
In other words the objects are graded supervarieties with a given choice
of grading. This endows all objects of GSV with a canonical Z-grading on
their structure sheaf. We then define morphisms in this category to be those
morphisms of supervarieties that preserve the given Z-gradings.
There is a natural functor gr from the category of locally graded super-

varieties to GSV. On objects it is given by

grX =
(
|X|,

⊕
i>0
J iX/J i+1

X

)
,

so that in particular |X| = | grX| and X(C) = | grX(C)|. Note that the
natural map ΛiJX/J 2

X → J iX/J
i+1
X is an isomorphism because of our

locally graded assumption. For a morphism ψ : X → Y we let grψ :
grX → grY be the same map of underlying topological spaces and set

(grψ)∗ :
⊕
i>0
J iY /J i+1

Y → (grψ)∗
⊕
i>0
J iX/J i+1

X

to be
(grψ)∗(f + J iY ) = ψ∗(f) + J iX

where f is a section of J i−1
Y .
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If X and Y are locally graded supervarieties, then X × Y is a locally
graded supervariety in a natural way, and JX×Y = p∗XJX + p∗Y JY , where
pX , pY are the natural projection maps. On the other hand, given two
graded supervarieties X ′ = (|X ′|,Λ•NX′), Y ′ = (|Y ′|,Λ•NY ′), we define
their direct product in GSV to be the direct product of supervarieties X ′×
Y ′ with the natural splitting OX′×Y ′ = Λ•(p∗X′0NX′ ⊕p

∗
Y ′0
NY ′). Then there

is a canonical isomorphism in GSV gr(X×Y ) ∼= grX×grY coming from the
fact that taking tensor product commutes with taking associated graded
for filtered vector spaces with finite filtrations.
If G is an algebraic supergroup, then using the canonical isomorphism

gr(G×G) ∼= grG× grG we have that grG with the maps grmG, gr eG and
gr sG form an algebraic supergroup. If g = LieG we write ggr := Lie grG.
Further, if a : G × X → X is an action of a Lie supergroup on a locally
graded supervariety X, then gr a : gr(G×X) ∼= grG×grX → grX defines
an action of grG on grX.

Definition 6.15. — If G is a supergroup, we call grG the group-graded
supergroup gotten from G, and we say G is a group-graded supergroup if
G ∼= grG as supergroups. If a : G×X → X is an action of G on a locally
graded supervariety X, we call gr a the graded action of grG on grX, and
we say that a is a graded action if it is isomorphic to gr a in the natural
sense.

Remark 6.16. — As algebraic supergroups are smooth affine superva-
rieties, they are always graded. The property of being group-graded is
stronger in that it requires the multiplication and inversion morphisms
to respect some grading.

We give an explicit construction of grG. Being affine the supergroup G
is graded, so fix a grading of G so that its structure sheaf is equipped with
a Z-grading. We call G with this chosen grading grG, and we think of it
as an object of GSV. This choice of grading determines a grading of G×G,
and thus we may write

m∗G =
⊕
i>0

(m∗G)i, s∗G =
⊕
i>0

(s∗G)i

where (m∗G)i, respectively (s∗G)i increase the Z-grading of an element by
exactly i. We set m∗grG = (m∗G)0, s∗grG = (s∗G)0, and e∗grG = e∗G, and
these are all algebra homomorphisms. In this way, the induced maps on the
supervariety G given by mgrG, sgrG, and egrG become morphisms in GSV
and define the structure of a supergroup on grG, and thus this supergroup
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is group-graded. It follows in particular that we may identify (grG)0 and
G0 as algebraic groups.
Now since we have constructed grG so that it is the same supervariety as

G (the only difference being that it has a chosen Z-grading on its structure
sheaf), we have an identification TeG = Te grG. Thus we may canonically
identify g ∼= ggr as super vector spaces. Given ue ∈ TeG, we write uL (resp.
uR) for the corresponding G right-invariant (resp. G left-invariant) vector
field on G, and gruL (resp. gruR) for the corresponding grG right-invariant
(resp. grG left-invariant) vector field on G. Using the Z-grading on C[G]
we may write uL =

∑
i∈Z(uL)i (resp. uR =

∑
i∈Z(uR)i) as endomorphisms

of k[G], where (uL)i (resp. (uR)i) changes the Z-grading by i.

Lemma 6.17. — Let ue ∈ TeG. If ue is even then gruL = (uL)0 and
gruR = (uR)0, and if ue is odd then gruL = (uL)−1 and gruR = (uR)−1.

Proof. — We prove this for right-invariant vectors, with the case of left-
invariant vector fields being similar. have

uL = −(ue ⊗ 1) ◦ (m∗G) =
⊕
i>0
−(ue ⊗ 1) ◦ (m∗G)i.

For f ∈ C[G]k, (m∗G)i(f) ∈
⊕

j C[G]j ⊗ C[G]k+i−j . If ue is even, then ue
vanishes on C[G]i for i > 0, so

−(ue ⊗ 1) ◦ (m∗G)i = (uL)i,

so gruL = (uL)0. If ue is odd, then ue vanishes on C[G]i for i 6= 1, so

−(ue ⊗ 1) ◦ (m∗G)i = (uL)i−1,

so gruL = (uL)−1. �

Corollary 6.18. — We have [ggr
1̄ , g

gr
1̄ ] = 0. In fact a supergroup G is

group-graded if and only if [g1̄, g1̄] = 0, where g = LieG.

Proof. — For the first statement, the supercommutator of two degree
(−1)-maps is of degree (−2) with respect to the Z-grading. However there
are no vector fields of degree (−2) on a graded supervariety, thus the su-
percommutator must be zero. A proof of the second statement is given in
Proposition 4.4 of [35]. �

Definition 6.19. — A Lie superalgebra g is graded if [g1̄, g1̄] = 0.

Now G0 × G0 acts on G by left and right translation. Using Koszul’s
realization of C[G] as a coinduced algebra on C[G0] (see [14]), which gives
a natural grading of G, we obtain a natural G0 × G0-equivariant grading
(this does not require that G0 is reductive; if G0 is reductive we could also
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use Proposition 4.12 to find a G0 × G0-equivariant grading). Thus if we
constructed grG as above, then using the G0 ×G0-equivariant grading we
would have that if ue is even, uL = (uL)0 and uR = (uR)0 since they will
preserve the Z-grading. Thus we have shown:

Lemma 6.20. — If we construct grG by use of a G0 × G0-equivariant
grading of G, then for an even tangent vector ue ∈ TeG, uL = gruL and
uR = gruR. In particular g0 = ggr

0 as Lie algebras of vector fields on G.
Further, the natural isomorphism of super vector spaces g1̄

∼= ggr
1̄ induced

from this grading is an isomorphism of g0-modules.

Proof. — It remains to show the second statement. For this, we observe
that for u ∈ g0, v ∈ g1̄, [u, v]i = [u, vi]. Since gr v = v−1, the statement
follows. �

We now move on to the study of graded actions.

Assumption. — For the rest of the section we assume that all superva-
rieties are locally graded.

Lemma 6.21. — SupposeG is a supergroup which acts on a supervariety
X, and consider the action of grG on grX. Then for u ∈ ggr

0 , u preserves
the Z-grading on OgrX , and for u ∈ ggr

1̄ , u acts by degree −1 on OgrX .

Proof. — For f ∈ (OgrX)i, we have

u(f) = −(ue ⊗ 1) ◦ (gr a)∗(f).

Now since gr a preserves the Z-grading, we have

(gr a)∗(f) ∈
⊕

06j6i
(OgrG)j ⊗ (OgrX)i−j .

If u ∈ ggr
0 , then ue vanishes on (OG)i for i > 0, and if u ∈ ggr

1̄ then ue
vanishes on (OG)i for i 6= 1. The result follows. �

Now if K is a closed subgroup of G via the inclusion φ : K → G, then
the Z-gradings induced on C[G] and C[K] from Koszul’s realization make
the natural pullback surjection φ∗ : C[G]→ C[K] into a graded map. Thus
the kernel of this map, IK ⊆ C[G], becomes a graded ideal. Further, if we
consider the group-graded supergroup structure on K and G from these
gradings, φ will be a homomorphism of supergroups grK → grG. Thus
grφ = φ, and so IK = IgrK .

Lemma 6.22. — If X is a supervariety and x∈X(C), then StabgrG(x)=
StabG(x) as closed subvarieties of G.
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Proof. — Write K = StabG(x), Ix for the maximal ideal sheaf of x ∈
X(C) and Igr

x for the maximal ideal sheaf of x ∈ grX(C). Then by as-
sumption we have (ax)∗(Ix) = IK . But with respect to the Z-grading from
Koszul’s realization, IK is a graded ideal and thus (gr ax)∗(Igr

x ) = IK =
IgrK , and we are done. �

Corollary 6.23. — If X is a homogeneous G-supervariety isomor-
phic to G/K, then grX is a homogeneous grG-supervariety isomorphic
to grG/ grK.

6.6. G a quasireductive group-graded supergroup

Let G be a quasireductive supergroup, and write g = LieG as always.

Lemma 6.24. — If l ⊆ g1̄ is an abelian ideal of g, then l is contained in
every hyperborel subalgebra of g.

Proof. — If b is a hyperborel subalgebra, then b+ l is a subalgebra that
still satisfies the first two properties of being a hyperborel, and thus by
maximality b = b + l. �

Corollary 6.25. — Let G be a group-graded quasireductive super-
group. Then every hyperborel of g is of the form b0 ⊕ g1̄, where b0 is a
Borel subalgebra of g0. In particular G has only one hyperborel subalgebra
up to conjugacy.

Proof. — In this case g1̄ is an abelian ideal of g, so we use Lemma 6.24
to get that every hyperborel must contain g1̄, and thus they are all of this
form. If b, b′ are two hyperborels, then conjugating b0 to b′0 will conjugate
b to b′. �

In fact, we have

Proposition 6.26. — If g is quasireductive and g1̄ is contained in a
hyperborel subalgebra, then g is graded.

Proof. — Since [g1̄, g1̄] ⊆ g0 is a submodule of the adjoint representation,
if it is nonzero it must intersect any Cartan subalgebra nontrivially. Thus
if g1̄ is contained in a hyperborel subalgebra we must have [g1̄, g1̄] = 0, i.e.
g is graded. �

The following lemma now follows easily from what we have shown so far.

Lemma 6.27. — If G is a quasireductive supergroup, and B is a hyper-
borel subgroup of G, then grG is quasireductive and grB is a subgroup of
a hyperborel of grG.
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We can now prove that the functor gr preserves sphericity.

Corollary 6.28. — Suppose thatG is quasireductive andX is a spher-
ical G-supervariety. Then grX is a locally graded spherical grG-super-
variety under the graded action.

Proof. — Let B be a hyperborel of G with an open orbit on X. Then by
Corollary 6.23, grB has an open orbit on the same underlying open subset
of |X|. By Lemma 6.27, grB is contained in a hyperborel of grG, and the
hyperborel of grG containing grB has an open orbit at x. Thus grX is
spherical. �

For the rest of this section we assume that G is a group-graded quasire-
ductive supergroup.

Proposition 6.29. — Suppose that X is a locally graded spherical G-
supervariety. Then socC[X] is a subalgebra of C[X] and the restriction of
i∗X to socC[X] is injective. In particular, socC[X] is an even subalgera of
C[X] without nilpotents.

Proof. — A semisimple representation of G is exactly the pullback of
a semisimple representation of G0 under the natural surjection G → G0.
Therefore socC[X] can be thought of as a sum of simpleG0-representations,
and thus the tensor product of two subrepresentations of socC[X] is again
a semisimple G0-representation. Since multiplication is G-equivariant, it
follows that socC[X] is a subalgebra of C[X].

Recall that iX is a G0-equivariant map of algebras. If socC[X]∩ker i∗X 6=
0, then it must contain a simple subrepresentation L. Let f ∈ L be the B-
highest weight vector for some hyperborel B of G. Then by Proposition 5.3,
f is non-nilpotent and thus i∗X(f) 6= 0, a contradiction. This completes the
proof. �

Corollary 6.30. — For a locally graded affine spherical G-super-
variety X, C[X] is completely reducible if and only if X = X0.

Proof. — If X = X0 then G acts via the quotient to G0 so C[X] is
completely reducible.
On the other hand, the condition that C[X] is completely reducible is

equivalent to C[X] = socC[X]. By Proposition 6.29, this condition implies
that i∗X is an isomorphism, so X = X0. �

We now focus on the case of homogeneous spherical supervarieties for G.

Lemma 6.31. — If X is a homogeneous G-supervariety, then X is
graded, and the action a : G × X → X is isomorphic to the graded ac-
tion gr a.
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Proof. — This follows directly from Corollary 6.23. �

Proposition 6.32. — If X is a homogeneous G-supervariety, then X

is spherical if and only if X0 is a spherical G0-variety.

Proof. — If X = G/K, then we want to determine when k = LieK has a
complementary hyperborel subalgebra in g = LieG. By Corollary 6.25, the
hyperborels of g = LieG are all of the form b0 ⊕ g1̄ for a Borel subalgebra
b0 of g0. Thus it is equivalent to find a Borel subalgebra b0 complementary
to k0 in g0. Since X0 = G0/K0, this completes the proof. �

Proposition 6.33. — If X is a homogeneous spherical G-supervariety,
then there exists a grading of X for which C[X]0 = socC[X]. In particular,
if B is a hyperborel of G, then Λ+

B(X) = Λ+
B0

(X0).

Proof. — By Lemma 6.31, there exists a grading of X for which the
action of G is graded. With respect to this action, g1̄ acts by degree −1
derivations on OX . Thus C[X]0 ⊆ C[X]g1̄ = socC[X]. On the other hand,
by Proposition 6.29, iX : socC[X]→ C[X0] is injective. Since iX : C[X]0 →
C[X0] is an isomorphism we must have C[X]0 = socC[X]. �

In the case of homogeneous affine spaces, we have the following strength-
ening of Corollary 6.30. Note that a homogeneous space G/K is affine if
and only if K0 is reductive, i.e. K is quasireductive.

Proposition 6.34. — If X = G/K is a homogeneous affine G-space,
then the following are equivalent.

(1) X = X0.
(2) C[X] is completely reducible.
(3) C splits of from C[X] as a G-module.

Before proving this, we first state a lemma.

Lemma 6.35. — Suppose that G is quasireductive and that g = Lie(G)
has an odd abelian ideal l ⊆ g1̄. Then if K ⊆ G is a quasireductive sub-
group, C splits off from C[G/K] only if l ⊆ k = Lie(K).

Proof. — Suppose that l is not contained in k. Let m = k∩l, and let r be a
k0-invariant complement to m in l, where we are using that K0 is reductive.
Write L,M , and R for the purely even vector spaces with L = l1̄,M = m1̄,
and R = r1̄. We may naturally view L as a g0-module according to the
restriction of the adjoint action of g0 to l, using that l is an ideal of g.

Now consider the following g-module V . As a g0-module, V = L⊗ L∗ ⊕
ΠL∗. Choose a g0-invariant complement l′ to l in g1̄. Then we say that
for u ∈ l′, u acts by 0 on V , and for u ∈ l, u acts by 0 on V0 = L ⊗ L∗,
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while for ϕ ∈ V1̄ = ΠL∗, we set u · ϕ := u ⊗ ϕ ∈ V0. Then this defines
a representation of g on V . Further, the span of the element vL ∈ V0 =
L⊗ L∗ which correspond to the identity map on L defines an even trivial
subrepresentation C〈vL〉 of V . This subrepresentation does not split off of
V , as we see that if u1, . . . , un is a basis of L and ϕ1, . . . , ϕn is a the parity
shift of a dual basis in ΠL∗, then we have the following equation in V :

n∑
i=1

ui · ϕi =
n∑
i=1

ui ⊗ ϕi = vL

Consider the element ψ ∈ V ∗ corresponding to the trace form on R ⊗
R∗ ⊆ L ⊗ L∗. Then as an element of V ∗, ψ is k0-invariant since R is a
k0-submodule. If u ∈ k1̄ and ϕ ∈ V1̄, then u ·ϕ = u⊗ϕ ∈M ⊗L∗, and thus
ψ(u⊗ ϕ) = 0. It follows that ψ ∈ (V ∗)k, i.e. it defines an even coinvariant
of V , so by Frobenius reciprocity it defines a G-module morphism Ψ : V →
C[G/K]. Further, since ψ(vL) 6= 0 and vL is G-fixed, Ψ(vL) is a non-zero
constant function on G/K. We see that

n∑
i=1

ui ·Ψ(ϕi) = Ψ
(

n∑
i=1

ui · ϕi

)
= Ψ(vL).

It follows that C does not split off from C[G/K], and we are done. �

Now we prove Proposition 6.34.
Proof. — Since g1̄ if an odd abelian ideal of g, if K ⊆ G is a quasire-

ductive subgroup, C splits off from C[G/K] only if g1̄ ⊆ k by Lemma 6.35,
and in this case G/K is a purely even variety. This shows (3) =⇒ (1). Both
(1) =⇒ (2) and (2) =⇒ (3) are obvious. �

Appendix A. Action of Lie Superalgebras

Let g be an arbitrary Lie superalgebra and X a supervariety. An action
of g on X is a Lie superalgebra homomorphism g→ Γ(X, TX).

Definition A.1. — If g acts on X, then we say g has an open orbit on
X if there exists a point x ∈ X(C) such that the natural restriction map
g → TxX is a surjection. In this case, the locus of points where g → TxX

is surjective is open, and we call this open set an open orbit of g. We say
X is a homogeneous g-supervariety if all of X is an open orbit.

Proposition A.2. — Suppose that X is a homogeneous g-supervariety.
If L is a g-equivariant line bundle on X, then a nonzero g-submodule of
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Γ(X,L) generates L. In particular, if X is affine, C[X] has no non-trivial
g-invariant ideals.

Proof. — See Remark 3.16. �

Now assume that g is quasireductive.

Definition A.3. — A g-supervariety X is said to be spherical if there
exists a hyperborel subalgebra b in g such that b has an open orbit on X.
In this case we say that X is b-spherical.

Remark A.4. — If G is quasireductive and acts on a supervariety X, and
B is a hyperborel subgroup of G, then X is B-spherical if and only if X is
b-spherical for the induced action of g on X.

We may now slightly extend our results on spherical supervarieties.

Theorem A.5. — Let X be a g-supervariety, b a hyperborel subalgebra
of g and h0 ⊆ b a Cartan subalgebra of g0. If X is b-spherical then for a b-
equivariant line bundle L on X, Γ(X,L)(b) is a multiplicity-free h0-module
and if s ∈ Γ(X,L)(b) is non-zero then it is non-vanishing.

Proof. — Suppose that s ∈ Γ(X,L)(b) is a non-zero weight vector of b. If
we restrict s to the open orbit U of b, by Proposition A.2 it must generate
L|U since it cannot restrict to zero. This implies the restriction of s to U
must be non-vanishing.
Now if s1, s2 ∈ Γ(X,L)(b) are non-zero weight vectors for b of the same

weight, then f = s1/s2 is a rational b-invariant function. Since s2 is non-
vanishing on U , f is regular on U . We may assume by further restriction
that U affine. Then since it is b-homogeneous, C[U ] has no nontrivial b-
invariant ideals by Proposition A.2. However for x ∈ U(C), (f − f(x))
will be an invariant ideal which is not equal to C[U ] since it is contained
in mx. Therefore f − f(x) = 0, so f is constant, and thus s1 and s2 are
proportional. This completes the proof. �

Appendix B. Smoothness

Let X be a complex supervariety and let x ∈ X(C). We say that X is
smooth at x if the natural evaluation map TX,x → TxX is surjective (see
Remark 2.12). We seek to give a list of conditions that are equivalent to
this, so as to clarify the existing literature on smoothness of superschemes.
In order to state the characterization, we recall several constructions and
definitions.
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• For a supervariety X, write ΩX for its sheaf of differentials, which
can be defined as the conormal sheaf to X under the diagonal em-
bedding X → X ×X.

• For x ∈ X(C) we may view TxX as the affine superspace
SpecS•(mx/m2

x). Define the tangent cone at x, TCxX, to be the
closed conical subvariety of TxX given by

TCxX = Spec

⊕
n>0

mnx/m
n+1
x


The derivations in TX,x act on both C[TxX] and C[TCx] by deriva-
tions of degree -1, and the action is equivariant with respect to the
above closed embedding.

• For a local supercommutative algebra A with unique maximal ideal
m, we write Â for the completion of A with respect to the m-adic
topology.

• Following [25], given a superalgebra A we say that an even element
t ∈ A0 is A-regular if the multiplication map by t is injective. We say
an odd element ξ ∈ A1̄ is A-regular if the cohomology of the multi-
plication map by ξ is trivial. Finally, if (r1, . . . , rk) is a sequence of
homogeneous elements of A, we say the sequence is A-regular if ri
is regular in A/(r1, . . . , ri−1).

Definition B.1. — A local supercommutative algebra A is regular if
the unique maximal ideal m is generated by an A-regular sequence.

Lemma B.2. — Let F be a finitely generated field over C of transcen-
dence degreem, and let F = F [ξ1, . . . , ξn] for odd variables ξ1, . . . , ξn. Then
ΩF/C is a free F -module of rank (m|n).

Proof. — We have the short exact sequence

F ⊗F̄ ΩF̄ /C → ΩF/C → ΩF/F̄ → 0.

Since ΩF/F̄ is a free F -module of rank (0|n) with generators dξ1, . . . ,dξn,
the last map splits which implies that dξ1, . . . ,dξn generate a free summand
of ΩF/C of rank (0|n). We know that ΩF̄ /C is a free F -module of rank (m|0)
with generators dt1, . . . ,dtm, where t1, . . . , tm form a transcendence basis
of F over C. Hence ΩF/C is generated by dt1, . . . ,dtm,dξ1, . . . ,dξn, and it
suffices to show that dt1, . . . ,dtm are F -linearly independent.

However if we compute HomF (ΩF/C, F ) we get the module of C-linear
derivations of F , which contains a free submodule of rank (m|0) generated
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by ∂t1 , . . . , ∂tm . These may be used to show that dt1, . . . ,dtm are F -linearly
independent, and we are done. �

Theorem B.3. — For a supervariety X and closed point x ∈ X(C),
let A := OX,x with maximal ideal m = mx. Let t1, . . . , tm, ξ1, . . . , ξn ∈ m

project to a homogeneous basis of m/m2, where ti = 0 and ξi = 1. Then
the following are equivalent.

(1) Â ∼= C[[t1, . . . , tm, ξ1, . . . , ξn]];
(2) GrmA :=

⊕
n>0 m

n/mn+1 ∼= C[t1, . . . , tm, ξ1, . . . , ξn], where ( · ) :
m→ m/m2 is the natural projection;

(3) ΩX,x = ΩA/C is free over A;
(4) SpecA→ C is a formally smooth morphism;
(5) A = A/(A1̄) is a regular local ring, and A ∼= A[ξ1, . . . , ξn];
(6) there exists an affine neighborhood U = SpecB of x such that

B = B/(B1̄) is regular and B ∼= Λ•B⊕n;
(7) TxX = TCxX;
(8) the natural map TX,x → TxX is surjective;
(9) A is a regular local superalgebra;
(10) A is a graded integral superdomain such that A is a regular local

ring;

Proof. — The equivalence (1) ⇐⇒ (2) is proven in [8], (2) ⇐⇒ (7) is
clear, (3) ⇐⇒ (4) is proven in [12], and (5) ⇐⇒ (9) is proven in [25]. The
equivalence (5) ⇐⇒ (10) follows from the following commutative algebra
statement (which is proven in the author’s PhD thesis): if M is a finitely
generated module over a local Noetherian integral domain, then M is free
if and only if every exterior power of M is torsion-free.
For (1) =⇒ (3), we have that m/m2 ∼= m̂/m̂2 is (m|n)-dimensional, so by

Nakayama’s lemma ΩA/C is generated by (m|n) elements. Localizing A at
the generic point, we obtain a superalgebra F which by our assumptions
and the Cohen structure theorem is isomorphic to F [ξ1, . . . , ξn], where F is
the fraction field of A. Hence by Lemma B.2 ΩF/C, which is the localization
of ΩA/C at the generic point, is free of rank (m|n). It follows that ΩA/C
must itself be free of rank (m|n).
For (3) =⇒ (8), dt1, . . . ,dtm,dξ1, . . . ,dξn form a basis of ΩA/C. Then

TX,x = HomA(ΩA/C, A)

will be free with basis ∂t1 , . . . , ∂tm , ∂ξ1 , . . . , ∂ξn
and these derivations map

to a basis of TxX, namely the dual basis of t1, . . . , tm, ξ1, . . . , ξn ∈ m/m2.
For (8) =⇒ (7), if TCxX 6= TxX, then the vanishing ideal of TCxX must

be preserved by all derivations from TX,x. By our assumption, we get all
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coordinate derivations from the derivations of TX,x, so no such non-trivial
ideals exist.
For (5) ⇐⇒ (6), the backward direction follows from localizing. Con-

versely, the isomorphism OX,x → A[ξ1, . . . , ξn] may be extended to a mor-
phism of sheaves OX → grX on a small enough affine open of x. This
morphism will be an isomorphism of stalks at x, and so using Noetherian
and coherent properties, we get an isomorphism in an open neighborhood
of x.
The implication (5) =⇒ (1) is clear.
Now we assume (1), and use (3) (which we have so far shown is equivalent

to (1)) to prove (5). First, (1) implies that A is regular. As noted previously,
by (3) we know that A has derivations ∂t1 , . . . , ∂tm , ∂ξ1 , . . . , ∂ξn . These
derivations extend canonically to Â as the usual coordinate derivations,
and these derivations preserve A as a subalgebra. We have the following
diagram:

A //

π

��

C[[t1, . . . , tm, ξ1, . . . , ξn]]

π̂
��

A // C[[t1, . . . , tm]]

where π is the natural quotient map. To construct a splitting A → A, we
observe that π̂ has a natural splitting ŝ sending ti to ti. We would like to
show that ŝ(A) lies in the image of A in the completion.

Let f ∈ A, thought of as a power series. Then we may lift f to f̃ ∈ A0.
The power series expansion of f̃ will then be

f̃ = f +
∑
I 6=∅

fIξI ∈ A

where ξI = ξi1 · · · ξik if I = {i1, . . . , ik}, and fI ∈ C[[t1, . . . , tm]]. Using the
derivations ∂ξi

for varying I, we may show that each function fI lies in A,
and so f itself lies in A. Therefore we have our splitting, and now it follows
that A ∼= A[ξ1, . . . , ξn]. �
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