La conjecture de Nagata est l’un des problèmes ouverts les plus intriguants dans le domaine des courbes du plan complexe. Elle s’énonce simplement. En effet, elle affirme que le plus petit degré d’une courbe plane passant par points généraux dans le plan projectif avec des multiplicités au moins en chaque point, satisfait l’inégalité . Cette conjecture a été vérifiée par M. Nagata en 1959, si est un carré parfait strictement supérieur à . Jusqu’à présent, elle est restée ouverte pour tout entier non carré, après plus d’un demi-siècle d’attention de la part de nombreux chercheurs.
Dans cet article, nous formulons de nouvelles versions transcendentales de cette conjecture issues de la théorie du pluripotentiel, et qui sont équivalentes à une version dans de la conjecture Nagata.
The Nagata Conjecture is one of the most intriguing open problems in the area of curves in the plane. It is easily stated. Namely, it predicts that the smallest degree of a plane curve passing through general points in the projective plane with multiplicities at least at every point, satisfies the inequality . This conjecture has been proven by M. Nagata in 1959, if is a perfect square greater than . Up to now, it remains open for every non-square , after more than a half century of attention by many researchers.
In this paper, we formulate new transcendental versions of this conjecture coming from pluripotential theory and which are equivalent to a version in of the Nagata Conjecture.
Révisé le :
Accepté le :
Publié le :
Keywords: Nagata conjecture, pluripotential theory, pluricomplex Green function
Mot clés : Conjecture de Nagata, théorie du pluripotentiel, fonction de Green pluricomplexe
Nivoche, Stéphanie 1
@article{AIF_2021__71_1_27_0, author = {Nivoche, St\'ephanie}, title = {Transcendental versions in ${{\protect \mathbb{C}}}^n$ of the {Nagata} conjecture}, journal = {Annales de l'Institut Fourier}, pages = {27--52}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {1}, year = {2021}, doi = {10.5802/aif.3402}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3402/} }
TY - JOUR AU - Nivoche, Stéphanie TI - Transcendental versions in ${{\protect \mathbb{C}}}^n$ of the Nagata conjecture JO - Annales de l'Institut Fourier PY - 2021 SP - 27 EP - 52 VL - 71 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3402/ DO - 10.5802/aif.3402 LA - en ID - AIF_2021__71_1_27_0 ER -
%0 Journal Article %A Nivoche, Stéphanie %T Transcendental versions in ${{\protect \mathbb{C}}}^n$ of the Nagata conjecture %J Annales de l'Institut Fourier %D 2021 %P 27-52 %V 71 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3402/ %R 10.5802/aif.3402 %G en %F AIF_2021__71_1_27_0
Nivoche, Stéphanie. Transcendental versions in ${{\protect \mathbb{C}}}^n$ of the Nagata conjecture. Annales de l'Institut Fourier, Tome 71 (2021) no. 1, pp. 27-52. doi : 10.5802/aif.3402. https://aif.centre-mersenne.org/articles/10.5802/aif.3402/
[1] The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math., Volume 37 (1976) no. 1, pp. 1-44 | DOI | Zbl
[2] A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982) no. 1-2, pp. 1-40 | DOI | MR | Zbl
[3] Singular points on complex hypersurfaces and multidimensional Schwarz lemma, Seminar on Number Theory, Paris 1979/80 (Progress in Mathematics), Volume 12, Birkhäuser, 1981, pp. 29-69 | MR | Zbl
[4] Entire pluricomplex Green functions and Lelong numbers of projective currents, Proc. Am. Math. Soc., Volume 134 (2006) no. 7, pp. 1927-1935 | DOI | MR | Zbl
[5] Plurisubharmonic functions with singularities and affine invariants for finite sets in , Math. Ann., Volume 322 (2002) no. 2, pp. 317-332 | DOI | MR | Zbl
[6] Mesures de Monge–Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. Fr., Nouv. Sér., Volume 19 (1985), pp. 1-125 | Numdam | Zbl
[7] Mesures de Monge–Ampère et mesures pluriharmoniques, Math. Z., Volume 194 (1987) no. 4, pp. 519-564 | DOI | Zbl
[8] Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990) (Lecture Notes in Mathematics), Volume 1507, Springer, 1992, pp. 87-104 | MR | Zbl
[9] Monge–Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry (The University Series in Mathematics), Plenum Press, 1993, pp. 115-193 | DOI | Zbl
[10] Multiplier ideal sheaves and analytic methods in algebraic geometry, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000) (ICTP Lecture Notes), Volume 6, Abdus Salam International Centre for Theoretical Physics, 2001, pp. 1-148 | MR | Zbl
[11] Convergence of multipole Green functions, Indiana Univ. Math. J., Volume 65 (2016) no. 1, pp. 223-241 | MR | Zbl
[12] On the postulation of fat points in , J. Algebra, Volume 285 (2005) no. 2, pp. 516-530 | DOI | MR | Zbl
[13] On Nagata’s Conjecture, J. Algebra, Volume 236 (2001) no. 2, pp. 692-702 | DOI | MR | Zbl
[14] Discrete behavior of Seshadri constants on surfaces, J. Pure Appl. Algebra, Volume 212 (2008) no. 3, pp. 616-627 | DOI | MR | Zbl
[15] Notions of Convexity, Progress in Mathematics, 127, Birkhäuser, 1994 | MR | Zbl
[16] Inverse system of a symbolic power. III. Thin algebras and fat points, Compos. Math., Volume 108 (1997) no. 3, pp. 319-356 | DOI | MR | Zbl
[17] Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. Fr., Volume 113 (1985), pp. 231-240 | DOI | Numdam | MR | Zbl
[18] Notions capacitaires et fonctions de Green pluricomplexes dans les espaces de Banach, C. R. Math. Acad. Sci. Paris, Volume 305 (1987) no. 3, pp. 71-76 | MR | Zbl
[19] Fonction de Green pluricomplexe et lemmes de Schwarz dans les espaces de Banach, J. Math. Pures Appl., Volume 68 (1989), pp. 319-347 | MR | Zbl
[20] Limits of multipole pluricomplex Green functions, Int. J. Math., Volume 23 (2012) no. 6, 1250065, 38 pages | MR | Zbl
[21] Lemmes de Schwarz en plusieurs variables et applications arithmétiques, Séminaire Pierre Lelong (Analyse) année 1975/76 (Lecture Notes in Mathematics), Volume 822, Springer, 1980, pp. 174-190 | DOI | MR | Zbl
[22] On the 14-th problem of Hilbert, Am. J. Math., Volume 81 (1959), pp. 766-772 | DOI | MR
[23] On rational surfaces, II, Mem. Coll. Sci., Univ. Kyoto, Ser. A, Volume 33 (1960), pp. 271-293 | MR | Zbl
[24] On the fourteenth problem of Hilbert, Proceedings of the International Congress of Mathematicians (Edinburgh, 1958), Cambridge University Press, 1960, pp. 459-462
[25] The pluricomplex Green function, capacitative notions, and approximation problems in , Indiana Univ. Math. J., Volume 44 (1995) no. 2, pp. 489-510 | MR | Zbl
[26] Powers of ideals and convergence of Green functions with colliding poles, Int. Math. Res. Not., Volume 2014 (2014) no. 5, pp. 1253-1272 | DOI | MR | Zbl
[27] A bound for Seshadri constants on , Math. Nachr., Volume 257 (2003), pp. 108-116 | DOI | MR | Zbl
[28] Propriétés arithmétiques de fonctions de plusieurs variables, Séminaire Pierre Lelong (Analyse) année 1975/76 (Lecture Notes in Mathematics), Volume 578, Springer, 1977, pp. 108-135 | DOI | Zbl
[29] Nombres transcendants et groupes algébriques, Astérisque, Société Mathématique de France, 1987, 218 pages | Zbl
[30] Curves in and symplectic packings, Math. Ann., Volume 299 (1994) no. 4, pp. 609-613 | MR | Zbl
Cité par Sources :