When do triple operator integrals take value in the trace class?
[Quand les intégrales triples d’opérateurs sont-elles à valeurs dans les opérateurs à trace ?]
Annales de l'Institut Fourier, Online first, 56 p.

Considérons trois opérateurs normaux A,B,C sur un espace de Hilbert séparable ainsi que des mesures spectrales scalaires λ A sur σ(A), λ B sur σ(B) et λ C sur σ(C). Pour tout ϕL (λ A ×λ B ×λ C ) et pour tous X,YS 2 (), l’espace des opérateurs de Hilbert–Schmidt sur , nous donnons une définition générale d’une intégrale triple d’opérateurs Γ A,B,C (ϕ)(X,Y) appartenant à S 2 (), de sorte que Γ A,B,C (ϕ) appartient à l’espace B 2 (S 2 ()×S 2 (),S 2 ()) des opérateurs bilinéaires bornés sur S 2 (), et l’application Γ A,B,C :L (λ A ×λ B ×λ C )B 2 (S 2 ()×S 2 (),S 2 ()) est une isométrie w * -continue. On montre alors qu’étant donnée une fonction ϕL (λ A ×λ B ×λ C ), Γ A,B,C (ϕ) envoie S 2 ()×S 2 () dans S 1 (), l’espace des opérateurs à trace sur , si et seulement si ϕ vérifie la propriété de factorisation suivante : il existe un espace de Hilbert H et deux fonctions aL (λ A ×λ B ;H) et bL (λ B ×λ C ;H) tels que ϕ(t 1 ,t 2 ,t 3 )=a(t 1 ,t 2 ),b(t 2 ,t 3 ) pour presque tout (t 1 ,t 2 ,t 3 )σ(A)×σ(B)×σ(C). Il s’agit de la version bilinéaire du Théorème de Peller caractérisant les applications d’intégrales doubles d’opérateurs envoyant S 1 () dans S 1 (). On établit en passant qu’étant donnés deux espaces de Banach séparables E et F, toute fonction w * -mesurable et essentiellement bornée à valeurs dans l’espace Γ 2 (E,F * ) des opérateurs de E dans F * se factorisant par un espace de Hilbert, admet une factorisation hilbertienne w * -mesurable.

Consider three normal operators A,B,C on a separable Hilbert space as well as scalar-valued spectral measures λ A on σ(A), λ B on σ(B) and λ C on σ(C). For any ϕL (λ A ×λ B ×λ C ) and any X,YS 2 (), the space of Hilbert–Schmidt operators on , we provide a general definition of a triple operator integral Γ A,B,C (ϕ)(X,Y) belonging to S 2 () in such a way that Γ A,B,C (ϕ) belongs to the space B 2 (S 2 ()×S 2 (),S 2 ()) of bounded bilinear operators on S 2 (), and the resulting mapping Γ A,B,C :L (λ A ×λ B ×λ C )B 2 (S 2 ()×S 2 (),S 2 ()) is a w * -continuous isometry. Then we show that a function ϕL (λ A ×λ B ×λ C ) has the property that Γ A,B,C (ϕ) maps S 2 ()×S 2 () into S 1 (), the space of trace class operators on , if and only if it has the following factorization property: there exist a Hilbert space H and two functions aL (λ A ×λ B ;H) and bL (λ B ×λ C ;H) such that ϕ(t 1 ,t 2 ,t 3 )=a(t 1 ,t 2 ),b(t 2 ,t 3 ) for a.e. (t 1 ,t 2 ,t 3 )σ(A)×σ(B)×σ(C). This is a bilinear version of Peller’s Theorem characterizing double operator integral mappings S 1 ()S 1 (). In passing we show that for any separable Banach spaces E,F, any w * -measurable esssentially bounded function valued in the Banach space Γ 2 (E,F * ) of operators from E into F * factoring through Hilbert space admits a w * -measurable Hilbert space factorization.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : https://doi.org/10.5802/aif.3422
Classification : 47B10,  47B38,  46E40
Mots clés : Opérateurs à trace, Intégrales triples d’opérateurs, Multiplicateurs de Schur, Factorisation par un espace de Hilbert
@unpublished{AIF_0__0_0_A25_0,
     author = {Coine, Cl\'ement and Le Merdy, Christian and Sukochev, Fedor},
     title = {When do triple operator integrals take value in the trace class?},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2021},
     doi = {10.5802/aif.3422},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Coine, Clément
AU  - Le Merdy, Christian
AU  - Sukochev, Fedor
TI  - When do triple operator integrals take value in the trace class?
JO  - Annales de l'Institut Fourier
PY  - 2021
DA  - 2021///
PB  - Association des Annales de l’institut Fourier
N1  - Online first
UR  - https://doi.org/10.5802/aif.3422
DO  - 10.5802/aif.3422
LA  - en
ID  - AIF_0__0_0_A25_0
ER  - 
%0 Unpublished Work
%A Coine, Clément
%A Le Merdy, Christian
%A Sukochev, Fedor
%T When do triple operator integrals take value in the trace class?
%J Annales de l'Institut Fourier
%D 2021
%I Association des Annales de l’institut Fourier
%Z Online first
%U https://doi.org/10.5802/aif.3422
%R 10.5802/aif.3422
%G en
%F AIF_0__0_0_A25_0
Coine, Clément; Le Merdy, Christian; Sukochev, Fedor. When do triple operator integrals take value in the trace class?. Annales de l'Institut Fourier, Online first, 56 p.

[1] Aleksandrov, Aleksei; Nazarov, Fedor; Peller, Vladimir V. Triple operator integrals in Schatten–von Neumann norms and functions of perturbed noncommuting operators, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 8, pp. 723-728 | MR 3367641 | Zbl 1325.47033

[2] Aleksandrov, Aleksei; Nazarov, Fedor; Peller, Vladimir V. Functions of noncommuting self-adjoint operators under perturbation and estimates of triple operator integrals, Adv. Math., Volume 295 (2016), pp. 1-52 | Article | MR 3488031 | Zbl 1359.47012

[3] Aleksandrov, Aleksei; Peller, Vladimir V. Multiple operator integrals, Haagerup and Haagerup-like tensor products, and operator ideals, Bull. Lond. Math. Soc., Volume 49 (2017) no. 3, pp. 463-479 | Article | MR 3723631 | Zbl 1441.47022

[4] Azamov, Nurulla A.; Carey, Alan L.; Dodds, Peter G.; Sukochev, Fedor Operator integrals, spectral shift, and spectral flow, Can. J. Math., Volume 61 (2009) no. 2, pp. 241-263 | Article | MR 2504014 | Zbl 1163.47008

[5] Birman, Mikhail S.; Solomjak, Mikhaĭl Z. Double Stieltjes operator integrals, Probl. Mat. Fiz., Volume 1 (1966), pp. 33-67

[6] Birman, Mikhail S.; Solomjak, Mikhaĭl Z. Double Stieltjes operator integrals. II, Probl. Mat. Fiz., Volume 2 (1967), pp. 26-60

[7] Birman, Mikhail S.; Solomjak, Mikhaĭl Z. Double Stieltjes operator integrals. III. Limit under the integral sign, Probl. Mat. Fiz., Volume 6 (1973), pp. 27-53

[8] Birman, Mikhail S.; Solomjak, Mikhaĭl Z. Double operator integrals in a Hilbert space, Integral Equations Oper. Theory, Volume 47 (2003) no. 2, pp. 131-168 | Article | MR 2002663

[9] Coine, Clément Complete boundedness of multiple operator integrals (2019) (https://arxiv.org/abs/1908.07879, to appear in Canad. Math. Bull.)

[10] Coine, Clément Perturbation theory and higher order S p -differentiability of operator functions (2019) (https://arxiv.org/abs/1906.05585)

[11] Coine, Clément; Le Merdy, Christian; Potapov, Denis; Sukochev, Fedor; Tomskova, Anna Peller’s problem concerning Koplienko–Neidhardt trace formulae: the unitary case, J. Funct. Anal., Volume 271 (2016) no. 7, pp. 1747-1763 | Article | MR 3535318 | Zbl 1350.47011

[12] Coine, Clément; Le Merdy, Christian; Potapov, Denis; Sukochev, Fedor; Tomskova, Anna Resolution of Peller’s problem concerning Koplienko–Neidhardt trace formulae, Proc. Lond. Math. Soc., Volume 113 (2016) no. 2, pp. 113-139 | Article | MR 3534968 | Zbl 1372.47020

[13] Coine, Clément; Le Merdy, Christian; Skripka, Anna; Sukochev, Fedor Higher order S 2 -differentiability and application to Koplienko trace formula, J. Funct. Anal., Volume 276 (2019) no. 10, pp. 3170-3204 | Article | MR 3944290 | Zbl 07040991

[14] Conway, John B. A course in operator theory, Graduate Studies in Mathematics, 21, American Mathematical Society, 2000

[15] Daletskii, Yuriĭ L.; Krein, Selim G. Integration and differentiation of functions of Hermitian operators and applications to the theory of perturbations, Voronež. Gos. Univ. Trudy Sem. Funkcional. Anal., Volume 56 (1956) no. 1, pp. 81-105 | MR 84745

[16] Davidson, Kenneth R. C * -algebras by example, Fields Institute Monographs, 6, American Mathematical Society, 1996

[17] Diestel, Joe; Jarchow, Hans; Tonge, Andrew Absolutely summing operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, 1995 | Article

[18] Diestel, Joe; Uhl, Jerry J. Vector measures, Mathematical Surveys, 15, American Mathematical Society, 1977 | Article

[19] Dunford, Nelson; Pettis, Billy J. Linear operations on summable functions, Trans. Am. Math. Soc., Volume 47 (1940), pp. 323-392 | Article | MR 2020 | Zbl 0023.32902

[20] Effros, Edward G.; Ruan, Zhong-Jin Multivariable multipliers for groups and their operator algebras, Operator theory: operator algebras and applications, Part 1 (Durham, NH, 1988) (Proceedings of Symposia in Pure Mathematics), Volume 51, American Mathematical Society, 1990, pp. 197-218 | MR 1077387 | Zbl 0715.43005

[21] Haagerup, Uffe Decomposition of completely bounded maps on operator algebras (1980) (unpublished preprint, Odense University, Denmark)

[22] Hiai, Fumio; Kosaki, Hideki Means of Hilbert space operators, Lecture Notes in Mathematics, 1820, Springer, 2003 | Article

[23] Jefferies, Brian Singular bilinear integrals in quantum physics, Mathematics, Volume 3 (2015) no. 3, pp. 563-603 | Article | Zbl 1330.81093

[24] Juschenko, Kate; Todorov, Ivan G.; Turowska, Lyudmila Multidimensional operator multipliers, Trans. Am. Math. Soc., Volume 361 (2009) no. 9, pp. 4683-4720 | Article | MR 2506424 | Zbl 1194.47040

[25] Le Merdy, Christian; Skripka, Anna Higher order differentiability of operator functions in Schatten norms, J. Inst. Math. Jussieu, Volume 19 (2020) no. 6, pp. 1993-2016 | Article | MR 4167000 | Zbl 07286300

[26] Pavlov, Boris S. Multidimensional operator integrals, Probl. Mat. Anal., Volume 2 (1969), pp. 99-122

[27] Pedersen, Gert K. C * -algebras and their automorphism groups, London Mathematical Society Monographs, 14, Academic Press Inc., 1979

[28] Peller, Vladimir V. Hankel operators in the theory of perturbations of unitary and selfadjoint operators, Funkts. Anal. Prilozh., Volume 19 (1985) no. 2, pp. 37-51 | MR 800919

[29] Peller, Vladimir V. Multiple operator integrals and higher operator derivatives, J. Funct. Anal., Volume 233 (2006) no. 2, pp. 515-544 | Article | MR 2214586 | Zbl 1102.46024

[30] Peller, Vladimir V. Multiple operator integrals in perturbation theory, Bull. Math. Sci., Volume 6 (2016) no. 1, pp. 15-88 | Article | MR 3472849 | Zbl 1348.46048

[31] Pisier, Gilles Factorization of linear operators and geometry of Banach spaces, CBMS Regional Conference Series in Mathematics, 60, American Mathematical Society, 1986 | Article

[32] Pisier, Gilles Similarity problems and completely bounded maps, Lecture Notes in Mathematics, 1618, Springer, 1996 | Article

[33] Pisier, Gilles Grothendieck’s theorem, past and present, Bull. Am. Math. Soc., Volume 49 (2012) no. 2, pp. 237-323 | Article | MR 2888168 | Zbl 1244.46006

[34] Potapov, Denis; Skripka, Anna; Sukochev, Fedor Spectral shift function of higher order, Invent. Math., Volume 193 (2013) no. 3, pp. 501-538 | Article | MR 3091975 | Zbl 1282.47012

[35] Potapov, Denis; Skripka, Anna; Sukochev, Fedor; Tomskova, Anna Multilinear Schur multipliers and Schatten properties of operator Taylor remainders, Adv. Math., Volume 320 (2017), pp. 1063-1098 | Article | MR 3709129 | Zbl 06794787

[36] Reed, Michael; Simon, Barry Methods of modern mathematical physics. I Functional analysis, Academic Press Inc., 1980

[37] Rudin, Walter Functional analysis, McGraw-Hill, 1973 (McGraw-Hill Series in Higher Mathematics)

[38] Skripka, Anna; Tomskova, Anna Multilinear operator integrals, Lecture Notes in Mathematics, 2250, Springer, 2019 (Theory and applications) | Article

[39] Spronk, Nico Measurable Schur multipliers and completely bounded multipliers of the Fourier algebras, Proc. Lond. Math. Soc., Volume 89 (2004) no. 1, pp. 161-192 | Article | MR 2063663 | Zbl 1047.43008

Cité par Sources :